base.cc revision 12334:e0ab29a34764
1/*
2 * Copyright (c) 2011-2012,2016-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2011 Regents of the University of California
16 * Copyright (c) 2013 Advanced Micro Devices, Inc.
17 * Copyright (c) 2013 Mark D. Hill and David A. Wood
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions are
22 * met: redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer;
24 * redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution;
27 * neither the name of the copyright holders nor the names of its
28 * contributors may be used to endorse or promote products derived from
29 * this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 *
43 * Authors: Steve Reinhardt
44 *          Nathan Binkert
45 *          Rick Strong
46 */
47
48#include "cpu/base.hh"
49
50#include <iostream>
51#include <sstream>
52#include <string>
53
54#include "arch/tlb.hh"
55#include "base/cprintf.hh"
56#include "base/loader/symtab.hh"
57#include "base/logging.hh"
58#include "base/output.hh"
59#include "base/trace.hh"
60#include "cpu/checker/cpu.hh"
61#include "cpu/cpuevent.hh"
62#include "cpu/profile.hh"
63#include "cpu/thread_context.hh"
64#include "debug/Mwait.hh"
65#include "debug/SyscallVerbose.hh"
66#include "mem/page_table.hh"
67#include "params/BaseCPU.hh"
68#include "sim/clocked_object.hh"
69#include "sim/full_system.hh"
70#include "sim/process.hh"
71#include "sim/sim_events.hh"
72#include "sim/sim_exit.hh"
73#include "sim/system.hh"
74
75// Hack
76#include "sim/stat_control.hh"
77
78using namespace std;
79
80vector<BaseCPU *> BaseCPU::cpuList;
81
82// This variable reflects the max number of threads in any CPU.  Be
83// careful to only use it once all the CPUs that you care about have
84// been initialized
85int maxThreadsPerCPU = 1;
86
87CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
88    : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
89      cpu(_cpu), _repeatEvent(true)
90{
91    if (_interval)
92        cpu->schedule(this, curTick() + _interval);
93}
94
95void
96CPUProgressEvent::process()
97{
98    Counter temp = cpu->totalOps();
99
100    if (_repeatEvent)
101      cpu->schedule(this, curTick() + _interval);
102
103    if (cpu->switchedOut()) {
104      return;
105    }
106
107#ifndef NDEBUG
108    double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod());
109
110    DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
111             "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
112             ipc);
113    ipc = 0.0;
114#else
115    cprintf("%lli: %s progress event, total committed:%i, progress insts "
116            "committed: %lli\n", curTick(), cpu->name(), temp,
117            temp - lastNumInst);
118#endif
119    lastNumInst = temp;
120}
121
122const char *
123CPUProgressEvent::description() const
124{
125    return "CPU Progress";
126}
127
128BaseCPU::BaseCPU(Params *p, bool is_checker)
129    : MemObject(p), instCnt(0), _cpuId(p->cpu_id), _socketId(p->socket_id),
130      _instMasterId(p->system->getMasterId(name() + ".inst")),
131      _dataMasterId(p->system->getMasterId(name() + ".data")),
132      _taskId(ContextSwitchTaskId::Unknown), _pid(invldPid),
133      _switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()),
134      interrupts(p->interrupts), profileEvent(NULL),
135      numThreads(p->numThreads), system(p->system),
136      previousCycle(0), previousState(CPU_STATE_SLEEP),
137      functionTraceStream(nullptr), currentFunctionStart(0),
138      currentFunctionEnd(0), functionEntryTick(0),
139      addressMonitor(p->numThreads),
140      syscallRetryLatency(p->syscallRetryLatency),
141      pwrGatingLatency(p->pwr_gating_latency),
142      powerGatingOnIdle(p->power_gating_on_idle),
143      enterPwrGatingEvent([this]{ enterPwrGating(); }, name())
144{
145    // if Python did not provide a valid ID, do it here
146    if (_cpuId == -1 ) {
147        _cpuId = cpuList.size();
148    }
149
150    // add self to global list of CPUs
151    cpuList.push_back(this);
152
153    DPRINTF(SyscallVerbose, "Constructing CPU with id %d, socket id %d\n",
154                _cpuId, _socketId);
155
156    if (numThreads > maxThreadsPerCPU)
157        maxThreadsPerCPU = numThreads;
158
159    // allocate per-thread instruction-based event queues
160    comInstEventQueue = new EventQueue *[numThreads];
161    for (ThreadID tid = 0; tid < numThreads; ++tid)
162        comInstEventQueue[tid] =
163            new EventQueue("instruction-based event queue");
164
165    //
166    // set up instruction-count-based termination events, if any
167    //
168    if (p->max_insts_any_thread != 0) {
169        const char *cause = "a thread reached the max instruction count";
170        for (ThreadID tid = 0; tid < numThreads; ++tid)
171            scheduleInstStop(tid, p->max_insts_any_thread, cause);
172    }
173
174    // Set up instruction-count-based termination events for SimPoints
175    // Typically, there are more than one action points.
176    // Simulation.py is responsible to take the necessary actions upon
177    // exitting the simulation loop.
178    if (!p->simpoint_start_insts.empty()) {
179        const char *cause = "simpoint starting point found";
180        for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i)
181            scheduleInstStop(0, p->simpoint_start_insts[i], cause);
182    }
183
184    if (p->max_insts_all_threads != 0) {
185        const char *cause = "all threads reached the max instruction count";
186
187        // allocate & initialize shared downcounter: each event will
188        // decrement this when triggered; simulation will terminate
189        // when counter reaches 0
190        int *counter = new int;
191        *counter = numThreads;
192        for (ThreadID tid = 0; tid < numThreads; ++tid) {
193            Event *event = new CountedExitEvent(cause, *counter);
194            comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
195        }
196    }
197
198    // allocate per-thread load-based event queues
199    comLoadEventQueue = new EventQueue *[numThreads];
200    for (ThreadID tid = 0; tid < numThreads; ++tid)
201        comLoadEventQueue[tid] = new EventQueue("load-based event queue");
202
203    //
204    // set up instruction-count-based termination events, if any
205    //
206    if (p->max_loads_any_thread != 0) {
207        const char *cause = "a thread reached the max load count";
208        for (ThreadID tid = 0; tid < numThreads; ++tid)
209            scheduleLoadStop(tid, p->max_loads_any_thread, cause);
210    }
211
212    if (p->max_loads_all_threads != 0) {
213        const char *cause = "all threads reached the max load count";
214        // allocate & initialize shared downcounter: each event will
215        // decrement this when triggered; simulation will terminate
216        // when counter reaches 0
217        int *counter = new int;
218        *counter = numThreads;
219        for (ThreadID tid = 0; tid < numThreads; ++tid) {
220            Event *event = new CountedExitEvent(cause, *counter);
221            comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
222        }
223    }
224
225    functionTracingEnabled = false;
226    if (p->function_trace) {
227        const string fname = csprintf("ftrace.%s", name());
228        functionTraceStream = simout.findOrCreate(fname)->stream();
229
230        currentFunctionStart = currentFunctionEnd = 0;
231        functionEntryTick = p->function_trace_start;
232
233        if (p->function_trace_start == 0) {
234            functionTracingEnabled = true;
235        } else {
236            Event *event = new EventFunctionWrapper(
237                [this]{ enableFunctionTrace(); }, name(), true);
238            schedule(event, p->function_trace_start);
239        }
240    }
241
242    // The interrupts should always be present unless this CPU is
243    // switched in later or in case it is a checker CPU
244    if (!params()->switched_out && !is_checker) {
245        fatal_if(interrupts.size() != numThreads,
246                 "CPU %s has %i interrupt controllers, but is expecting one "
247                 "per thread (%i)\n",
248                 name(), interrupts.size(), numThreads);
249        for (ThreadID tid = 0; tid < numThreads; tid++)
250            interrupts[tid]->setCPU(this);
251    }
252
253    if (FullSystem) {
254        if (params()->profile)
255            profileEvent = new EventFunctionWrapper(
256                [this]{ processProfileEvent(); },
257                name());
258    }
259    tracer = params()->tracer;
260
261    if (params()->isa.size() != numThreads) {
262        fatal("Number of ISAs (%i) assigned to the CPU does not equal number "
263              "of threads (%i).\n", params()->isa.size(), numThreads);
264    }
265}
266
267void
268BaseCPU::enableFunctionTrace()
269{
270    functionTracingEnabled = true;
271}
272
273BaseCPU::~BaseCPU()
274{
275    delete profileEvent;
276    delete[] comLoadEventQueue;
277    delete[] comInstEventQueue;
278}
279
280void
281BaseCPU::armMonitor(ThreadID tid, Addr address)
282{
283    assert(tid < numThreads);
284    AddressMonitor &monitor = addressMonitor[tid];
285
286    monitor.armed = true;
287    monitor.vAddr = address;
288    monitor.pAddr = 0x0;
289    DPRINTF(Mwait,"[tid:%d] Armed monitor (vAddr=0x%lx)\n", tid, address);
290}
291
292bool
293BaseCPU::mwait(ThreadID tid, PacketPtr pkt)
294{
295    assert(tid < numThreads);
296    AddressMonitor &monitor = addressMonitor[tid];
297
298    if (!monitor.gotWakeup) {
299        int block_size = cacheLineSize();
300        uint64_t mask = ~((uint64_t)(block_size - 1));
301
302        assert(pkt->req->hasPaddr());
303        monitor.pAddr = pkt->getAddr() & mask;
304        monitor.waiting = true;
305
306        DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, "
307                "line's paddr=0x%lx)\n", tid, monitor.vAddr, monitor.pAddr);
308        return true;
309    } else {
310        monitor.gotWakeup = false;
311        return false;
312    }
313}
314
315void
316BaseCPU::mwaitAtomic(ThreadID tid, ThreadContext *tc, TheISA::TLB *dtb)
317{
318    assert(tid < numThreads);
319    AddressMonitor &monitor = addressMonitor[tid];
320
321    Request req;
322    Addr addr = monitor.vAddr;
323    int block_size = cacheLineSize();
324    uint64_t mask = ~((uint64_t)(block_size - 1));
325    int size = block_size;
326
327    //The address of the next line if it crosses a cache line boundary.
328    Addr secondAddr = roundDown(addr + size - 1, block_size);
329
330    if (secondAddr > addr)
331        size = secondAddr - addr;
332
333    req.setVirt(0, addr, size, 0x0, dataMasterId(), tc->instAddr());
334
335    // translate to physical address
336    Fault fault = dtb->translateAtomic(&req, tc, BaseTLB::Read);
337    assert(fault == NoFault);
338
339    monitor.pAddr = req.getPaddr() & mask;
340    monitor.waiting = true;
341
342    DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, line's paddr=0x%lx)\n",
343            tid, monitor.vAddr, monitor.pAddr);
344}
345
346void
347BaseCPU::init()
348{
349    if (!params()->switched_out) {
350        registerThreadContexts();
351
352        verifyMemoryMode();
353    }
354}
355
356void
357BaseCPU::startup()
358{
359    if (FullSystem) {
360        if (!params()->switched_out && profileEvent)
361            schedule(profileEvent, curTick());
362    }
363
364    if (params()->progress_interval) {
365        new CPUProgressEvent(this, params()->progress_interval);
366    }
367
368    if (_switchedOut)
369        ClockedObject::pwrState(Enums::PwrState::OFF);
370
371    // Assumption CPU start to operate instantaneously without any latency
372    if (ClockedObject::pwrState() == Enums::PwrState::UNDEFINED)
373        ClockedObject::pwrState(Enums::PwrState::ON);
374
375}
376
377ProbePoints::PMUUPtr
378BaseCPU::pmuProbePoint(const char *name)
379{
380    ProbePoints::PMUUPtr ptr;
381    ptr.reset(new ProbePoints::PMU(getProbeManager(), name));
382
383    return ptr;
384}
385
386void
387BaseCPU::regProbePoints()
388{
389    ppAllCycles = pmuProbePoint("Cycles");
390    ppActiveCycles = pmuProbePoint("ActiveCycles");
391
392    ppRetiredInsts = pmuProbePoint("RetiredInsts");
393    ppRetiredLoads = pmuProbePoint("RetiredLoads");
394    ppRetiredStores = pmuProbePoint("RetiredStores");
395    ppRetiredBranches = pmuProbePoint("RetiredBranches");
396
397    ppSleeping = new ProbePointArg<bool>(this->getProbeManager(),
398                                         "Sleeping");
399}
400
401void
402BaseCPU::probeInstCommit(const StaticInstPtr &inst)
403{
404    if (!inst->isMicroop() || inst->isLastMicroop())
405        ppRetiredInsts->notify(1);
406
407
408    if (inst->isLoad())
409        ppRetiredLoads->notify(1);
410
411    if (inst->isStore())
412        ppRetiredStores->notify(1);
413
414    if (inst->isControl())
415        ppRetiredBranches->notify(1);
416}
417
418void
419BaseCPU::regStats()
420{
421    MemObject::regStats();
422
423    using namespace Stats;
424
425    numCycles
426        .name(name() + ".numCycles")
427        .desc("number of cpu cycles simulated")
428        ;
429
430    numWorkItemsStarted
431        .name(name() + ".numWorkItemsStarted")
432        .desc("number of work items this cpu started")
433        ;
434
435    numWorkItemsCompleted
436        .name(name() + ".numWorkItemsCompleted")
437        .desc("number of work items this cpu completed")
438        ;
439
440    int size = threadContexts.size();
441    if (size > 1) {
442        for (int i = 0; i < size; ++i) {
443            stringstream namestr;
444            ccprintf(namestr, "%s.ctx%d", name(), i);
445            threadContexts[i]->regStats(namestr.str());
446        }
447    } else if (size == 1)
448        threadContexts[0]->regStats(name());
449}
450
451BaseMasterPort &
452BaseCPU::getMasterPort(const string &if_name, PortID idx)
453{
454    // Get the right port based on name. This applies to all the
455    // subclasses of the base CPU and relies on their implementation
456    // of getDataPort and getInstPort. In all cases there methods
457    // return a MasterPort pointer.
458    if (if_name == "dcache_port")
459        return getDataPort();
460    else if (if_name == "icache_port")
461        return getInstPort();
462    else
463        return MemObject::getMasterPort(if_name, idx);
464}
465
466void
467BaseCPU::registerThreadContexts()
468{
469    assert(system->multiThread || numThreads == 1);
470
471    ThreadID size = threadContexts.size();
472    for (ThreadID tid = 0; tid < size; ++tid) {
473        ThreadContext *tc = threadContexts[tid];
474
475        if (system->multiThread) {
476            tc->setContextId(system->registerThreadContext(tc));
477        } else {
478            tc->setContextId(system->registerThreadContext(tc, _cpuId));
479        }
480
481        if (!FullSystem)
482            tc->getProcessPtr()->assignThreadContext(tc->contextId());
483    }
484}
485
486void
487BaseCPU::deschedulePowerGatingEvent()
488{
489    if (enterPwrGatingEvent.scheduled()){
490        deschedule(enterPwrGatingEvent);
491    }
492}
493
494void
495BaseCPU::schedulePowerGatingEvent()
496{
497    for (auto tc : threadContexts) {
498        if (tc->status() == ThreadContext::Active)
499            return;
500    }
501
502    if (ClockedObject::pwrState() == Enums::PwrState::CLK_GATED &&
503        powerGatingOnIdle) {
504        assert(!enterPwrGatingEvent.scheduled());
505        // Schedule a power gating event when clock gated for the specified
506        // amount of time
507        schedule(enterPwrGatingEvent, clockEdge(pwrGatingLatency));
508    }
509}
510
511int
512BaseCPU::findContext(ThreadContext *tc)
513{
514    ThreadID size = threadContexts.size();
515    for (ThreadID tid = 0; tid < size; ++tid) {
516        if (tc == threadContexts[tid])
517            return tid;
518    }
519    return 0;
520}
521
522void
523BaseCPU::activateContext(ThreadID thread_num)
524{
525    // Squash enter power gating event while cpu gets activated
526    if (enterPwrGatingEvent.scheduled())
527        deschedule(enterPwrGatingEvent);
528    // For any active thread running, update CPU power state to active (ON)
529    ClockedObject::pwrState(Enums::PwrState::ON);
530
531    updateCycleCounters(CPU_STATE_WAKEUP);
532}
533
534void
535BaseCPU::suspendContext(ThreadID thread_num)
536{
537    // Check if all threads are suspended
538    for (auto t : threadContexts) {
539        if (t->status() != ThreadContext::Suspended) {
540            return;
541        }
542    }
543
544    // All CPU thread are suspended, update cycle count
545    updateCycleCounters(CPU_STATE_SLEEP);
546
547    // All CPU threads suspended, enter lower power state for the CPU
548    ClockedObject::pwrState(Enums::PwrState::CLK_GATED);
549
550    // If pwrGatingLatency is set to 0 then this mechanism is disabled
551    if (powerGatingOnIdle) {
552        // Schedule power gating event when clock gated for pwrGatingLatency
553        // cycles
554        schedule(enterPwrGatingEvent, clockEdge(pwrGatingLatency));
555    }
556}
557
558void
559BaseCPU::haltContext(ThreadID thread_num)
560{
561    updateCycleCounters(BaseCPU::CPU_STATE_SLEEP);
562}
563
564void
565BaseCPU::enterPwrGating(void)
566{
567    ClockedObject::pwrState(Enums::PwrState::OFF);
568}
569
570void
571BaseCPU::switchOut()
572{
573    assert(!_switchedOut);
574    _switchedOut = true;
575    if (profileEvent && profileEvent->scheduled())
576        deschedule(profileEvent);
577
578    // Flush all TLBs in the CPU to avoid having stale translations if
579    // it gets switched in later.
580    flushTLBs();
581
582    // Go to the power gating state
583    ClockedObject::pwrState(Enums::PwrState::OFF);
584}
585
586void
587BaseCPU::takeOverFrom(BaseCPU *oldCPU)
588{
589    assert(threadContexts.size() == oldCPU->threadContexts.size());
590    assert(_cpuId == oldCPU->cpuId());
591    assert(_switchedOut);
592    assert(oldCPU != this);
593    _pid = oldCPU->getPid();
594    _taskId = oldCPU->taskId();
595    // Take over the power state of the switchedOut CPU
596    ClockedObject::pwrState(oldCPU->pwrState());
597
598    previousState = oldCPU->previousState;
599    previousCycle = oldCPU->previousCycle;
600
601    _switchedOut = false;
602
603    ThreadID size = threadContexts.size();
604    for (ThreadID i = 0; i < size; ++i) {
605        ThreadContext *newTC = threadContexts[i];
606        ThreadContext *oldTC = oldCPU->threadContexts[i];
607
608        newTC->takeOverFrom(oldTC);
609
610        CpuEvent::replaceThreadContext(oldTC, newTC);
611
612        assert(newTC->contextId() == oldTC->contextId());
613        assert(newTC->threadId() == oldTC->threadId());
614        system->replaceThreadContext(newTC, newTC->contextId());
615
616        /* This code no longer works since the zero register (e.g.,
617         * r31 on Alpha) doesn't necessarily contain zero at this
618         * point.
619           if (DTRACE(Context))
620            ThreadContext::compare(oldTC, newTC);
621        */
622
623        BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
624        BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
625        BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
626        BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
627
628        // Move over any table walker ports if they exist
629        if (new_itb_port) {
630            assert(!new_itb_port->isConnected());
631            assert(old_itb_port);
632            assert(old_itb_port->isConnected());
633            BaseSlavePort &slavePort = old_itb_port->getSlavePort();
634            old_itb_port->unbind();
635            new_itb_port->bind(slavePort);
636        }
637        if (new_dtb_port) {
638            assert(!new_dtb_port->isConnected());
639            assert(old_dtb_port);
640            assert(old_dtb_port->isConnected());
641            BaseSlavePort &slavePort = old_dtb_port->getSlavePort();
642            old_dtb_port->unbind();
643            new_dtb_port->bind(slavePort);
644        }
645        newTC->getITBPtr()->takeOverFrom(oldTC->getITBPtr());
646        newTC->getDTBPtr()->takeOverFrom(oldTC->getDTBPtr());
647
648        // Checker whether or not we have to transfer CheckerCPU
649        // objects over in the switch
650        CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
651        CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
652        if (oldChecker && newChecker) {
653            BaseMasterPort *old_checker_itb_port =
654                oldChecker->getITBPtr()->getMasterPort();
655            BaseMasterPort *old_checker_dtb_port =
656                oldChecker->getDTBPtr()->getMasterPort();
657            BaseMasterPort *new_checker_itb_port =
658                newChecker->getITBPtr()->getMasterPort();
659            BaseMasterPort *new_checker_dtb_port =
660                newChecker->getDTBPtr()->getMasterPort();
661
662            newChecker->getITBPtr()->takeOverFrom(oldChecker->getITBPtr());
663            newChecker->getDTBPtr()->takeOverFrom(oldChecker->getDTBPtr());
664
665            // Move over any table walker ports if they exist for checker
666            if (new_checker_itb_port) {
667                assert(!new_checker_itb_port->isConnected());
668                assert(old_checker_itb_port);
669                assert(old_checker_itb_port->isConnected());
670                BaseSlavePort &slavePort =
671                    old_checker_itb_port->getSlavePort();
672                old_checker_itb_port->unbind();
673                new_checker_itb_port->bind(slavePort);
674            }
675            if (new_checker_dtb_port) {
676                assert(!new_checker_dtb_port->isConnected());
677                assert(old_checker_dtb_port);
678                assert(old_checker_dtb_port->isConnected());
679                BaseSlavePort &slavePort =
680                    old_checker_dtb_port->getSlavePort();
681                old_checker_dtb_port->unbind();
682                new_checker_dtb_port->bind(slavePort);
683            }
684        }
685    }
686
687    interrupts = oldCPU->interrupts;
688    for (ThreadID tid = 0; tid < numThreads; tid++) {
689        interrupts[tid]->setCPU(this);
690    }
691    oldCPU->interrupts.clear();
692
693    if (FullSystem) {
694        for (ThreadID i = 0; i < size; ++i)
695            threadContexts[i]->profileClear();
696
697        if (profileEvent)
698            schedule(profileEvent, curTick());
699    }
700
701    // All CPUs have an instruction and a data port, and the new CPU's
702    // ports are dangling while the old CPU has its ports connected
703    // already. Unbind the old CPU and then bind the ports of the one
704    // we are switching to.
705    assert(!getInstPort().isConnected());
706    assert(oldCPU->getInstPort().isConnected());
707    BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort();
708    oldCPU->getInstPort().unbind();
709    getInstPort().bind(inst_peer_port);
710
711    assert(!getDataPort().isConnected());
712    assert(oldCPU->getDataPort().isConnected());
713    BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort();
714    oldCPU->getDataPort().unbind();
715    getDataPort().bind(data_peer_port);
716}
717
718void
719BaseCPU::flushTLBs()
720{
721    for (ThreadID i = 0; i < threadContexts.size(); ++i) {
722        ThreadContext &tc(*threadContexts[i]);
723        CheckerCPU *checker(tc.getCheckerCpuPtr());
724
725        tc.getITBPtr()->flushAll();
726        tc.getDTBPtr()->flushAll();
727        if (checker) {
728            checker->getITBPtr()->flushAll();
729            checker->getDTBPtr()->flushAll();
730        }
731    }
732}
733
734void
735BaseCPU::processProfileEvent()
736{
737    ThreadID size = threadContexts.size();
738
739    for (ThreadID i = 0; i < size; ++i)
740        threadContexts[i]->profileSample();
741
742    schedule(profileEvent, curTick() + params()->profile);
743}
744
745void
746BaseCPU::serialize(CheckpointOut &cp) const
747{
748    SERIALIZE_SCALAR(instCnt);
749
750    if (!_switchedOut) {
751        /* Unlike _pid, _taskId is not serialized, as they are dynamically
752         * assigned unique ids that are only meaningful for the duration of
753         * a specific run. We will need to serialize the entire taskMap in
754         * system. */
755        SERIALIZE_SCALAR(_pid);
756
757        // Serialize the threads, this is done by the CPU implementation.
758        for (ThreadID i = 0; i < numThreads; ++i) {
759            ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
760            interrupts[i]->serialize(cp);
761            serializeThread(cp, i);
762        }
763    }
764}
765
766void
767BaseCPU::unserialize(CheckpointIn &cp)
768{
769    UNSERIALIZE_SCALAR(instCnt);
770
771    if (!_switchedOut) {
772        UNSERIALIZE_SCALAR(_pid);
773
774        // Unserialize the threads, this is done by the CPU implementation.
775        for (ThreadID i = 0; i < numThreads; ++i) {
776            ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
777            interrupts[i]->unserialize(cp);
778            unserializeThread(cp, i);
779        }
780    }
781}
782
783void
784BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause)
785{
786    const Tick now(comInstEventQueue[tid]->getCurTick());
787    Event *event(new LocalSimLoopExitEvent(cause, 0));
788
789    comInstEventQueue[tid]->schedule(event, now + insts);
790}
791
792uint64_t
793BaseCPU::getCurrentInstCount(ThreadID tid)
794{
795    return Tick(comInstEventQueue[tid]->getCurTick());
796}
797
798AddressMonitor::AddressMonitor() {
799    armed = false;
800    waiting = false;
801    gotWakeup = false;
802}
803
804bool AddressMonitor::doMonitor(PacketPtr pkt) {
805    assert(pkt->req->hasPaddr());
806    if (armed && waiting) {
807        if (pAddr == pkt->getAddr()) {
808            DPRINTF(Mwait,"pAddr=0x%lx invalidated: waking up core\n",
809                    pkt->getAddr());
810            waiting = false;
811            return true;
812        }
813    }
814    return false;
815}
816
817void
818BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause)
819{
820    const Tick now(comLoadEventQueue[tid]->getCurTick());
821    Event *event(new LocalSimLoopExitEvent(cause, 0));
822
823    comLoadEventQueue[tid]->schedule(event, now + loads);
824}
825
826
827void
828BaseCPU::traceFunctionsInternal(Addr pc)
829{
830    if (!debugSymbolTable)
831        return;
832
833    // if pc enters different function, print new function symbol and
834    // update saved range.  Otherwise do nothing.
835    if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
836        string sym_str;
837        bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
838                                                         currentFunctionStart,
839                                                         currentFunctionEnd);
840
841        if (!found) {
842            // no symbol found: use addr as label
843            sym_str = csprintf("0x%x", pc);
844            currentFunctionStart = pc;
845            currentFunctionEnd = pc + 1;
846        }
847
848        ccprintf(*functionTraceStream, " (%d)\n%d: %s",
849                 curTick() - functionEntryTick, curTick(), sym_str);
850        functionEntryTick = curTick();
851    }
852}
853
854bool
855BaseCPU::waitForRemoteGDB() const
856{
857    return params()->wait_for_remote_gdb;
858}
859