process.cc revision 6313:95f69a436c82
1/*
2 * Copyright (c) 2003-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 *          Ali Saidi
30 */
31
32/*
33 * Copyright (c) 2007 The Hewlett-Packard Development Company
34 * All rights reserved.
35 *
36 * Redistribution and use of this software in source and binary forms,
37 * with or without modification, are permitted provided that the
38 * following conditions are met:
39 *
40 * The software must be used only for Non-Commercial Use which means any
41 * use which is NOT directed to receiving any direct monetary
42 * compensation for, or commercial advantage from such use.  Illustrative
43 * examples of non-commercial use are academic research, personal study,
44 * teaching, education and corporate research & development.
45 * Illustrative examples of commercial use are distributing products for
46 * commercial advantage and providing services using the software for
47 * commercial advantage.
48 *
49 * If you wish to use this software or functionality therein that may be
50 * covered by patents for commercial use, please contact:
51 *     Director of Intellectual Property Licensing
52 *     Office of Strategy and Technology
53 *     Hewlett-Packard Company
54 *     1501 Page Mill Road
55 *     Palo Alto, California  94304
56 *
57 * Redistributions of source code must retain the above copyright notice,
58 * this list of conditions and the following disclaimer.  Redistributions
59 * in binary form must reproduce the above copyright notice, this list of
60 * conditions and the following disclaimer in the documentation and/or
61 * other materials provided with the distribution.  Neither the name of
62 * the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
63 * contributors may be used to endorse or promote products derived from
64 * this software without specific prior written permission.  No right of
65 * sublicense is granted herewith.  Derivatives of the software and
66 * output created using the software may be prepared, but only for
67 * Non-Commercial Uses.  Derivatives of the software may be shared with
68 * others provided: (i) the others agree to abide by the list of
69 * conditions herein which includes the Non-Commercial Use restrictions;
70 * and (ii) such Derivatives of the software include the above copyright
71 * notice to acknowledge the contribution from this software where
72 * applicable, this list of conditions and the disclaimer below.
73 *
74 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
75 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
76 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
77 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
78 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
79 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
80 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
81 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
82 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
83 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
84 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
85 *
86 * Authors: Gabe Black
87 */
88
89#include "arch/x86/isa_traits.hh"
90#include "arch/x86/miscregs.hh"
91#include "arch/x86/process.hh"
92#include "arch/x86/segmentregs.hh"
93#include "arch/x86/types.hh"
94#include "base/loader/object_file.hh"
95#include "base/loader/elf_object.hh"
96#include "base/misc.hh"
97#include "base/trace.hh"
98#include "cpu/thread_context.hh"
99#include "mem/page_table.hh"
100#include "mem/translating_port.hh"
101#include "sim/process_impl.hh"
102#include "sim/syscall_emul.hh"
103#include "sim/system.hh"
104
105using namespace std;
106using namespace X86ISA;
107
108static const int ArgumentReg[] = {
109    INTREG_RDI,
110    INTREG_RSI,
111    INTREG_RDX,
112    //This argument register is r10 for syscalls and rcx for C.
113    INTREG_R10W,
114    //INTREG_RCX,
115    INTREG_R8W,
116    INTREG_R9W
117};
118static const int NumArgumentRegs = sizeof(ArgumentReg) / sizeof(const int);
119static const int ArgumentReg32[] = {
120    INTREG_EBX,
121    INTREG_ECX,
122    INTREG_EDX,
123    INTREG_ESI,
124    INTREG_EDI,
125};
126static const int NumArgumentRegs32 = sizeof(ArgumentReg) / sizeof(const int);
127
128X86LiveProcess::X86LiveProcess(LiveProcessParams * params, ObjectFile *objFile,
129        SyscallDesc *_syscallDescs, int _numSyscallDescs) :
130    LiveProcess(params, objFile), syscallDescs(_syscallDescs),
131    numSyscallDescs(_numSyscallDescs)
132{
133    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
134    brk_point = roundUp(brk_point, VMPageSize);
135}
136
137X86_64LiveProcess::X86_64LiveProcess(LiveProcessParams *params,
138        ObjectFile *objFile, SyscallDesc *_syscallDescs,
139        int _numSyscallDescs) :
140    X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
141{
142    // Set up stack. On X86_64 Linux, stack goes from the top of memory
143    // downward, less the hole for the kernel address space plus one page
144    // for undertermined purposes.
145    stack_base = (Addr)0x7FFFFFFFF000ULL;
146
147    // Set pointer for next thread stack.  Reserve 8M for main stack.
148    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
149
150    // Set up region for mmaps. This was determined empirically and may not
151    // always be correct.
152    mmap_start = mmap_end = (Addr)0x2aaaaaaab000ULL;
153}
154
155void
156I386LiveProcess::syscall(int64_t callnum, ThreadContext *tc)
157{
158    Addr eip = tc->readPC();
159    if (eip >= vsyscallPage.base &&
160            eip < vsyscallPage.base + vsyscallPage.size) {
161        tc->setNextPC(vsyscallPage.base + vsyscallPage.vsysexitOffset);
162    }
163    X86LiveProcess::syscall(callnum, tc);
164}
165
166
167I386LiveProcess::I386LiveProcess(LiveProcessParams *params,
168        ObjectFile *objFile, SyscallDesc *_syscallDescs,
169        int _numSyscallDescs) :
170    X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
171{
172    _gdtStart = 0x100000000;
173    _gdtSize = VMPageSize;
174
175    vsyscallPage.base = 0xffffe000ULL;
176    vsyscallPage.size = VMPageSize;
177    vsyscallPage.vsyscallOffset = 0x400;
178    vsyscallPage.vsysexitOffset = 0x410;
179
180    stack_base = vsyscallPage.base;
181
182    // Set pointer for next thread stack.  Reserve 8M for main stack.
183    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
184
185    // Set up region for mmaps. This was determined empirically and may not
186    // always be correct.
187    mmap_start = mmap_end = (Addr)0xf7ffd000ULL;
188}
189
190SyscallDesc*
191X86LiveProcess::getDesc(int callnum)
192{
193    if (callnum < 0 || callnum >= numSyscallDescs)
194        return NULL;
195    return &syscallDescs[callnum];
196}
197
198void
199X86_64LiveProcess::startup()
200{
201    LiveProcess::startup();
202
203    if (checkpointRestored)
204        return;
205
206    argsInit(sizeof(uint64_t), VMPageSize);
207
208    for (int i = 0; i < contextIds.size(); i++) {
209        ThreadContext * tc = system->getThreadContext(contextIds[i]);
210
211        SegAttr dataAttr = 0;
212        dataAttr.dpl = 3;
213        dataAttr.unusable = 0;
214        dataAttr.defaultSize = 1;
215        dataAttr.longMode = 1;
216        dataAttr.avl = 0;
217        dataAttr.granularity = 1;
218        dataAttr.present = 1;
219        dataAttr.type = 3;
220        dataAttr.writable = 1;
221        dataAttr.readable = 1;
222        dataAttr.expandDown = 0;
223        dataAttr.system = 1;
224
225        //Initialize the segment registers.
226        for(int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
227            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
228            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
229            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
230        }
231
232        SegAttr csAttr = 0;
233        csAttr.dpl = 3;
234        csAttr.unusable = 0;
235        csAttr.defaultSize = 0;
236        csAttr.longMode = 1;
237        csAttr.avl = 0;
238        csAttr.granularity = 1;
239        csAttr.present = 1;
240        csAttr.type = 10;
241        csAttr.writable = 0;
242        csAttr.readable = 1;
243        csAttr.expandDown = 0;
244        csAttr.system = 1;
245
246        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
247
248        Efer efer = 0;
249        efer.sce = 1; // Enable system call extensions.
250        efer.lme = 1; // Enable long mode.
251        efer.lma = 1; // Activate long mode.
252        efer.nxe = 1; // Enable nx support.
253        efer.svme = 0; // Disable svm support for now. It isn't implemented.
254        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
255        tc->setMiscReg(MISCREG_EFER, efer);
256
257        //Set up the registers that describe the operating mode.
258        CR0 cr0 = 0;
259        cr0.pg = 1; // Turn on paging.
260        cr0.cd = 0; // Don't disable caching.
261        cr0.nw = 0; // This is bit is defined to be ignored.
262        cr0.am = 0; // No alignment checking
263        cr0.wp = 0; // Supervisor mode can write read only pages
264        cr0.ne = 1;
265        cr0.et = 1; // This should always be 1
266        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
267                    // would be pointless.
268        cr0.em = 0; // Allow x87 instructions to execute natively.
269        cr0.mp = 1; // This doesn't really matter, but the manual suggests
270                    // setting it to one.
271        cr0.pe = 1; // We're definitely in protected mode.
272        tc->setMiscReg(MISCREG_CR0, cr0);
273    }
274}
275
276void
277I386LiveProcess::startup()
278{
279    LiveProcess::startup();
280
281    if (checkpointRestored)
282        return;
283
284    argsInit(sizeof(uint32_t), VMPageSize);
285
286    /*
287     * Set up a GDT for this process. The whole GDT wouldn't really be for
288     * this process, but the only parts we care about are.
289     */
290    pTable->allocate(_gdtStart, _gdtSize);
291    uint64_t zero = 0;
292    assert(_gdtSize % sizeof(zero) == 0);
293    for (Addr gdtCurrent = _gdtStart;
294            gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
295        initVirtMem->write(gdtCurrent, zero);
296    }
297
298    // Set up the vsyscall page for this process.
299    pTable->allocate(vsyscallPage.base, vsyscallPage.size);
300    uint8_t vsyscallBlob[] = {
301        0x51,       // push %ecx
302        0x52,       // push %edp
303        0x55,       // push %ebp
304        0x89, 0xe5, // mov %esp, %ebp
305        0x0f, 0x34  // sysenter
306    };
307    initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
308            vsyscallBlob, sizeof(vsyscallBlob));
309
310    uint8_t vsysexitBlob[] = {
311        0x5d,       // pop %ebp
312        0x5a,       // pop %edx
313        0x59,       // pop %ecx
314        0xc3        // ret
315    };
316    initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
317            vsysexitBlob, sizeof(vsysexitBlob));
318
319    for (int i = 0; i < contextIds.size(); i++) {
320        ThreadContext * tc = system->getThreadContext(contextIds[i]);
321
322        SegAttr dataAttr = 0;
323        dataAttr.dpl = 3;
324        dataAttr.unusable = 0;
325        dataAttr.defaultSize = 1;
326        dataAttr.longMode = 0;
327        dataAttr.avl = 0;
328        dataAttr.granularity = 1;
329        dataAttr.present = 1;
330        dataAttr.type = 3;
331        dataAttr.writable = 1;
332        dataAttr.readable = 1;
333        dataAttr.expandDown = 0;
334        dataAttr.system = 1;
335
336        //Initialize the segment registers.
337        for(int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
338            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
339            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
340            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
341            tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
342            tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
343        }
344
345        SegAttr csAttr = 0;
346        csAttr.dpl = 3;
347        csAttr.unusable = 0;
348        csAttr.defaultSize = 1;
349        csAttr.longMode = 0;
350        csAttr.avl = 0;
351        csAttr.granularity = 1;
352        csAttr.present = 1;
353        csAttr.type = 0xa;
354        csAttr.writable = 0;
355        csAttr.readable = 1;
356        csAttr.expandDown = 0;
357        csAttr.system = 1;
358
359        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
360
361        tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
362        tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
363        tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
364
365        // Set the LDT selector to 0 to deactivate it.
366        tc->setMiscRegNoEffect(MISCREG_TSL, 0);
367
368        Efer efer = 0;
369        efer.sce = 1; // Enable system call extensions.
370        efer.lme = 1; // Enable long mode.
371        efer.lma = 0; // Deactivate long mode.
372        efer.nxe = 1; // Enable nx support.
373        efer.svme = 0; // Disable svm support for now. It isn't implemented.
374        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
375        tc->setMiscReg(MISCREG_EFER, efer);
376
377        //Set up the registers that describe the operating mode.
378        CR0 cr0 = 0;
379        cr0.pg = 1; // Turn on paging.
380        cr0.cd = 0; // Don't disable caching.
381        cr0.nw = 0; // This is bit is defined to be ignored.
382        cr0.am = 0; // No alignment checking
383        cr0.wp = 0; // Supervisor mode can write read only pages
384        cr0.ne = 1;
385        cr0.et = 1; // This should always be 1
386        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
387                    // would be pointless.
388        cr0.em = 0; // Allow x87 instructions to execute natively.
389        cr0.mp = 1; // This doesn't really matter, but the manual suggests
390                    // setting it to one.
391        cr0.pe = 1; // We're definitely in protected mode.
392        tc->setMiscReg(MISCREG_CR0, cr0);
393    }
394}
395
396template<class IntType>
397void
398X86LiveProcess::argsInit(int pageSize,
399        std::vector<AuxVector<IntType> > extraAuxvs)
400{
401    int intSize = sizeof(IntType);
402
403    typedef AuxVector<IntType> auxv_t;
404    std::vector<auxv_t> auxv = extraAuxvs;
405
406    string filename;
407    if(argv.size() < 1)
408        filename = "";
409    else
410        filename = argv[0];
411
412    //We want 16 byte alignment
413    uint64_t align = 16;
414
415    // load object file into target memory
416    objFile->loadSections(initVirtMem);
417
418    enum X86CpuFeature {
419        X86_OnboardFPU = 1 << 0,
420        X86_VirtualModeExtensions = 1 << 1,
421        X86_DebuggingExtensions = 1 << 2,
422        X86_PageSizeExtensions = 1 << 3,
423
424        X86_TimeStampCounter = 1 << 4,
425        X86_ModelSpecificRegisters = 1 << 5,
426        X86_PhysicalAddressExtensions = 1 << 6,
427        X86_MachineCheckExtensions = 1 << 7,
428
429        X86_CMPXCHG8Instruction = 1 << 8,
430        X86_OnboardAPIC = 1 << 9,
431        X86_SYSENTER_SYSEXIT = 1 << 11,
432
433        X86_MemoryTypeRangeRegisters = 1 << 12,
434        X86_PageGlobalEnable = 1 << 13,
435        X86_MachineCheckArchitecture = 1 << 14,
436        X86_CMOVInstruction = 1 << 15,
437
438        X86_PageAttributeTable = 1 << 16,
439        X86_36BitPSEs = 1 << 17,
440        X86_ProcessorSerialNumber = 1 << 18,
441        X86_CLFLUSHInstruction = 1 << 19,
442
443        X86_DebugTraceStore = 1 << 21,
444        X86_ACPIViaMSR = 1 << 22,
445        X86_MultimediaExtensions = 1 << 23,
446
447        X86_FXSAVE_FXRSTOR = 1 << 24,
448        X86_StreamingSIMDExtensions = 1 << 25,
449        X86_StreamingSIMDExtensions2 = 1 << 26,
450        X86_CPUSelfSnoop = 1 << 27,
451
452        X86_HyperThreading = 1 << 28,
453        X86_AutomaticClockControl = 1 << 29,
454        X86_IA64Processor = 1 << 30
455    };
456
457    //Setup the auxilliary vectors. These will already have endian conversion.
458    //Auxilliary vectors are loaded only for elf formatted executables.
459    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
460    if(elfObject)
461    {
462        uint64_t features =
463            X86_OnboardFPU |
464            X86_VirtualModeExtensions |
465            X86_DebuggingExtensions |
466            X86_PageSizeExtensions |
467            X86_TimeStampCounter |
468            X86_ModelSpecificRegisters |
469            X86_PhysicalAddressExtensions |
470            X86_MachineCheckExtensions |
471            X86_CMPXCHG8Instruction |
472            X86_OnboardAPIC |
473            X86_SYSENTER_SYSEXIT |
474            X86_MemoryTypeRangeRegisters |
475            X86_PageGlobalEnable |
476            X86_MachineCheckArchitecture |
477            X86_CMOVInstruction |
478            X86_PageAttributeTable |
479            X86_36BitPSEs |
480//            X86_ProcessorSerialNumber |
481            X86_CLFLUSHInstruction |
482//            X86_DebugTraceStore |
483//            X86_ACPIViaMSR |
484            X86_MultimediaExtensions |
485            X86_FXSAVE_FXRSTOR |
486            X86_StreamingSIMDExtensions |
487            X86_StreamingSIMDExtensions2 |
488//            X86_CPUSelfSnoop |
489//            X86_HyperThreading |
490//            X86_AutomaticClockControl |
491//            X86_IA64Processor |
492            0;
493
494        //Bits which describe the system hardware capabilities
495        //XXX Figure out what these should be
496        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
497        //The system page size
498        auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::VMPageSize));
499        //Frequency at which times() increments
500        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
501        // For statically linked executables, this is the virtual address of the
502        // program header tables if they appear in the executable image
503        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
504        // This is the size of a program header entry from the elf file.
505        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
506        // This is the number of program headers from the original elf file.
507        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
508        //Defined to be 100 in the kernel source.
509        //This is the address of the elf "interpreter", It should be set
510        //to 0 for regular executables. It should be something else
511        //(not sure what) for dynamic libraries.
512        auxv.push_back(auxv_t(M5_AT_BASE, 0));
513
514        //XXX Figure out what this should be.
515        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
516        //The entry point to the program
517        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
518        //Different user and group IDs
519        auxv.push_back(auxv_t(M5_AT_UID, uid()));
520        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
521        auxv.push_back(auxv_t(M5_AT_GID, gid()));
522        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
523        //Whether to enable "secure mode" in the executable
524        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
525        //The string "x86_64" with unknown meaning
526        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
527    }
528
529    //Figure out how big the initial stack needs to be
530
531    // A sentry NULL void pointer at the top of the stack.
532    int sentry_size = intSize;
533
534    //This is the name of the file which is present on the initial stack
535    //It's purpose is to let the user space linker examine the original file.
536    int file_name_size = filename.size() + 1;
537
538    string platform = "x86_64";
539    int aux_data_size = platform.size() + 1;
540
541    int env_data_size = 0;
542    for (int i = 0; i < envp.size(); ++i) {
543        env_data_size += envp[i].size() + 1;
544    }
545    int arg_data_size = 0;
546    for (int i = 0; i < argv.size(); ++i) {
547        arg_data_size += argv[i].size() + 1;
548    }
549
550    //The info_block needs to be padded so it's size is a multiple of the
551    //alignment mask. Also, it appears that there needs to be at least some
552    //padding, so if the size is already a multiple, we need to increase it
553    //anyway.
554    int base_info_block_size =
555        sentry_size + file_name_size + env_data_size + arg_data_size;
556
557    int info_block_size = roundUp(base_info_block_size, align);
558
559    int info_block_padding = info_block_size - base_info_block_size;
560
561    //Each auxilliary vector is two 8 byte words
562    int aux_array_size = intSize * 2 * (auxv.size() + 1);
563
564    int envp_array_size = intSize * (envp.size() + 1);
565    int argv_array_size = intSize * (argv.size() + 1);
566
567    int argc_size = intSize;
568
569    //Figure out the size of the contents of the actual initial frame
570    int frame_size =
571        aux_array_size +
572        envp_array_size +
573        argv_array_size +
574        argc_size;
575
576    //There needs to be padding after the auxiliary vector data so that the
577    //very bottom of the stack is aligned properly.
578    int partial_size = frame_size + aux_data_size;
579    int aligned_partial_size = roundUp(partial_size, align);
580    int aux_padding = aligned_partial_size - partial_size;
581
582    int space_needed =
583        info_block_size +
584        aux_data_size +
585        aux_padding +
586        frame_size;
587
588    stack_min = stack_base - space_needed;
589    stack_min = roundDown(stack_min, align);
590    stack_size = stack_base - stack_min;
591
592    // map memory
593    pTable->allocate(roundDown(stack_min, pageSize),
594                     roundUp(stack_size, pageSize));
595
596    // map out initial stack contents
597    IntType sentry_base = stack_base - sentry_size;
598    IntType file_name_base = sentry_base - file_name_size;
599    IntType env_data_base = file_name_base - env_data_size;
600    IntType arg_data_base = env_data_base - arg_data_size;
601    IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
602    IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
603    IntType envp_array_base = auxv_array_base - envp_array_size;
604    IntType argv_array_base = envp_array_base - argv_array_size;
605    IntType argc_base = argv_array_base - argc_size;
606
607    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
608    DPRINTF(Stack, "0x%x - file name\n", file_name_base);
609    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
610    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
611    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
612    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
613    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
614    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
615    DPRINTF(Stack, "0x%x - argc \n", argc_base);
616    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
617
618    // write contents to stack
619
620    // figure out argc
621    IntType argc = argv.size();
622    IntType guestArgc = X86ISA::htog(argc);
623
624    //Write out the sentry void *
625    IntType sentry_NULL = 0;
626    initVirtMem->writeBlob(sentry_base,
627            (uint8_t*)&sentry_NULL, sentry_size);
628
629    //Write the file name
630    initVirtMem->writeString(file_name_base, filename.c_str());
631
632    //Fix up the aux vector which points to the "platform" string
633    assert(auxv[auxv.size() - 1].a_type = M5_AT_PLATFORM);
634    auxv[auxv.size() - 1].a_val = aux_data_base;
635
636    //Copy the aux stuff
637    for(int x = 0; x < auxv.size(); x++)
638    {
639        initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
640                (uint8_t*)&(auxv[x].a_type), intSize);
641        initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
642                (uint8_t*)&(auxv[x].a_val), intSize);
643    }
644    //Write out the terminating zeroed auxilliary vector
645    const uint64_t zero = 0;
646    initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
647            (uint8_t*)&zero, 2 * intSize);
648
649    initVirtMem->writeString(aux_data_base, platform.c_str());
650
651    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
652    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
653
654    initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
655
656    ThreadContext *tc = system->getThreadContext(contextIds[0]);
657    //Set the stack pointer register
658    tc->setIntReg(StackPointerReg, stack_min);
659
660    Addr prog_entry = objFile->entryPoint();
661    // There doesn't need to be any segment base added in since we're dealing
662    // with the flat segmentation model.
663    tc->setPC(prog_entry);
664    tc->setNextPC(prog_entry + sizeof(MachInst));
665
666    //Align the "stack_min" to a page boundary.
667    stack_min = roundDown(stack_min, pageSize);
668
669//    num_processes++;
670}
671
672void
673X86_64LiveProcess::argsInit(int intSize, int pageSize)
674{
675    std::vector<AuxVector<uint64_t> > extraAuxvs;
676    X86LiveProcess::argsInit<uint64_t>(pageSize, extraAuxvs);
677}
678
679void
680I386LiveProcess::argsInit(int intSize, int pageSize)
681{
682    std::vector<AuxVector<uint32_t> > extraAuxvs;
683    //Tell the binary where the vsyscall part of the vsyscall page is.
684    extraAuxvs.push_back(AuxVector<uint32_t>(0x20,
685                vsyscallPage.base + vsyscallPage.vsyscallOffset));
686    extraAuxvs.push_back(AuxVector<uint32_t>(0x21, vsyscallPage.base));
687    X86LiveProcess::argsInit<uint32_t>(pageSize, extraAuxvs);
688}
689
690void
691X86LiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn return_value)
692{
693    tc->setIntReg(INTREG_RAX, return_value.value());
694}
695
696X86ISA::IntReg
697X86_64LiveProcess::getSyscallArg(ThreadContext *tc, int i)
698{
699    assert(i < NumArgumentRegs);
700    return tc->readIntReg(ArgumentReg[i]);
701}
702
703void
704X86_64LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
705{
706    assert(i < NumArgumentRegs);
707    return tc->setIntReg(ArgumentReg[i], val);
708}
709
710X86ISA::IntReg
711I386LiveProcess::getSyscallArg(ThreadContext *tc, int i)
712{
713    assert(i < NumArgumentRegs32);
714    return tc->readIntReg(ArgumentReg32[i]);
715}
716
717void
718I386LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
719{
720    assert(i < NumArgumentRegs);
721    return tc->setIntReg(ArgumentReg[i], val);
722}
723