remote_gdb.cc revision 1910
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (c) 1990, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * This software was developed by the Computer Systems Engineering group
34 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
35 * contributed to Berkeley.
36 *
37 * All advertising materials mentioning features or use of this software
38 * must display the following acknowledgement:
39 *	This product includes software developed by the University of
40 *	California, Lawrence Berkeley Laboratories.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in the
49 *    documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 *    must display the following acknowledgement:
52 *	This product includes software developed by the University of
53 *	California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 *    may be used to endorse or promote products derived from this software
56 *    without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 *	@(#)kgdb_stub.c	8.4 (Berkeley) 1/12/94
71 */
72
73/*-
74 * Copyright (c) 2001 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Jason R. Thorpe.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 *    notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 *    notice, this list of conditions and the following disclaimer in the
87 *    documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 *    must display the following acknowledgement:
90 *	This product includes software developed by the NetBSD
91 *	Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 *    contributors may be used to endorse or promote products derived
94 *    from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109/*
110 * $NetBSD: kgdb_stub.c,v 1.8 2001/07/07 22:58:00 wdk Exp $
111 *
112 * Taken from NetBSD
113 *
114 * "Stub" to allow remote cpu to debug over a serial line using gdb.
115 */
116
117#include <sys/signal.h>
118
119#include <cstdio>
120#include <string>
121#include <unistd.h>
122
123#include "base/intmath.hh"
124#include "base/kgdb.h"
125#include "base/remote_gdb.hh"
126#include "base/socket.hh"
127#include "base/trace.hh"
128#include "cpu/exec_context.hh"
129#include "cpu/static_inst.hh"
130#include "mem/functional/physical.hh"
131#include "sim/system.hh"
132#include "targetarch/vtophys.hh"
133
134using namespace std;
135
136#ifdef DEBUG
137vector<RemoteGDB *> debuggers;
138int current_debugger = -1;
139
140void
141debugger()
142{
143    if (current_debugger >= 0 && current_debugger < debuggers.size()) {
144        RemoteGDB *gdb = debuggers[current_debugger];
145        if (!gdb->isattached())
146            gdb->listener->accept();
147        if (gdb->isattached())
148            gdb->trap(ALPHA_KENTRY_IF);
149    }
150}
151#endif
152
153///////////////////////////////////////////////////////////
154//
155//
156//
157
158GDBListener::Event::Event(GDBListener *l, int fd, int e)
159    : PollEvent(fd, e), listener(l)
160{}
161
162void
163GDBListener::Event::process(int revent)
164{
165    listener->accept();
166}
167
168GDBListener::GDBListener(RemoteGDB *g, int p)
169    : event(NULL), gdb(g), port(p)
170{
171    assert(!gdb->listener);
172    gdb->listener = this;
173}
174
175GDBListener::~GDBListener()
176{
177    if (event)
178        delete event;
179}
180
181string
182GDBListener::name()
183{
184    return gdb->name() + ".listener";
185}
186
187void
188GDBListener::listen()
189{
190    while (!listener.listen(port, true)) {
191        DPRINTF(GDBMisc, "Can't bind port %d\n", port);
192        port++;
193    }
194
195    event = new Event(this, listener.getfd(), POLLIN);
196    pollQueue.schedule(event);
197
198#ifdef DEBUG
199    gdb->number = debuggers.size();
200    debuggers.push_back(gdb);
201#endif
202
203#ifdef DEBUG
204    ccprintf(cerr, "%d: %s: listening for remote gdb #%d on port %d\n",
205             curTick, name(), gdb->number, port);
206#else
207    ccprintf(cerr, "%d: %s: listening for remote gdb on port %d\n",
208             curTick, name(), port);
209#endif
210}
211
212void
213GDBListener::accept()
214{
215    if (!listener.islistening())
216        panic("GDBListener::accept(): cannot accept if we're not listening!");
217
218    int sfd = listener.accept(true);
219
220    if (sfd != -1) {
221        if (gdb->isattached())
222            close(sfd);
223        else
224            gdb->attach(sfd);
225    }
226}
227
228///////////////////////////////////////////////////////////
229//
230//
231//
232int digit2i(char);
233char i2digit(int);
234void mem2hex(void *, const void *, int);
235const char *hex2mem(void *, const char *, int);
236Addr hex2i(const char **);
237
238RemoteGDB::Event::Event(RemoteGDB *g, int fd, int e)
239    : PollEvent(fd, e), gdb(g)
240{}
241
242void
243RemoteGDB::Event::process(int revent)
244{
245    if (revent & POLLIN)
246        gdb->trap(ALPHA_KENTRY_IF);
247    else if (revent & POLLNVAL)
248        gdb->detach();
249}
250
251RemoteGDB::RemoteGDB(System *_system, ExecContext *c)
252    : event(NULL), listener(NULL), number(-1), fd(-1),
253      active(false), attached(false),
254      system(_system), pmem(_system->physmem), context(c)
255{
256    memset(gdbregs, 0, sizeof(gdbregs));
257}
258
259RemoteGDB::~RemoteGDB()
260{
261    if (event)
262        delete event;
263}
264
265string
266RemoteGDB::name()
267{
268    return system->name() + ".remote_gdb";
269}
270
271bool
272RemoteGDB::isattached()
273{ return attached; }
274
275void
276RemoteGDB::attach(int f)
277{
278    fd = f;
279
280    event = new Event(this, fd, POLLIN);
281    pollQueue.schedule(event);
282
283    attached = true;
284    DPRINTFN("remote gdb attached\n");
285}
286
287void
288RemoteGDB::detach()
289{
290    attached = false;
291    close(fd);
292    fd = -1;
293
294    pollQueue.remove(event);
295    DPRINTFN("remote gdb detached\n");
296}
297
298const char *
299gdb_command(char cmd)
300{
301    switch (cmd) {
302      case KGDB_SIGNAL: return "KGDB_SIGNAL";
303      case KGDB_SET_BAUD: return "KGDB_SET_BAUD";
304      case KGDB_SET_BREAK: return "KGDB_SET_BREAK";
305      case KGDB_CONT: return "KGDB_CONT";
306      case KGDB_ASYNC_CONT: return "KGDB_ASYNC_CONT";
307      case KGDB_DEBUG: return "KGDB_DEBUG";
308      case KGDB_DETACH: return "KGDB_DETACH";
309      case KGDB_REG_R: return "KGDB_REG_R";
310      case KGDB_REG_W: return "KGDB_REG_W";
311      case KGDB_SET_THREAD: return "KGDB_SET_THREAD";
312      case KGDB_CYCLE_STEP: return "KGDB_CYCLE_STEP";
313      case KGDB_SIG_CYCLE_STEP: return "KGDB_SIG_CYCLE_STEP";
314      case KGDB_KILL: return "KGDB_KILL";
315      case KGDB_MEM_W: return "KGDB_MEM_W";
316      case KGDB_MEM_R: return "KGDB_MEM_R";
317      case KGDB_SET_REG: return "KGDB_SET_REG";
318      case KGDB_READ_REG: return "KGDB_READ_REG";
319      case KGDB_QUERY_VAR: return "KGDB_QUERY_VAR";
320      case KGDB_SET_VAR: return "KGDB_SET_VAR";
321      case KGDB_RESET: return "KGDB_RESET";
322      case KGDB_STEP: return "KGDB_STEP";
323      case KGDB_ASYNC_STEP: return "KGDB_ASYNC_STEP";
324      case KGDB_THREAD_ALIVE: return "KGDB_THREAD_ALIVE";
325      case KGDB_TARGET_EXIT: return "KGDB_TARGET_EXIT";
326      case KGDB_BINARY_DLOAD: return "KGDB_BINARY_DLOAD";
327      case KGDB_CLR_HW_BKPT: return "KGDB_CLR_HW_BKPT";
328      case KGDB_SET_HW_BKPT: return "KGDB_SET_HW_BKPT";
329      case KGDB_START: return "KGDB_START";
330      case KGDB_END: return "KGDB_END";
331      case KGDB_GOODP: return "KGDB_GOODP";
332      case KGDB_BADP: return "KGDB_BADP";
333      default: return "KGDB_UNKNOWN";
334    }
335}
336
337///////////////////////////////////////////////////////////
338// RemoteGDB::acc
339//
340//	Determine if the mapping at va..(va+len) is valid.
341//
342bool
343RemoteGDB::acc(Addr va, size_t len)
344{
345    Addr last_va;
346
347    va = TheISA::TruncPage(va);
348    last_va = TheISA::RoundPage(va + len);
349
350    do  {
351        if (TheISA::IsK0Seg(va)) {
352            if (va < (TheISA::K0SegBase + pmem->size())) {
353                DPRINTF(GDBAcc, "acc:   Mapping is valid  K0SEG <= "
354                        "%#x < K0SEG + size\n", va);
355                return true;
356            } else {
357                DPRINTF(GDBAcc, "acc:   Mapping invalid %#x > K0SEG + size\n",
358                        va);
359                return false;
360            }
361        }
362
363    /**
364     * This code says that all accesses to palcode (instruction and data)
365     * are valid since there isn't a va->pa mapping because palcode is
366     * accessed physically. At some point this should probably be cleaned up
367     * but there is no easy way to do it.
368     */
369
370        if (AlphaISA::PcPAL(va) || va < 0x10000)
371            return true;
372
373        Addr ptbr = context->regs.ipr[AlphaISA::IPR_PALtemp20];
374        TheISA::PageTableEntry pte = kernel_pte_lookup(pmem, ptbr, va);
375        if (!pte.valid()) {
376            DPRINTF(GDBAcc, "acc:   %#x pte is invalid\n", va);
377            return false;
378        }
379        va += TheISA::PageBytes;
380    } while (va < last_va);
381
382    DPRINTF(GDBAcc, "acc:   %#x mapping is valid\n", va);
383    return true;
384}
385
386///////////////////////////////////////////////////////////
387// RemoteGDB::signal
388//
389//	Translate a trap number into a Unix-compatible signal number.
390//	(GDB only understands Unix signal numbers.)
391//
392int
393RemoteGDB::signal(int type)
394{
395    switch (type) {
396      case ALPHA_KENTRY_INT:
397        return (SIGTRAP);
398
399      case ALPHA_KENTRY_UNA:
400        return (SIGBUS);
401
402      case ALPHA_KENTRY_ARITH:
403        return (SIGFPE);
404
405      case ALPHA_KENTRY_IF:
406        return (SIGILL);
407
408      case ALPHA_KENTRY_MM:
409        return (SIGSEGV);
410
411      default:
412        panic("unknown signal type");
413        return 0;
414    }
415}
416
417///////////////////////////////////////////////////////////
418// RemoteGDB::getregs
419//
420//	Translate the kernel debugger register format into
421//	the GDB register format.
422void
423RemoteGDB::getregs()
424{
425    memset(gdbregs, 0, sizeof(gdbregs));
426    memcpy(&gdbregs[KGDB_REG_V0], context->regs.intRegFile, 32 * sizeof(uint64_t));
427#ifdef KGDB_FP_REGS
428    memcpy(&gdbregs[KGDB_REG_F0], context->regs.floatRegFile.q,
429           32 * sizeof(uint64_t));
430#endif
431    gdbregs[KGDB_REG_PC] = context->regs.pc;
432}
433
434///////////////////////////////////////////////////////////
435// RemoteGDB::setregs
436//
437//	Translate the GDB register format into the kernel
438//	debugger register format.
439//
440void
441RemoteGDB::setregs()
442{
443    memcpy(context->regs.intRegFile, &gdbregs[KGDB_REG_V0],
444           32 * sizeof(uint64_t));
445#ifdef KGDB_FP_REGS
446    memcpy(context->regs.floatRegFile.q, &gdbregs[KGDB_REG_F0],
447           32 * sizeof(uint64_t));
448#endif
449    context->regs.pc = gdbregs[KGDB_REG_PC];
450}
451
452void
453RemoteGDB::setTempBreakpoint(TempBreakpoint &bkpt, Addr addr)
454{
455    DPRINTF(GDBMisc, "setTempBreakpoint: addr=%#x\n", addr);
456
457    bkpt.address = addr;
458    insertHardBreak(addr, 4);
459}
460
461void
462RemoteGDB::clearTempBreakpoint(TempBreakpoint &bkpt)
463{
464    DPRINTF(GDBMisc, "setTempBreakpoint: addr=%#x\n",
465            bkpt.address);
466
467
468    removeHardBreak(bkpt.address, 4);
469    bkpt.address = 0;
470}
471
472void
473RemoteGDB::clearSingleStep()
474{
475    DPRINTF(GDBMisc, "clearSingleStep bt_addr=%#x nt_addr=%#x\n",
476            takenBkpt.address, notTakenBkpt.address);
477
478    if (takenBkpt.address != 0)
479        clearTempBreakpoint(takenBkpt);
480
481    if (notTakenBkpt.address != 0)
482        clearTempBreakpoint(notTakenBkpt);
483}
484
485void
486RemoteGDB::setSingleStep()
487{
488    Addr pc = context->regs.pc;
489    Addr npc, bpc;
490    bool set_bt = false;
491
492    npc = pc + sizeof(MachInst);
493
494    // User was stopped at pc, e.g. the instruction at pc was not
495    // executed.
496    MachInst inst = read<MachInst>(pc);
497    StaticInstPtr<TheISA> si(inst);
498    if (si->hasBranchTarget(pc, context, bpc)) {
499        // Don't bother setting a breakpoint on the taken branch if it
500        // is the same as the next pc
501        if (bpc != npc)
502            set_bt = true;
503    }
504
505    DPRINTF(GDBMisc, "setSingleStep bt_addr=%#x nt_addr=%#x\n",
506            takenBkpt.address, notTakenBkpt.address);
507
508    setTempBreakpoint(notTakenBkpt, npc);
509
510    if (set_bt)
511        setTempBreakpoint(takenBkpt, bpc);
512}
513
514/////////////////////////
515//
516//
517
518uint8_t
519RemoteGDB::getbyte()
520{
521    uint8_t b;
522    ::read(fd, &b, 1);
523    return b;
524}
525
526void
527RemoteGDB::putbyte(uint8_t b)
528{
529    ::write(fd, &b, 1);
530}
531
532// Send a packet to gdb
533void
534RemoteGDB::send(const char *bp)
535{
536    const char *p;
537    uint8_t csum, c;
538
539    DPRINTF(GDBSend, "send:  %s\n", bp);
540
541    do {
542        p = bp;
543        putbyte(KGDB_START);
544        for (csum = 0; (c = *p); p++) {
545            putbyte(c);
546            csum += c;
547        }
548        putbyte(KGDB_END);
549        putbyte(i2digit(csum >> 4));
550        putbyte(i2digit(csum));
551    } while ((c = getbyte() & 0x7f) == KGDB_BADP);
552}
553
554// Receive a packet from gdb
555int
556RemoteGDB::recv(char *bp, int maxlen)
557{
558    char *p;
559    int c, csum;
560    int len;
561
562    do {
563        p = bp;
564        csum = len = 0;
565        while ((c = getbyte()) != KGDB_START)
566            ;
567
568        while ((c = getbyte()) != KGDB_END && len < maxlen) {
569            c &= 0x7f;
570            csum += c;
571            *p++ = c;
572            len++;
573        }
574        csum &= 0xff;
575        *p = '\0';
576
577        if (len >= maxlen) {
578            putbyte(KGDB_BADP);
579            continue;
580        }
581
582        csum -= digit2i(getbyte()) * 16;
583        csum -= digit2i(getbyte());
584
585        if (csum == 0) {
586            putbyte(KGDB_GOODP);
587            // Sequence present?
588            if (bp[2] == ':') {
589                putbyte(bp[0]);
590                putbyte(bp[1]);
591                len -= 3;
592                bcopy(bp + 3, bp, len);
593            }
594            break;
595        }
596        putbyte(KGDB_BADP);
597    } while (1);
598
599    DPRINTF(GDBRecv, "recv:  %s: %s\n", gdb_command(*bp), bp);
600
601    return (len);
602}
603
604// Read bytes from kernel address space for debugger.
605bool
606RemoteGDB::read(Addr vaddr, size_t size, char *data)
607{
608    static Addr lastaddr = 0;
609    static size_t lastsize = 0;
610
611    uint8_t *maddr;
612
613    if (vaddr < 10) {
614      DPRINTF(GDBRead, "read:  reading memory location zero!\n");
615      vaddr = lastaddr + lastsize;
616    }
617
618    DPRINTF(GDBRead, "read:  addr=%#x, size=%d", vaddr, size);
619#if TRACING_ON
620    char *d = data;
621    size_t s = size;
622#endif
623
624    lastaddr = vaddr;
625    lastsize = size;
626
627    size_t count = min((Addr)size,
628                       VMPageSize - (vaddr & (VMPageSize - 1)));
629
630    maddr = vtomem(context, vaddr, count);
631    memcpy(data, maddr, count);
632
633    vaddr += count;
634    data += count;
635    size -= count;
636
637    while (size >= VMPageSize) {
638        maddr = vtomem(context, vaddr, count);
639        memcpy(data, maddr, VMPageSize);
640
641        vaddr += VMPageSize;
642        data += VMPageSize;
643        size -= VMPageSize;
644    }
645
646    if (size > 0) {
647        maddr = vtomem(context, vaddr, count);
648        memcpy(data, maddr, size);
649    }
650
651#if TRACING_ON
652    if (DTRACE(GDBRead)) {
653        if (DTRACE(GDBExtra)) {
654            char buf[1024];
655            mem2hex(buf, d, s);
656            DPRINTFNR(": %s\n", buf);
657        } else
658            DPRINTFNR("\n");
659    }
660#endif
661
662    return true;
663}
664
665// Write bytes to kernel address space for debugger.
666bool
667RemoteGDB::write(Addr vaddr, size_t size, const char *data)
668{
669    static Addr lastaddr = 0;
670    static size_t lastsize = 0;
671
672    uint8_t *maddr;
673
674    if (vaddr < 10) {
675      DPRINTF(GDBWrite, "write: writing memory location zero!\n");
676      vaddr = lastaddr + lastsize;
677    }
678
679    if (DTRACE(GDBWrite)) {
680        DPRINTFN("write: addr=%#x, size=%d", vaddr, size);
681        if (DTRACE(GDBExtra)) {
682            char buf[1024];
683            mem2hex(buf, data, size);
684            DPRINTFNR(": %s\n", buf);
685        } else
686            DPRINTFNR("\n");
687    }
688
689    lastaddr = vaddr;
690    lastsize = size;
691
692    size_t count = min((Addr)size,
693                       VMPageSize - (vaddr & (VMPageSize - 1)));
694
695    maddr = vtomem(context, vaddr, count);
696    memcpy(maddr, data, count);
697
698    vaddr += count;
699    data += count;
700    size -= count;
701
702    while (size >= VMPageSize) {
703        maddr = vtomem(context, vaddr, count);
704        memcpy(maddr, data, VMPageSize);
705
706        vaddr += VMPageSize;
707        data += VMPageSize;
708        size -= VMPageSize;
709    }
710
711    if (size > 0) {
712        maddr = vtomem(context, vaddr, count);
713        memcpy(maddr, data, size);
714    }
715
716#ifdef IMB
717    alpha_pal_imb();
718#endif
719
720    return true;
721}
722
723
724PCEventQueue *RemoteGDB::getPcEventQueue()
725{
726    return &system->pcEventQueue;
727}
728
729
730RemoteGDB::HardBreakpoint::HardBreakpoint(RemoteGDB *_gdb, Addr pc)
731    : PCEvent(_gdb->getPcEventQueue(), "HardBreakpoint Event", pc),
732      gdb(_gdb), refcount(0)
733{
734    DPRINTF(GDBMisc, "creating hardware breakpoint at %#x\n", evpc);
735}
736
737void
738RemoteGDB::HardBreakpoint::process(ExecContext *xc)
739{
740    DPRINTF(GDBMisc, "handling hardware breakpoint at %#x\n", pc());
741
742    if (xc == gdb->context)
743        gdb->trap(ALPHA_KENTRY_INT);
744}
745
746bool
747RemoteGDB::insertSoftBreak(Addr addr, size_t len)
748{
749    if (len != sizeof(MachInst))
750        panic("invalid length\n");
751
752    return insertHardBreak(addr, len);
753}
754
755bool
756RemoteGDB::removeSoftBreak(Addr addr, size_t len)
757{
758    if (len != sizeof(MachInst))
759        panic("invalid length\n");
760
761    return removeHardBreak(addr, len);
762}
763
764bool
765RemoteGDB::insertHardBreak(Addr addr, size_t len)
766{
767    if (len != sizeof(MachInst))
768        panic("invalid length\n");
769
770    DPRINTF(GDBMisc, "inserting hardware breakpoint at %#x\n", addr);
771
772    HardBreakpoint *&bkpt = hardBreakMap[addr];
773    if (bkpt == 0)
774        bkpt = new HardBreakpoint(this, addr);
775
776    bkpt->refcount++;
777
778    return true;
779}
780
781bool
782RemoteGDB::removeHardBreak(Addr addr, size_t len)
783{
784    if (len != sizeof(MachInst))
785        panic("invalid length\n");
786
787    DPRINTF(GDBMisc, "removing hardware breakpoint at %#x\n", addr);
788
789    break_iter_t i = hardBreakMap.find(addr);
790    if (i == hardBreakMap.end())
791        return false;
792
793    HardBreakpoint *hbp = (*i).second;
794    if (--hbp->refcount == 0) {
795        delete hbp;
796        hardBreakMap.erase(i);
797    }
798
799    return true;
800}
801
802const char *
803break_type(char c)
804{
805    switch(c) {
806      case '0': return "software breakpoint";
807      case '1': return "hardware breakpoint";
808      case '2': return "write watchpoint";
809      case '3': return "read watchpoint";
810      case '4': return "access watchpoint";
811      default: return "unknown breakpoint/watchpoint";
812    }
813}
814
815// This function does all command processing for interfacing to a
816// remote gdb.  Note that the error codes are ignored by gdb at
817// present, but might eventually become meaningful. (XXX) It might
818// makes sense to use POSIX errno values, because that is what the
819// gdb/remote.c functions want to return.
820bool
821RemoteGDB::trap(int type)
822{
823    uint64_t val;
824    size_t datalen, len;
825    char data[KGDB_BUFLEN + 1];
826    char buffer[sizeof(gdbregs) * 2 + 256];
827    char temp[KGDB_BUFLEN];
828    const char *p;
829    char command, subcmd;
830    string var;
831    bool ret;
832
833    if (!attached)
834        return false;
835
836    DPRINTF(GDBMisc, "trap: PC=%#x NPC=%#x\n",
837            context->regs.pc, context->regs.npc);
838
839    clearSingleStep();
840
841    /*
842     * The first entry to this function is normally through
843     * a breakpoint trap in kgdb_connect(), in which case we
844     * must advance past the breakpoint because gdb will not.
845     *
846     * On the first entry here, we expect that gdb is not yet
847     * listening to us, so just enter the interaction loop.
848     * After the debugger is "active" (connected) it will be
849     * waiting for a "signaled" message from us.
850     */
851    if (!active)
852        active = true;
853    else
854        // Tell remote host that an exception has occurred.
855        snprintf((char *)buffer, sizeof(buffer), "S%02x", signal(type));
856        send(buffer);
857
858    // Stick frame regs into our reg cache.
859    getregs();
860
861    for (;;) {
862        datalen = recv(data, sizeof(data));
863        data[sizeof(data) - 1] = 0; // Sentinel
864        command = data[0];
865        subcmd = 0;
866        p = data + 1;
867        switch (command) {
868
869          case KGDB_SIGNAL:
870            // if this command came from a running gdb, answer it --
871            // the other guy has no way of knowing if we're in or out
872            // of this loop when he issues a "remote-signal".
873            snprintf((char *)buffer, sizeof(buffer), "S%02x", signal(type));
874            send(buffer);
875            continue;
876
877          case KGDB_REG_R:
878            if (2 * sizeof(gdbregs) > sizeof(buffer))
879                panic("buffer too small");
880
881            mem2hex(buffer, gdbregs, sizeof(gdbregs));
882            send(buffer);
883            continue;
884
885          case KGDB_REG_W:
886            p = hex2mem(gdbregs, p, sizeof(gdbregs));
887            if (p == NULL || *p != '\0')
888                send("E01");
889            else {
890                setregs();
891                send("OK");
892            }
893            continue;
894
895#if 0
896          case KGDB_SET_REG:
897            val = hex2i(&p);
898            if (*p++ != '=') {
899                send("E01");
900                continue;
901            }
902            if (val < 0 && val >= KGDB_NUMREGS) {
903                send("E01");
904                continue;
905            }
906
907            gdbregs[val] = hex2i(&p);
908            setregs();
909            send("OK");
910
911            continue;
912#endif
913
914          case KGDB_MEM_R:
915            val = hex2i(&p);
916            if (*p++ != ',') {
917                send("E02");
918                continue;
919            }
920            len = hex2i(&p);
921            if (*p != '\0') {
922                send("E03");
923                continue;
924            }
925            if (len > sizeof(buffer)) {
926                send("E04");
927                continue;
928            }
929            if (!acc(val, len)) {
930                send("E05");
931                continue;
932            }
933
934            if (read(val, (size_t)len, (char *)buffer)) {
935              mem2hex(temp, buffer, len);
936              send(temp);
937            } else {
938              send("E05");
939            }
940            continue;
941
942          case KGDB_MEM_W:
943            val = hex2i(&p);
944            if (*p++ != ',') {
945                send("E06");
946                continue;
947            }
948            len = hex2i(&p);
949            if (*p++ != ':') {
950                send("E07");
951                continue;
952            }
953            if (len > datalen - (p - data)) {
954                send("E08");
955                continue;
956            }
957            p = hex2mem(buffer, p, sizeof(buffer));
958            if (p == NULL) {
959                send("E09");
960                continue;
961            }
962            if (!acc(val, len)) {
963                send("E0A");
964                continue;
965            }
966            if (write(val, (size_t)len, (char *)buffer))
967              send("OK");
968            else
969              send("E0B");
970            continue;
971
972          case KGDB_SET_THREAD:
973            subcmd = *p++;
974            val = hex2i(&p);
975            if (val == 0)
976                send("OK");
977            else
978                send("E01");
979            continue;
980
981          case KGDB_DETACH:
982          case KGDB_KILL:
983            active = false;
984            clearSingleStep();
985            detach();
986            goto out;
987
988          case KGDB_ASYNC_CONT:
989            subcmd = hex2i(&p);
990            if (*p++ == ';') {
991                val = hex2i(&p);
992                context->regs.pc = val;
993                context->regs.npc = val + sizeof(MachInst);
994            }
995            clearSingleStep();
996            goto out;
997
998          case KGDB_CONT:
999            if (p - data < datalen) {
1000                val = hex2i(&p);
1001                context->regs.pc = val;
1002                context->regs.npc = val + sizeof(MachInst);
1003            }
1004            clearSingleStep();
1005            goto out;
1006
1007          case KGDB_ASYNC_STEP:
1008            subcmd = hex2i(&p);
1009            if (*p++ == ';') {
1010                val = hex2i(&p);
1011                context->regs.pc = val;
1012                context->regs.npc = val + sizeof(MachInst);
1013            }
1014            setSingleStep();
1015            goto out;
1016
1017          case KGDB_STEP:
1018            if (p - data < datalen) {
1019                val = hex2i(&p);
1020                context->regs.pc = val;
1021                context->regs.npc = val + sizeof(MachInst);
1022            }
1023            setSingleStep();
1024            goto out;
1025
1026          case KGDB_CLR_HW_BKPT:
1027            subcmd = *p++;
1028            if (*p++ != ',') send("E0D");
1029            val = hex2i(&p);
1030            if (*p++ != ',') send("E0D");
1031            len = hex2i(&p);
1032
1033            DPRINTF(GDBMisc, "clear %s, addr=%#x, len=%d\n",
1034                    break_type(subcmd), val, len);
1035
1036            ret = false;
1037
1038            switch (subcmd) {
1039              case '0': // software breakpoint
1040                ret = removeSoftBreak(val, len);
1041                break;
1042
1043              case '1': // hardware breakpoint
1044                ret = removeHardBreak(val, len);
1045                break;
1046
1047              case '2': // write watchpoint
1048              case '3': // read watchpoint
1049              case '4': // access watchpoint
1050              default: // unknown
1051                send("");
1052                break;
1053            }
1054
1055            send(ret ? "OK" : "E0C");
1056            continue;
1057
1058          case KGDB_SET_HW_BKPT:
1059            subcmd = *p++;
1060            if (*p++ != ',') send("E0D");
1061            val = hex2i(&p);
1062            if (*p++ != ',') send("E0D");
1063            len = hex2i(&p);
1064
1065            DPRINTF(GDBMisc, "set %s, addr=%#x, len=%d\n",
1066                    break_type(subcmd), val, len);
1067
1068            ret = false;
1069
1070            switch (subcmd) {
1071              case '0': // software breakpoint
1072                ret = insertSoftBreak(val, len);
1073                break;
1074
1075              case '1': // hardware breakpoint
1076                ret = insertHardBreak(val, len);
1077                break;
1078
1079              case '2': // write watchpoint
1080              case '3': // read watchpoint
1081              case '4': // access watchpoint
1082              default: // unknown
1083                send("");
1084                break;
1085            }
1086
1087            send(ret ? "OK" : "E0C");
1088            continue;
1089
1090          case KGDB_QUERY_VAR:
1091            var = string(p, datalen - 1);
1092            if (var == "C")
1093                send("QC0");
1094            else
1095                send("");
1096            continue;
1097
1098          case KGDB_SET_BAUD:
1099          case KGDB_SET_BREAK:
1100          case KGDB_DEBUG:
1101          case KGDB_CYCLE_STEP:
1102          case KGDB_SIG_CYCLE_STEP:
1103          case KGDB_READ_REG:
1104          case KGDB_SET_VAR:
1105          case KGDB_RESET:
1106          case KGDB_THREAD_ALIVE:
1107          case KGDB_TARGET_EXIT:
1108          case KGDB_BINARY_DLOAD:
1109            // Unsupported command
1110            DPRINTF(GDBMisc, "Unsupported command: %s\n",
1111                    gdb_command(command));
1112            DDUMP(GDBMisc, (uint8_t *)data, datalen);
1113            send("");
1114            continue;
1115
1116          default:
1117            // Unknown command.
1118            DPRINTF(GDBMisc, "Unknown command: %c(%#x)\n",
1119                    command, command);
1120            send("");
1121            continue;
1122
1123
1124        }
1125    }
1126
1127  out:
1128    return true;
1129}
1130
1131// Convert a hex digit into an integer.
1132// This returns -1 if the argument passed is no valid hex digit.
1133int
1134digit2i(char c)
1135{
1136    if (c >= '0' && c <= '9')
1137        return (c - '0');
1138    else if (c >= 'a' && c <= 'f')
1139        return (c - 'a' + 10);
1140    else if (c >= 'A' && c <= 'F')
1141
1142        return (c - 'A' + 10);
1143    else
1144        return (-1);
1145}
1146
1147// Convert the low 4 bits of an integer into an hex digit.
1148char
1149i2digit(int n)
1150{
1151    return ("0123456789abcdef"[n & 0x0f]);
1152}
1153
1154// Convert a byte array into an hex string.
1155void
1156mem2hex(void *vdst, const void *vsrc, int len)
1157{
1158    char *dst = (char *)vdst;
1159    const char *src = (const char *)vsrc;
1160
1161    while (len--) {
1162        *dst++ = i2digit(*src >> 4);
1163        *dst++ = i2digit(*src++);
1164    }
1165    *dst = '\0';
1166}
1167
1168// Convert an hex string into a byte array.
1169// This returns a pointer to the character following the last valid
1170// hex digit. If the string ends in the middle of a byte, NULL is
1171// returned.
1172const char *
1173hex2mem(void *vdst, const char *src, int maxlen)
1174{
1175    char *dst = (char *)vdst;
1176    int msb, lsb;
1177
1178    while (*src && maxlen--) {
1179        msb = digit2i(*src++);
1180        if (msb < 0)
1181            return (src - 1);
1182        lsb = digit2i(*src++);
1183        if (lsb < 0)
1184            return (NULL);
1185        *dst++ = (msb << 4) | lsb;
1186    }
1187    return (src);
1188}
1189
1190// Convert an hex string into an integer.
1191// This returns a pointer to the character following the last valid
1192// hex digit.
1193Addr
1194hex2i(const char **srcp)
1195{
1196    const char *src = *srcp;
1197    Addr r = 0;
1198    int nibble;
1199
1200    while ((nibble = digit2i(*src)) >= 0) {
1201        r *= 16;
1202        r += nibble;
1203        src++;
1204    }
1205    *srcp = src;
1206    return (r);
1207}
1208
1209