process.cc revision 6222:9ee4a06a960b
1/*
2 * Copyright (c) 2003-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 *          Ali Saidi
30 */
31
32/*
33 * Copyright (c) 2007 The Hewlett-Packard Development Company
34 * All rights reserved.
35 *
36 * Redistribution and use of this software in source and binary forms,
37 * with or without modification, are permitted provided that the
38 * following conditions are met:
39 *
40 * The software must be used only for Non-Commercial Use which means any
41 * use which is NOT directed to receiving any direct monetary
42 * compensation for, or commercial advantage from such use.  Illustrative
43 * examples of non-commercial use are academic research, personal study,
44 * teaching, education and corporate research & development.
45 * Illustrative examples of commercial use are distributing products for
46 * commercial advantage and providing services using the software for
47 * commercial advantage.
48 *
49 * If you wish to use this software or functionality therein that may be
50 * covered by patents for commercial use, please contact:
51 *     Director of Intellectual Property Licensing
52 *     Office of Strategy and Technology
53 *     Hewlett-Packard Company
54 *     1501 Page Mill Road
55 *     Palo Alto, California  94304
56 *
57 * Redistributions of source code must retain the above copyright notice,
58 * this list of conditions and the following disclaimer.  Redistributions
59 * in binary form must reproduce the above copyright notice, this list of
60 * conditions and the following disclaimer in the documentation and/or
61 * other materials provided with the distribution.  Neither the name of
62 * the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
63 * contributors may be used to endorse or promote products derived from
64 * this software without specific prior written permission.  No right of
65 * sublicense is granted herewith.  Derivatives of the software and
66 * output created using the software may be prepared, but only for
67 * Non-Commercial Uses.  Derivatives of the software may be shared with
68 * others provided: (i) the others agree to abide by the list of
69 * conditions herein which includes the Non-Commercial Use restrictions;
70 * and (ii) such Derivatives of the software include the above copyright
71 * notice to acknowledge the contribution from this software where
72 * applicable, this list of conditions and the disclaimer below.
73 *
74 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
75 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
76 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
77 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
78 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
79 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
80 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
81 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
82 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
83 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
84 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
85 *
86 * Authors: Gabe Black
87 */
88
89#include "arch/x86/isa_traits.hh"
90#include "arch/x86/process.hh"
91#include "arch/x86/segmentregs.hh"
92#include "arch/x86/types.hh"
93#include "base/loader/object_file.hh"
94#include "base/loader/elf_object.hh"
95#include "base/misc.hh"
96#include "base/trace.hh"
97#include "cpu/thread_context.hh"
98#include "mem/page_table.hh"
99#include "mem/translating_port.hh"
100#include "sim/process_impl.hh"
101#include "sim/syscall_emul.hh"
102#include "sim/system.hh"
103
104using namespace std;
105using namespace X86ISA;
106
107static const int ArgumentReg[] = {
108    INTREG_RDI,
109    INTREG_RSI,
110    INTREG_RDX,
111    //This argument register is r10 for syscalls and rcx for C.
112    INTREG_R10W,
113    //INTREG_RCX,
114    INTREG_R8W,
115    INTREG_R9W
116};
117static const int NumArgumentRegs = sizeof(ArgumentReg) / sizeof(const int);
118static const int ArgumentReg32[] = {
119    INTREG_EBX,
120    INTREG_ECX,
121    INTREG_EDX,
122    INTREG_ESI,
123    INTREG_EDI,
124};
125static const int NumArgumentRegs32 = sizeof(ArgumentReg) / sizeof(const int);
126
127X86LiveProcess::X86LiveProcess(LiveProcessParams * params, ObjectFile *objFile,
128        SyscallDesc *_syscallDescs, int _numSyscallDescs) :
129    LiveProcess(params, objFile), syscallDescs(_syscallDescs),
130    numSyscallDescs(_numSyscallDescs)
131{
132    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
133    brk_point = roundUp(brk_point, VMPageSize);
134}
135
136X86_64LiveProcess::X86_64LiveProcess(LiveProcessParams *params,
137        ObjectFile *objFile, SyscallDesc *_syscallDescs,
138        int _numSyscallDescs) :
139    X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
140{
141    // Set up stack. On X86_64 Linux, stack goes from the top of memory
142    // downward, less the hole for the kernel address space plus one page
143    // for undertermined purposes.
144    stack_base = (Addr)0x7FFFFFFFF000ULL;
145
146    // Set pointer for next thread stack.  Reserve 8M for main stack.
147    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
148
149    // Set up region for mmaps. This was determined empirically and may not
150    // always be correct.
151    mmap_start = mmap_end = (Addr)0x2aaaaaaab000ULL;
152}
153
154void
155I386LiveProcess::syscall(int64_t callnum, ThreadContext *tc)
156{
157    Addr eip = tc->readPC();
158    if (eip >= vsyscallPage.base &&
159            eip < vsyscallPage.base + vsyscallPage.size) {
160        tc->setNextPC(vsyscallPage.base + vsyscallPage.vsysexitOffset);
161    }
162    X86LiveProcess::syscall(callnum, tc);
163}
164
165
166I386LiveProcess::I386LiveProcess(LiveProcessParams *params,
167        ObjectFile *objFile, SyscallDesc *_syscallDescs,
168        int _numSyscallDescs) :
169    X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
170{
171    _gdtStart = 0x100000000;
172    _gdtSize = VMPageSize;
173
174    vsyscallPage.base = 0xffffe000ULL;
175    vsyscallPage.size = VMPageSize;
176    vsyscallPage.vsyscallOffset = 0x400;
177    vsyscallPage.vsysexitOffset = 0x410;
178
179    stack_base = vsyscallPage.base;
180
181    // Set pointer for next thread stack.  Reserve 8M for main stack.
182    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
183
184    // Set up region for mmaps. This was determined empirically and may not
185    // always be correct.
186    mmap_start = mmap_end = (Addr)0xf7ffd000ULL;
187}
188
189SyscallDesc*
190X86LiveProcess::getDesc(int callnum)
191{
192    if (callnum < 0 || callnum >= numSyscallDescs)
193        return NULL;
194    return &syscallDescs[callnum];
195}
196
197void
198X86_64LiveProcess::startup()
199{
200    LiveProcess::startup();
201
202    if (checkpointRestored)
203        return;
204
205    argsInit(sizeof(uint64_t), VMPageSize);
206
207    for (int i = 0; i < contextIds.size(); i++) {
208        ThreadContext * tc = system->getThreadContext(contextIds[i]);
209
210        SegAttr dataAttr = 0;
211        dataAttr.dpl = 3;
212        dataAttr.unusable = 0;
213        dataAttr.defaultSize = 1;
214        dataAttr.longMode = 1;
215        dataAttr.avl = 0;
216        dataAttr.granularity = 1;
217        dataAttr.present = 1;
218        dataAttr.type = 3;
219        dataAttr.writable = 1;
220        dataAttr.readable = 1;
221        dataAttr.expandDown = 0;
222        dataAttr.system = 1;
223
224        //Initialize the segment registers.
225        for(int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
226            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
227            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
228            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
229        }
230
231        SegAttr csAttr = 0;
232        csAttr.dpl = 3;
233        csAttr.unusable = 0;
234        csAttr.defaultSize = 0;
235        csAttr.longMode = 1;
236        csAttr.avl = 0;
237        csAttr.granularity = 1;
238        csAttr.present = 1;
239        csAttr.type = 10;
240        csAttr.writable = 0;
241        csAttr.readable = 1;
242        csAttr.expandDown = 0;
243        csAttr.system = 1;
244
245        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
246
247        Efer efer = 0;
248        efer.sce = 1; // Enable system call extensions.
249        efer.lme = 1; // Enable long mode.
250        efer.lma = 1; // Activate long mode.
251        efer.nxe = 1; // Enable nx support.
252        efer.svme = 0; // Disable svm support for now. It isn't implemented.
253        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
254        tc->setMiscReg(MISCREG_EFER, efer);
255
256        //Set up the registers that describe the operating mode.
257        CR0 cr0 = 0;
258        cr0.pg = 1; // Turn on paging.
259        cr0.cd = 0; // Don't disable caching.
260        cr0.nw = 0; // This is bit is defined to be ignored.
261        cr0.am = 0; // No alignment checking
262        cr0.wp = 0; // Supervisor mode can write read only pages
263        cr0.ne = 1;
264        cr0.et = 1; // This should always be 1
265        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
266                    // would be pointless.
267        cr0.em = 0; // Allow x87 instructions to execute natively.
268        cr0.mp = 1; // This doesn't really matter, but the manual suggests
269                    // setting it to one.
270        cr0.pe = 1; // We're definitely in protected mode.
271        tc->setMiscReg(MISCREG_CR0, cr0);
272    }
273}
274
275void
276I386LiveProcess::startup()
277{
278    LiveProcess::startup();
279
280    if (checkpointRestored)
281        return;
282
283    argsInit(sizeof(uint32_t), VMPageSize);
284
285    /*
286     * Set up a GDT for this process. The whole GDT wouldn't really be for
287     * this process, but the only parts we care about are.
288     */
289    pTable->allocate(_gdtStart, _gdtSize);
290    uint64_t zero = 0;
291    assert(_gdtSize % sizeof(zero) == 0);
292    for (Addr gdtCurrent = _gdtStart;
293            gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
294        initVirtMem->write(gdtCurrent, zero);
295    }
296
297    // Set up the vsyscall page for this process.
298    pTable->allocate(vsyscallPage.base, vsyscallPage.size);
299    uint8_t vsyscallBlob[] = {
300        0x51,       // push %ecx
301        0x52,       // push %edp
302        0x55,       // push %ebp
303        0x89, 0xe5, // mov %esp, %ebp
304        0x0f, 0x34  // sysenter
305    };
306    initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
307            vsyscallBlob, sizeof(vsyscallBlob));
308
309    uint8_t vsysexitBlob[] = {
310        0x5d,       // pop %ebp
311        0x5a,       // pop %edx
312        0x59,       // pop %ecx
313        0xc3        // ret
314    };
315    initVirtMem->writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
316            vsysexitBlob, sizeof(vsysexitBlob));
317
318    for (int i = 0; i < contextIds.size(); i++) {
319        ThreadContext * tc = system->getThreadContext(contextIds[i]);
320
321        SegAttr dataAttr = 0;
322        dataAttr.dpl = 3;
323        dataAttr.unusable = 0;
324        dataAttr.defaultSize = 1;
325        dataAttr.longMode = 0;
326        dataAttr.avl = 0;
327        dataAttr.granularity = 1;
328        dataAttr.present = 1;
329        dataAttr.type = 3;
330        dataAttr.writable = 1;
331        dataAttr.readable = 1;
332        dataAttr.expandDown = 0;
333        dataAttr.system = 1;
334
335        //Initialize the segment registers.
336        for(int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
337            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
338            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
339            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
340            tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
341            tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
342        }
343
344        SegAttr csAttr = 0;
345        csAttr.dpl = 3;
346        csAttr.unusable = 0;
347        csAttr.defaultSize = 1;
348        csAttr.longMode = 0;
349        csAttr.avl = 0;
350        csAttr.granularity = 1;
351        csAttr.present = 1;
352        csAttr.type = 0xa;
353        csAttr.writable = 0;
354        csAttr.readable = 1;
355        csAttr.expandDown = 0;
356        csAttr.system = 1;
357
358        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
359
360        tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
361        tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
362        tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
363
364        // Set the LDT selector to 0 to deactivate it.
365        tc->setMiscRegNoEffect(MISCREG_TSL, 0);
366
367        Efer efer = 0;
368        efer.sce = 1; // Enable system call extensions.
369        efer.lme = 1; // Enable long mode.
370        efer.lma = 0; // Deactivate long mode.
371        efer.nxe = 1; // Enable nx support.
372        efer.svme = 0; // Disable svm support for now. It isn't implemented.
373        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
374        tc->setMiscReg(MISCREG_EFER, efer);
375
376        //Set up the registers that describe the operating mode.
377        CR0 cr0 = 0;
378        cr0.pg = 1; // Turn on paging.
379        cr0.cd = 0; // Don't disable caching.
380        cr0.nw = 0; // This is bit is defined to be ignored.
381        cr0.am = 0; // No alignment checking
382        cr0.wp = 0; // Supervisor mode can write read only pages
383        cr0.ne = 1;
384        cr0.et = 1; // This should always be 1
385        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
386                    // would be pointless.
387        cr0.em = 0; // Allow x87 instructions to execute natively.
388        cr0.mp = 1; // This doesn't really matter, but the manual suggests
389                    // setting it to one.
390        cr0.pe = 1; // We're definitely in protected mode.
391        tc->setMiscReg(MISCREG_CR0, cr0);
392    }
393}
394
395template<class IntType>
396void
397X86LiveProcess::argsInit(int pageSize,
398        std::vector<AuxVector<IntType> > extraAuxvs)
399{
400    int intSize = sizeof(IntType);
401
402    typedef AuxVector<IntType> auxv_t;
403    std::vector<auxv_t> auxv = extraAuxvs;
404
405    string filename;
406    if(argv.size() < 1)
407        filename = "";
408    else
409        filename = argv[0];
410
411    //We want 16 byte alignment
412    uint64_t align = 16;
413
414    // load object file into target memory
415    objFile->loadSections(initVirtMem);
416
417    enum X86CpuFeature {
418        X86_OnboardFPU = 1 << 0,
419        X86_VirtualModeExtensions = 1 << 1,
420        X86_DebuggingExtensions = 1 << 2,
421        X86_PageSizeExtensions = 1 << 3,
422
423        X86_TimeStampCounter = 1 << 4,
424        X86_ModelSpecificRegisters = 1 << 5,
425        X86_PhysicalAddressExtensions = 1 << 6,
426        X86_MachineCheckExtensions = 1 << 7,
427
428        X86_CMPXCHG8Instruction = 1 << 8,
429        X86_OnboardAPIC = 1 << 9,
430        X86_SYSENTER_SYSEXIT = 1 << 11,
431
432        X86_MemoryTypeRangeRegisters = 1 << 12,
433        X86_PageGlobalEnable = 1 << 13,
434        X86_MachineCheckArchitecture = 1 << 14,
435        X86_CMOVInstruction = 1 << 15,
436
437        X86_PageAttributeTable = 1 << 16,
438        X86_36BitPSEs = 1 << 17,
439        X86_ProcessorSerialNumber = 1 << 18,
440        X86_CLFLUSHInstruction = 1 << 19,
441
442        X86_DebugTraceStore = 1 << 21,
443        X86_ACPIViaMSR = 1 << 22,
444        X86_MultimediaExtensions = 1 << 23,
445
446        X86_FXSAVE_FXRSTOR = 1 << 24,
447        X86_StreamingSIMDExtensions = 1 << 25,
448        X86_StreamingSIMDExtensions2 = 1 << 26,
449        X86_CPUSelfSnoop = 1 << 27,
450
451        X86_HyperThreading = 1 << 28,
452        X86_AutomaticClockControl = 1 << 29,
453        X86_IA64Processor = 1 << 30
454    };
455
456    //Setup the auxilliary vectors. These will already have endian conversion.
457    //Auxilliary vectors are loaded only for elf formatted executables.
458    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
459    if(elfObject)
460    {
461        uint64_t features =
462            X86_OnboardFPU |
463            X86_VirtualModeExtensions |
464            X86_DebuggingExtensions |
465            X86_PageSizeExtensions |
466            X86_TimeStampCounter |
467            X86_ModelSpecificRegisters |
468            X86_PhysicalAddressExtensions |
469            X86_MachineCheckExtensions |
470            X86_CMPXCHG8Instruction |
471            X86_OnboardAPIC |
472            X86_SYSENTER_SYSEXIT |
473            X86_MemoryTypeRangeRegisters |
474            X86_PageGlobalEnable |
475            X86_MachineCheckArchitecture |
476            X86_CMOVInstruction |
477            X86_PageAttributeTable |
478            X86_36BitPSEs |
479//            X86_ProcessorSerialNumber |
480            X86_CLFLUSHInstruction |
481//            X86_DebugTraceStore |
482//            X86_ACPIViaMSR |
483            X86_MultimediaExtensions |
484            X86_FXSAVE_FXRSTOR |
485            X86_StreamingSIMDExtensions |
486            X86_StreamingSIMDExtensions2 |
487//            X86_CPUSelfSnoop |
488//            X86_HyperThreading |
489//            X86_AutomaticClockControl |
490//            X86_IA64Processor |
491            0;
492
493        //Bits which describe the system hardware capabilities
494        //XXX Figure out what these should be
495        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
496        //The system page size
497        auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::VMPageSize));
498        //Frequency at which times() increments
499        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
500        // For statically linked executables, this is the virtual address of the
501        // program header tables if they appear in the executable image
502        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
503        // This is the size of a program header entry from the elf file.
504        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
505        // This is the number of program headers from the original elf file.
506        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
507        //Defined to be 100 in the kernel source.
508        //This is the address of the elf "interpreter", It should be set
509        //to 0 for regular executables. It should be something else
510        //(not sure what) for dynamic libraries.
511        auxv.push_back(auxv_t(M5_AT_BASE, 0));
512
513        //XXX Figure out what this should be.
514        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
515        //The entry point to the program
516        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
517        //Different user and group IDs
518        auxv.push_back(auxv_t(M5_AT_UID, uid()));
519        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
520        auxv.push_back(auxv_t(M5_AT_GID, gid()));
521        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
522        //Whether to enable "secure mode" in the executable
523        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
524        //The string "x86_64" with unknown meaning
525        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
526    }
527
528    //Figure out how big the initial stack needs to be
529
530    // A sentry NULL void pointer at the top of the stack.
531    int sentry_size = intSize;
532
533    //This is the name of the file which is present on the initial stack
534    //It's purpose is to let the user space linker examine the original file.
535    int file_name_size = filename.size() + 1;
536
537    string platform = "x86_64";
538    int aux_data_size = platform.size() + 1;
539
540    int env_data_size = 0;
541    for (int i = 0; i < envp.size(); ++i) {
542        env_data_size += envp[i].size() + 1;
543    }
544    int arg_data_size = 0;
545    for (int i = 0; i < argv.size(); ++i) {
546        arg_data_size += argv[i].size() + 1;
547    }
548
549    //The info_block needs to be padded so it's size is a multiple of the
550    //alignment mask. Also, it appears that there needs to be at least some
551    //padding, so if the size is already a multiple, we need to increase it
552    //anyway.
553    int base_info_block_size =
554        sentry_size + file_name_size + env_data_size + arg_data_size;
555
556    int info_block_size = roundUp(base_info_block_size, align);
557
558    int info_block_padding = info_block_size - base_info_block_size;
559
560    //Each auxilliary vector is two 8 byte words
561    int aux_array_size = intSize * 2 * (auxv.size() + 1);
562
563    int envp_array_size = intSize * (envp.size() + 1);
564    int argv_array_size = intSize * (argv.size() + 1);
565
566    int argc_size = intSize;
567
568    //Figure out the size of the contents of the actual initial frame
569    int frame_size =
570        aux_array_size +
571        envp_array_size +
572        argv_array_size +
573        argc_size;
574
575    //There needs to be padding after the auxiliary vector data so that the
576    //very bottom of the stack is aligned properly.
577    int partial_size = frame_size + aux_data_size;
578    int aligned_partial_size = roundUp(partial_size, align);
579    int aux_padding = aligned_partial_size - partial_size;
580
581    int space_needed =
582        info_block_size +
583        aux_data_size +
584        aux_padding +
585        frame_size;
586
587    stack_min = stack_base - space_needed;
588    stack_min = roundDown(stack_min, align);
589    stack_size = stack_base - stack_min;
590
591    // map memory
592    pTable->allocate(roundDown(stack_min, pageSize),
593                     roundUp(stack_size, pageSize));
594
595    // map out initial stack contents
596    IntType sentry_base = stack_base - sentry_size;
597    IntType file_name_base = sentry_base - file_name_size;
598    IntType env_data_base = file_name_base - env_data_size;
599    IntType arg_data_base = env_data_base - arg_data_size;
600    IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
601    IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
602    IntType envp_array_base = auxv_array_base - envp_array_size;
603    IntType argv_array_base = envp_array_base - argv_array_size;
604    IntType argc_base = argv_array_base - argc_size;
605
606    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
607    DPRINTF(Stack, "0x%x - file name\n", file_name_base);
608    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
609    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
610    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
611    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
612    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
613    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
614    DPRINTF(Stack, "0x%x - argc \n", argc_base);
615    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
616
617    // write contents to stack
618
619    // figure out argc
620    IntType argc = argv.size();
621    IntType guestArgc = X86ISA::htog(argc);
622
623    //Write out the sentry void *
624    IntType sentry_NULL = 0;
625    initVirtMem->writeBlob(sentry_base,
626            (uint8_t*)&sentry_NULL, sentry_size);
627
628    //Write the file name
629    initVirtMem->writeString(file_name_base, filename.c_str());
630
631    //Fix up the aux vector which points to the "platform" string
632    assert(auxv[auxv.size() - 1].a_type = M5_AT_PLATFORM);
633    auxv[auxv.size() - 1].a_val = aux_data_base;
634
635    //Copy the aux stuff
636    for(int x = 0; x < auxv.size(); x++)
637    {
638        initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
639                (uint8_t*)&(auxv[x].a_type), intSize);
640        initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
641                (uint8_t*)&(auxv[x].a_val), intSize);
642    }
643    //Write out the terminating zeroed auxilliary vector
644    const uint64_t zero = 0;
645    initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
646            (uint8_t*)&zero, 2 * intSize);
647
648    initVirtMem->writeString(aux_data_base, platform.c_str());
649
650    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
651    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
652
653    initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
654
655    ThreadContext *tc = system->getThreadContext(contextIds[0]);
656    //Set the stack pointer register
657    tc->setIntReg(StackPointerReg, stack_min);
658
659    Addr prog_entry = objFile->entryPoint();
660    // There doesn't need to be any segment base added in since we're dealing
661    // with the flat segmentation model.
662    tc->setPC(prog_entry);
663    tc->setNextPC(prog_entry + sizeof(MachInst));
664
665    //Align the "stack_min" to a page boundary.
666    stack_min = roundDown(stack_min, pageSize);
667
668//    num_processes++;
669}
670
671void
672X86_64LiveProcess::argsInit(int intSize, int pageSize)
673{
674    std::vector<AuxVector<uint64_t> > extraAuxvs;
675    X86LiveProcess::argsInit<uint64_t>(pageSize, extraAuxvs);
676}
677
678void
679I386LiveProcess::argsInit(int intSize, int pageSize)
680{
681    std::vector<AuxVector<uint32_t> > extraAuxvs;
682    //Tell the binary where the vsyscall part of the vsyscall page is.
683    extraAuxvs.push_back(AuxVector<uint32_t>(0x20,
684                vsyscallPage.base + vsyscallPage.vsyscallOffset));
685    extraAuxvs.push_back(AuxVector<uint32_t>(0x21, vsyscallPage.base));
686    X86LiveProcess::argsInit<uint32_t>(pageSize, extraAuxvs);
687}
688
689void
690X86LiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn return_value)
691{
692    tc->setIntReg(INTREG_RAX, return_value.value());
693}
694
695X86ISA::IntReg
696X86_64LiveProcess::getSyscallArg(ThreadContext *tc, int i)
697{
698    assert(i < NumArgumentRegs);
699    return tc->readIntReg(ArgumentReg[i]);
700}
701
702void
703X86_64LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
704{
705    assert(i < NumArgumentRegs);
706    return tc->setIntReg(ArgumentReg[i], val);
707}
708
709X86ISA::IntReg
710I386LiveProcess::getSyscallArg(ThreadContext *tc, int i)
711{
712    assert(i < NumArgumentRegs32);
713    return tc->readIntReg(ArgumentReg32[i]);
714}
715
716void
717I386LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
718{
719    assert(i < NumArgumentRegs);
720    return tc->setIntReg(ArgumentReg[i], val);
721}
722