base.cc revision 3495
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#include <iostream>
33#include <string>
34#include <sstream>
35
36#include "base/cprintf.hh"
37#include "base/loader/symtab.hh"
38#include "base/misc.hh"
39#include "base/output.hh"
40#include "cpu/base.hh"
41#include "cpu/cpuevent.hh"
42#include "cpu/thread_context.hh"
43#include "cpu/profile.hh"
44#include "sim/sim_exit.hh"
45#include "sim/param.hh"
46#include "sim/process.hh"
47#include "sim/sim_events.hh"
48#include "sim/system.hh"
49
50#include "base/trace.hh"
51
52// Hack
53#include "sim/stat_control.hh"
54
55using namespace std;
56
57vector<BaseCPU *> BaseCPU::cpuList;
58
59// This variable reflects the max number of threads in any CPU.  Be
60// careful to only use it once all the CPUs that you care about have
61// been initialized
62int maxThreadsPerCPU = 1;
63
64CPUProgressEvent::CPUProgressEvent(EventQueue *q, Tick ival,
65                                   BaseCPU *_cpu)
66    : Event(q, Event::Stat_Event_Pri), interval(ival),
67      lastNumInst(0), cpu(_cpu)
68{
69    if (interval)
70        schedule(curTick + interval);
71}
72
73void
74CPUProgressEvent::process()
75{
76    Counter temp = cpu->totalInstructions();
77#ifndef NDEBUG
78    double ipc = double(temp - lastNumInst) / (interval / cpu->cycles(1));
79
80    DPRINTFN("%s progress event, instructions committed: %lli, IPC: %0.8d\n",
81             cpu->name(), temp - lastNumInst, ipc);
82    ipc = 0.0;
83#else
84    cprintf("%lli: %s progress event, instructions committed: %lli\n",
85            curTick, cpu->name(), temp - lastNumInst);
86#endif
87    lastNumInst = temp;
88    schedule(curTick + interval);
89}
90
91const char *
92CPUProgressEvent::description()
93{
94    return "CPU Progress event";
95}
96
97#if FULL_SYSTEM
98BaseCPU::BaseCPU(Params *p)
99    : MemObject(p->name), clock(p->clock), checkInterrupts(true),
100      params(p), number_of_threads(p->numberOfThreads), system(p->system)
101#else
102BaseCPU::BaseCPU(Params *p)
103    : MemObject(p->name), clock(p->clock), params(p),
104      number_of_threads(p->numberOfThreads), system(p->system)
105#endif
106{
107//    currentTick = curTick;
108    DPRINTF(FullCPU, "BaseCPU: Creating object, mem address %#x.\n", this);
109
110    // add self to global list of CPUs
111    cpuList.push_back(this);
112
113    DPRINTF(FullCPU, "BaseCPU: CPU added to cpuList, mem address %#x.\n",
114            this);
115
116    if (number_of_threads > maxThreadsPerCPU)
117        maxThreadsPerCPU = number_of_threads;
118
119    // allocate per-thread instruction-based event queues
120    comInstEventQueue = new EventQueue *[number_of_threads];
121    for (int i = 0; i < number_of_threads; ++i)
122        comInstEventQueue[i] = new EventQueue("instruction-based event queue");
123
124    //
125    // set up instruction-count-based termination events, if any
126    //
127    if (p->max_insts_any_thread != 0)
128        for (int i = 0; i < number_of_threads; ++i)
129            schedExitSimLoop("a thread reached the max instruction count",
130                             p->max_insts_any_thread, 0,
131                             comInstEventQueue[i]);
132
133    if (p->max_insts_all_threads != 0) {
134        // allocate & initialize shared downcounter: each event will
135        // decrement this when triggered; simulation will terminate
136        // when counter reaches 0
137        int *counter = new int;
138        *counter = number_of_threads;
139        for (int i = 0; i < number_of_threads; ++i)
140            new CountedExitEvent(comInstEventQueue[i],
141                "all threads reached the max instruction count",
142                p->max_insts_all_threads, *counter);
143    }
144
145    // allocate per-thread load-based event queues
146    comLoadEventQueue = new EventQueue *[number_of_threads];
147    for (int i = 0; i < number_of_threads; ++i)
148        comLoadEventQueue[i] = new EventQueue("load-based event queue");
149
150    //
151    // set up instruction-count-based termination events, if any
152    //
153    if (p->max_loads_any_thread != 0)
154        for (int i = 0; i < number_of_threads; ++i)
155            schedExitSimLoop("a thread reached the max load count",
156                             p->max_loads_any_thread, 0,
157                             comLoadEventQueue[i]);
158
159    if (p->max_loads_all_threads != 0) {
160        // allocate & initialize shared downcounter: each event will
161        // decrement this when triggered; simulation will terminate
162        // when counter reaches 0
163        int *counter = new int;
164        *counter = number_of_threads;
165        for (int i = 0; i < number_of_threads; ++i)
166            new CountedExitEvent(comLoadEventQueue[i],
167                "all threads reached the max load count",
168                p->max_loads_all_threads, *counter);
169    }
170
171#if FULL_SYSTEM
172    memset(interrupts, 0, sizeof(interrupts));
173    intstatus = 0;
174#endif
175
176    functionTracingEnabled = false;
177    if (p->functionTrace) {
178        functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
179        currentFunctionStart = currentFunctionEnd = 0;
180        functionEntryTick = p->functionTraceStart;
181
182        if (p->functionTraceStart == 0) {
183            functionTracingEnabled = true;
184        } else {
185            Event *e =
186                new EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace>(this,
187                                                                         true);
188            e->schedule(p->functionTraceStart);
189        }
190    }
191#if FULL_SYSTEM
192    profileEvent = NULL;
193    if (params->profile)
194        profileEvent = new ProfileEvent(this, params->profile);
195#endif
196}
197
198BaseCPU::Params::Params()
199{
200#if FULL_SYSTEM
201    profile = false;
202#endif
203    checker = NULL;
204}
205
206void
207BaseCPU::enableFunctionTrace()
208{
209    functionTracingEnabled = true;
210}
211
212BaseCPU::~BaseCPU()
213{
214}
215
216void
217BaseCPU::init()
218{
219    if (!params->deferRegistration)
220        registerThreadContexts();
221}
222
223void
224BaseCPU::startup()
225{
226#if FULL_SYSTEM
227    if (!params->deferRegistration && profileEvent)
228        profileEvent->schedule(curTick);
229#endif
230
231    if (params->progress_interval) {
232        new CPUProgressEvent(&mainEventQueue, params->progress_interval,
233                             this);
234    }
235}
236
237
238void
239BaseCPU::regStats()
240{
241    using namespace Stats;
242
243    numCycles
244        .name(name() + ".numCycles")
245        .desc("number of cpu cycles simulated")
246        ;
247
248    int size = threadContexts.size();
249    if (size > 1) {
250        for (int i = 0; i < size; ++i) {
251            stringstream namestr;
252            ccprintf(namestr, "%s.ctx%d", name(), i);
253            threadContexts[i]->regStats(namestr.str());
254        }
255    } else if (size == 1)
256        threadContexts[0]->regStats(name());
257
258#if FULL_SYSTEM
259#endif
260}
261
262Tick
263BaseCPU::nextCycle()
264{
265    Tick next_tick = curTick + clock - 1;
266    next_tick -= (next_tick % clock);
267    return next_tick;
268}
269
270Tick
271BaseCPU::nextCycle(Tick begin_tick)
272{
273    Tick next_tick = begin_tick;
274
275    while (next_tick < curTick)
276        next_tick += clock;
277
278    next_tick -= (next_tick % clock);
279    assert(next_tick >= curTick);
280    return next_tick;
281}
282
283void
284BaseCPU::registerThreadContexts()
285{
286    for (int i = 0; i < threadContexts.size(); ++i) {
287        ThreadContext *tc = threadContexts[i];
288
289#if FULL_SYSTEM
290        int id = params->cpu_id;
291        if (id != -1)
292            id += i;
293
294        tc->setCpuId(system->registerThreadContext(tc, id));
295#else
296        tc->setCpuId(tc->getProcessPtr()->registerThreadContext(tc));
297#endif
298    }
299}
300
301
302void
303BaseCPU::switchOut()
304{
305//    panic("This CPU doesn't support sampling!");
306#if FULL_SYSTEM
307    if (profileEvent && profileEvent->scheduled())
308        profileEvent->deschedule();
309#endif
310}
311
312void
313BaseCPU::takeOverFrom(BaseCPU *oldCPU)
314{
315    assert(threadContexts.size() == oldCPU->threadContexts.size());
316
317    for (int i = 0; i < threadContexts.size(); ++i) {
318        ThreadContext *newTC = threadContexts[i];
319        ThreadContext *oldTC = oldCPU->threadContexts[i];
320
321        newTC->takeOverFrom(oldTC);
322
323        CpuEvent::replaceThreadContext(oldTC, newTC);
324
325        assert(newTC->readCpuId() == oldTC->readCpuId());
326#if FULL_SYSTEM
327        system->replaceThreadContext(newTC, newTC->readCpuId());
328#else
329        assert(newTC->getProcessPtr() == oldTC->getProcessPtr());
330        newTC->getProcessPtr()->replaceThreadContext(newTC, newTC->readCpuId());
331#endif
332
333//    TheISA::compareXCs(oldXC, newXC);
334    }
335
336#if FULL_SYSTEM
337    for (int i = 0; i < TheISA::NumInterruptLevels; ++i)
338        interrupts[i] = oldCPU->interrupts[i];
339    intstatus = oldCPU->intstatus;
340    checkInterrupts = oldCPU->checkInterrupts;
341
342    for (int i = 0; i < threadContexts.size(); ++i)
343        threadContexts[i]->profileClear();
344
345    // The Sampler must take care of this!
346//    if (profileEvent)
347//        profileEvent->schedule(curTick);
348#endif
349}
350
351
352#if FULL_SYSTEM
353BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, int _interval)
354    : Event(&mainEventQueue), cpu(_cpu), interval(_interval)
355{ }
356
357void
358BaseCPU::ProfileEvent::process()
359{
360    for (int i = 0, size = cpu->threadContexts.size(); i < size; ++i) {
361        ThreadContext *tc = cpu->threadContexts[i];
362        tc->profileSample();
363    }
364
365    schedule(curTick + interval);
366}
367
368void
369BaseCPU::post_interrupt(int int_num, int index)
370{
371    DPRINTF(Interrupt, "Interrupt %d:%d posted\n", int_num, index);
372
373    if (int_num < 0 || int_num >= TheISA::NumInterruptLevels)
374        panic("int_num out of bounds\n");
375
376    if (index < 0 || index >= sizeof(uint64_t) * 8)
377        panic("int_num out of bounds\n");
378
379    checkInterrupts = true;
380    interrupts[int_num] |= 1 << index;
381    intstatus |= (ULL(1) << int_num);
382}
383
384void
385BaseCPU::clear_interrupt(int int_num, int index)
386{
387    DPRINTF(Interrupt, "Interrupt %d:%d cleared\n", int_num, index);
388
389    if (int_num < 0 || int_num >= TheISA::NumInterruptLevels)
390        panic("int_num out of bounds\n");
391
392    if (index < 0 || index >= sizeof(uint64_t) * 8)
393        panic("int_num out of bounds\n");
394
395    interrupts[int_num] &= ~(1 << index);
396    if (interrupts[int_num] == 0)
397        intstatus &= ~(ULL(1) << int_num);
398}
399
400void
401BaseCPU::clear_interrupts()
402{
403    DPRINTF(Interrupt, "Interrupts all cleared\n");
404
405    memset(interrupts, 0, sizeof(interrupts));
406    intstatus = 0;
407}
408
409
410void
411BaseCPU::serialize(std::ostream &os)
412{
413    SERIALIZE_ARRAY(interrupts, TheISA::NumInterruptLevels);
414    SERIALIZE_SCALAR(intstatus);
415}
416
417void
418BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
419{
420    UNSERIALIZE_ARRAY(interrupts, TheISA::NumInterruptLevels);
421    UNSERIALIZE_SCALAR(intstatus);
422}
423
424#endif // FULL_SYSTEM
425
426void
427BaseCPU::traceFunctionsInternal(Addr pc)
428{
429    if (!debugSymbolTable)
430        return;
431
432    // if pc enters different function, print new function symbol and
433    // update saved range.  Otherwise do nothing.
434    if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
435        string sym_str;
436        bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
437                                                         currentFunctionStart,
438                                                         currentFunctionEnd);
439
440        if (!found) {
441            // no symbol found: use addr as label
442            sym_str = csprintf("0x%x", pc);
443            currentFunctionStart = pc;
444            currentFunctionEnd = pc + 1;
445        }
446
447        ccprintf(*functionTraceStream, " (%d)\n%d: %s",
448                 curTick - functionEntryTick, curTick, sym_str);
449        functionEntryTick = curTick;
450    }
451}
452
453
454DEFINE_SIM_OBJECT_CLASS_NAME("BaseCPU", BaseCPU)
455