process.cc revision 12460:0f221912b014
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 *          Ali Saidi
43 */
44
45#include "arch/x86/process.hh"
46
47#include <string>
48#include <vector>
49
50#include "arch/x86/isa_traits.hh"
51#include "arch/x86/regs/misc.hh"
52#include "arch/x86/regs/segment.hh"
53#include "arch/x86/system.hh"
54#include "arch/x86/types.hh"
55#include "base/loader/elf_object.hh"
56#include "base/loader/object_file.hh"
57#include "base/logging.hh"
58#include "base/trace.hh"
59#include "cpu/thread_context.hh"
60#include "debug/Stack.hh"
61#include "mem/multi_level_page_table.hh"
62#include "mem/page_table.hh"
63#include "params/Process.hh"
64#include "sim/aux_vector.hh"
65#include "sim/process_impl.hh"
66#include "sim/syscall_desc.hh"
67#include "sim/syscall_return.hh"
68#include "sim/system.hh"
69
70using namespace std;
71using namespace X86ISA;
72
73static const int ArgumentReg[] = {
74    INTREG_RDI,
75    INTREG_RSI,
76    INTREG_RDX,
77    // This argument register is r10 for syscalls and rcx for C.
78    INTREG_R10W,
79    // INTREG_RCX,
80    INTREG_R8W,
81    INTREG_R9W
82};
83
84static const int NumArgumentRegs M5_VAR_USED =
85    sizeof(ArgumentReg) / sizeof(const int);
86
87static const int ArgumentReg32[] = {
88    INTREG_EBX,
89    INTREG_ECX,
90    INTREG_EDX,
91    INTREG_ESI,
92    INTREG_EDI,
93    INTREG_EBP
94};
95
96static const int NumArgumentRegs32 M5_VAR_USED =
97    sizeof(ArgumentReg) / sizeof(const int);
98
99template class MultiLevelPageTable<LongModePTE<47, 39>,
100                                   LongModePTE<38, 30>,
101                                   LongModePTE<29, 21>,
102                                   LongModePTE<20, 12> >;
103typedef MultiLevelPageTable<LongModePTE<47, 39>,
104                            LongModePTE<38, 30>,
105                            LongModePTE<29, 21>,
106                            LongModePTE<20, 12> > ArchPageTable;
107
108X86Process::X86Process(ProcessParams *params, ObjectFile *objFile,
109                       SyscallDesc *_syscallDescs, int _numSyscallDescs)
110    : Process(params, params->useArchPT ?
111                      static_cast<EmulationPageTable *>(
112                              new ArchPageTable(params->name, params->pid,
113                                                params->system, PageBytes)) :
114                      new EmulationPageTable(params->name, params->pid,
115                                             PageBytes),
116              objFile),
117      syscallDescs(_syscallDescs), numSyscallDescs(_numSyscallDescs)
118{
119}
120
121void X86Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
122                       Process *p, TheISA::IntReg flags)
123{
124    Process::clone(old_tc, new_tc, p, flags);
125    X86Process *process = (X86Process*)p;
126    *process = *this;
127}
128
129X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
130                             SyscallDesc *_syscallDescs, int _numSyscallDescs)
131    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
132{
133
134    vsyscallPage.base = 0xffffffffff600000ULL;
135    vsyscallPage.size = PageBytes;
136    vsyscallPage.vtimeOffset = 0x400;
137    vsyscallPage.vgettimeofdayOffset = 0x0;
138
139    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
140                             objFile->bssSize(), PageBytes);
141    Addr stack_base = 0x7FFFFFFFF000ULL;
142    Addr max_stack_size = 8 * 1024 * 1024;
143    Addr next_thread_stack_base = stack_base - max_stack_size;
144    Addr mmap_end = 0x7FFFF7FFF000ULL;
145
146    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
147                                     next_thread_stack_base, mmap_end);
148}
149
150void
151I386Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault)
152{
153    TheISA::PCState pc = tc->pcState();
154    Addr eip = pc.pc();
155    if (eip >= vsyscallPage.base &&
156            eip < vsyscallPage.base + vsyscallPage.size) {
157        pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
158        tc->pcState(pc);
159    }
160    X86Process::syscall(callnum, tc, fault);
161}
162
163
164I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
165                         SyscallDesc *_syscallDescs, int _numSyscallDescs)
166    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
167{
168    _gdtStart = ULL(0xffffd000);
169    _gdtSize = PageBytes;
170
171    vsyscallPage.base = 0xffffe000ULL;
172    vsyscallPage.size = PageBytes;
173    vsyscallPage.vsyscallOffset = 0x400;
174    vsyscallPage.vsysexitOffset = 0x410;
175
176    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
177                             objFile->bssSize(), PageBytes);
178    Addr stack_base = _gdtStart;
179    Addr max_stack_size = 8 * 1024 * 1024;
180    Addr next_thread_stack_base = stack_base - max_stack_size;
181    Addr mmap_end = 0xB7FFF000ULL;
182
183    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
184                                     next_thread_stack_base, mmap_end);
185}
186
187SyscallDesc*
188X86Process::getDesc(int callnum)
189{
190    if (callnum < 0 || callnum >= numSyscallDescs)
191        return NULL;
192    return &syscallDescs[callnum];
193}
194
195void
196X86_64Process::initState()
197{
198    X86Process::initState();
199
200    argsInit(PageBytes);
201
202    // Set up the vsyscall page for this process.
203    allocateMem(vsyscallPage.base, vsyscallPage.size);
204    uint8_t vtimeBlob[] = {
205        0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00,    // mov    $0xc9,%rax
206        0x0f,0x05,                             // syscall
207        0xc3                                   // retq
208    };
209    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
210            vtimeBlob, sizeof(vtimeBlob));
211
212    uint8_t vgettimeofdayBlob[] = {
213        0x48,0xc7,0xc0,0x60,0x00,0x00,0x00,    // mov    $0x60,%rax
214        0x0f,0x05,                             // syscall
215        0xc3                                   // retq
216    };
217    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
218            vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
219
220    if (kvmInSE) {
221        PortProxy physProxy = system->physProxy;
222
223        Addr syscallCodePhysAddr = system->allocPhysPages(1);
224        Addr gdtPhysAddr = system->allocPhysPages(1);
225        Addr idtPhysAddr = system->allocPhysPages(1);
226        Addr istPhysAddr = system->allocPhysPages(1);
227        Addr tssPhysAddr = system->allocPhysPages(1);
228        Addr pfHandlerPhysAddr = system->allocPhysPages(1);
229
230        /*
231         * Set up the gdt.
232         */
233        uint8_t numGDTEntries = 0;
234        uint64_t nullDescriptor = 0;
235        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
236                            (uint8_t *)(&nullDescriptor), 8);
237        numGDTEntries++;
238
239        SegDescriptor initDesc = 0;
240        initDesc.type.codeOrData = 0; // code or data type
241        initDesc.type.c = 0;          // conforming
242        initDesc.type.r = 1;          // readable
243        initDesc.dpl = 0;             // privilege
244        initDesc.p = 1;               // present
245        initDesc.l = 1;               // longmode - 64 bit
246        initDesc.d = 0;               // operand size
247        initDesc.g = 1;               // granularity
248        initDesc.s = 1;               // system segment
249        initDesc.limitHigh = 0xFFFF;
250        initDesc.limitLow = 0xF;
251        initDesc.baseHigh = 0x0;
252        initDesc.baseLow = 0x0;
253
254        //64 bit code segment
255        SegDescriptor csLowPLDesc = initDesc;
256        csLowPLDesc.type.codeOrData = 1;
257        csLowPLDesc.dpl = 0;
258        uint64_t csLowPLDescVal = csLowPLDesc;
259        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
260                            (uint8_t *)(&csLowPLDescVal), 8);
261
262        numGDTEntries++;
263
264        SegSelector csLowPL = 0;
265        csLowPL.si = numGDTEntries - 1;
266        csLowPL.rpl = 0;
267
268        //64 bit data segment
269        SegDescriptor dsLowPLDesc = initDesc;
270        dsLowPLDesc.type.codeOrData = 0;
271        dsLowPLDesc.dpl = 0;
272        uint64_t dsLowPLDescVal = dsLowPLDesc;
273        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
274                            (uint8_t *)(&dsLowPLDescVal), 8);
275
276        numGDTEntries++;
277
278        SegSelector dsLowPL = 0;
279        dsLowPL.si = numGDTEntries - 1;
280        dsLowPL.rpl = 0;
281
282        //64 bit data segment
283        SegDescriptor dsDesc = initDesc;
284        dsDesc.type.codeOrData = 0;
285        dsDesc.dpl = 3;
286        uint64_t dsDescVal = dsDesc;
287        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
288                            (uint8_t *)(&dsDescVal), 8);
289
290        numGDTEntries++;
291
292        SegSelector ds = 0;
293        ds.si = numGDTEntries - 1;
294        ds.rpl = 3;
295
296        //64 bit code segment
297        SegDescriptor csDesc = initDesc;
298        csDesc.type.codeOrData = 1;
299        csDesc.dpl = 3;
300        uint64_t csDescVal = csDesc;
301        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
302                            (uint8_t *)(&csDescVal), 8);
303
304        numGDTEntries++;
305
306        SegSelector cs = 0;
307        cs.si = numGDTEntries - 1;
308        cs.rpl = 3;
309
310        SegSelector scall = 0;
311        scall.si = csLowPL.si;
312        scall.rpl = 0;
313
314        SegSelector sret = 0;
315        sret.si = dsLowPL.si;
316        sret.rpl = 3;
317
318        /* In long mode the TSS has been extended to 16 Bytes */
319        TSSlow TSSDescLow = 0;
320        TSSDescLow.type = 0xB;
321        TSSDescLow.dpl = 0; // Privelege level 0
322        TSSDescLow.p = 1; // Present
323        TSSDescLow.g = 1; // Page granularity
324        TSSDescLow.limitHigh = 0xF;
325        TSSDescLow.limitLow = 0xFFFF;
326        TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
327        TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
328
329        TSShigh TSSDescHigh = 0;
330        TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
331
332        struct TSSDesc {
333            uint64_t low;
334            uint64_t high;
335        } tssDescVal = {TSSDescLow, TSSDescHigh};
336
337        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
338                            (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
339
340        numGDTEntries++;
341
342        SegSelector tssSel = 0;
343        tssSel.si = numGDTEntries - 1;
344
345        uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
346                                 (TSSDescLow.baseHigh << 24) |
347                                  TSSDescLow.baseLow;
348        uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
349
350        SegAttr tss_attr = 0;
351
352        tss_attr.type = TSSDescLow.type;
353        tss_attr.dpl = TSSDescLow.dpl;
354        tss_attr.present = TSSDescLow.p;
355        tss_attr.granularity = TSSDescLow.g;
356        tss_attr.unusable = 0;
357
358        for (int i = 0; i < contextIds.size(); i++) {
359            ThreadContext * tc = system->getThreadContext(contextIds[i]);
360
361            tc->setMiscReg(MISCREG_CS, cs);
362            tc->setMiscReg(MISCREG_DS, ds);
363            tc->setMiscReg(MISCREG_ES, ds);
364            tc->setMiscReg(MISCREG_FS, ds);
365            tc->setMiscReg(MISCREG_GS, ds);
366            tc->setMiscReg(MISCREG_SS, ds);
367
368            // LDT
369            tc->setMiscReg(MISCREG_TSL, 0);
370            SegAttr tslAttr = 0;
371            tslAttr.present = 1;
372            tslAttr.type = 2;
373            tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
374
375            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
376            tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
377
378            tc->setMiscReg(MISCREG_TR, tssSel);
379            tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
380            tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
381            tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
382            tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
383
384            //Start using longmode segments.
385            installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
386            installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
387            installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
388            installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
389            installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
390            installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
391
392            Efer efer = 0;
393            efer.sce = 1; // Enable system call extensions.
394            efer.lme = 1; // Enable long mode.
395            efer.lma = 1; // Activate long mode.
396            efer.nxe = 0; // Enable nx support.
397            efer.svme = 1; // Enable svm support for now.
398            efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
399            tc->setMiscReg(MISCREG_EFER, efer);
400
401            //Set up the registers that describe the operating mode.
402            CR0 cr0 = 0;
403            cr0.pg = 1; // Turn on paging.
404            cr0.cd = 0; // Don't disable caching.
405            cr0.nw = 0; // This is bit is defined to be ignored.
406            cr0.am = 1; // No alignment checking
407            cr0.wp = 1; // Supervisor mode can write read only pages
408            cr0.ne = 1;
409            cr0.et = 1; // This should always be 1
410            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
411                        // would be pointless.
412            cr0.em = 0; // Allow x87 instructions to execute natively.
413            cr0.mp = 1; // This doesn't really matter, but the manual suggests
414                        // setting it to one.
415            cr0.pe = 1; // We're definitely in protected mode.
416            tc->setMiscReg(MISCREG_CR0, cr0);
417
418            CR0 cr2 = 0;
419            tc->setMiscReg(MISCREG_CR2, cr2);
420
421            CR3 cr3 = dynamic_cast<ArchPageTable *>(pTable)->basePtr();
422            tc->setMiscReg(MISCREG_CR3, cr3);
423
424            CR4 cr4 = 0;
425            //Turn on pae.
426            cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
427            cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
428            cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
429            cr4.pce = 0; // Performance-Monitoring Counter Enable
430            cr4.pge = 0; // Page-Global Enable
431            cr4.mce = 0; // Machine Check Enable
432            cr4.pae = 1; // Physical-Address Extension
433            cr4.pse = 0; // Page Size Extensions
434            cr4.de = 0; // Debugging Extensions
435            cr4.tsd = 0; // Time Stamp Disable
436            cr4.pvi = 0; // Protected-Mode Virtual Interrupts
437            cr4.vme = 0; // Virtual-8086 Mode Extensions
438
439            tc->setMiscReg(MISCREG_CR4, cr4);
440
441            CR4 cr8 = 0;
442            tc->setMiscReg(MISCREG_CR8, cr8);
443
444            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
445
446            tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
447
448            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
449            tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
450
451            tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
452            tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
453
454            /* enabling syscall and sysret */
455            MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
456            tc->setMiscReg(MISCREG_STAR, star);
457            MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
458            tc->setMiscReg(MISCREG_LSTAR, lstar);
459            MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
460            tc->setMiscReg(MISCREG_SF_MASK, sfmask);
461        }
462
463        /* Set up the content of the TSS and write it to physical memory. */
464
465        struct {
466            uint32_t reserved0;        // +00h
467            uint32_t RSP0_low;         // +04h
468            uint32_t RSP0_high;        // +08h
469            uint32_t RSP1_low;         // +0Ch
470            uint32_t RSP1_high;        // +10h
471            uint32_t RSP2_low;         // +14h
472            uint32_t RSP2_high;        // +18h
473            uint32_t reserved1;        // +1Ch
474            uint32_t reserved2;        // +20h
475            uint32_t IST1_low;         // +24h
476            uint32_t IST1_high;        // +28h
477            uint32_t IST2_low;         // +2Ch
478            uint32_t IST2_high;        // +30h
479            uint32_t IST3_low;         // +34h
480            uint32_t IST3_high;        // +38h
481            uint32_t IST4_low;         // +3Ch
482            uint32_t IST4_high;        // +40h
483            uint32_t IST5_low;         // +44h
484            uint32_t IST5_high;        // +48h
485            uint32_t IST6_low;         // +4Ch
486            uint32_t IST6_high;        // +50h
487            uint32_t IST7_low;         // +54h
488            uint32_t IST7_high;        // +58h
489            uint32_t reserved3;        // +5Ch
490            uint32_t reserved4;        // +60h
491            uint16_t reserved5;        // +64h
492            uint16_t IO_MapBase;       // +66h
493        } tss;
494
495        /** setting Interrupt Stack Table */
496        uint64_t IST_start = ISTVirtAddr + PageBytes;
497        tss.IST1_low  = IST_start;
498        tss.IST1_high = IST_start >> 32;
499        tss.RSP0_low  = tss.IST1_low;
500        tss.RSP0_high = tss.IST1_high;
501        tss.RSP1_low  = tss.IST1_low;
502        tss.RSP1_high = tss.IST1_high;
503        tss.RSP2_low  = tss.IST1_low;
504        tss.RSP2_high = tss.IST1_high;
505        physProxy.writeBlob(tssPhysAddr, (uint8_t *)(&tss), sizeof(tss));
506
507        /* Setting IDT gates */
508        GateDescriptorLow PFGateLow = 0;
509        PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
510        PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
511        PFGateLow.selector = csLowPL;
512        PFGateLow.p = 1;
513        PFGateLow.dpl = 0;
514        PFGateLow.type = 0xe;      // gate interrupt type
515        PFGateLow.IST = 0;         // setting IST to 0 and using RSP0
516
517        GateDescriptorHigh PFGateHigh = 0;
518        PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
519
520        struct {
521            uint64_t low;
522            uint64_t high;
523        } PFGate = {PFGateLow, PFGateHigh};
524
525        physProxy.writeBlob(idtPhysAddr + 0xE0,
526                            (uint8_t *)(&PFGate), sizeof(PFGate));
527
528        /* System call handler */
529        uint8_t syscallBlob[] = {
530            // mov    %rax, (0xffffc90000005600)
531            0x48, 0xa3, 0x00, 0x60, 0x00,
532            0x00, 0x00, 0xc9, 0xff, 0xff,
533            // sysret
534            0x48, 0x0f, 0x07
535        };
536
537        physProxy.writeBlob(syscallCodePhysAddr,
538                            syscallBlob, sizeof(syscallBlob));
539
540        /** Page fault handler */
541        uint8_t faultBlob[] = {
542            // mov    %rax, (0xffffc90000005700)
543            0x48, 0xa3, 0x00, 0x61, 0x00,
544            0x00, 0x00, 0xc9, 0xff, 0xff,
545            // add    $0x8, %rsp # skip error
546            0x48, 0x83, 0xc4, 0x08,
547            // iretq
548            0x48, 0xcf
549        };
550
551        physProxy.writeBlob(pfHandlerPhysAddr, faultBlob, sizeof(faultBlob));
552
553        /* Syscall handler */
554        pTable->map(syscallCodeVirtAddr, syscallCodePhysAddr,
555                    PageBytes, false);
556        /* GDT */
557        pTable->map(GDTVirtAddr, gdtPhysAddr, PageBytes, false);
558        /* IDT */
559        pTable->map(IDTVirtAddr, idtPhysAddr, PageBytes, false);
560        /* TSS */
561        pTable->map(TSSVirtAddr, tssPhysAddr, PageBytes, false);
562        /* IST */
563        pTable->map(ISTVirtAddr, istPhysAddr, PageBytes, false);
564        /* PF handler */
565        pTable->map(PFHandlerVirtAddr, pfHandlerPhysAddr, PageBytes, false);
566        /* MMIO region for m5ops */
567        pTable->map(MMIORegionVirtAddr, MMIORegionPhysAddr,
568                    16 * PageBytes, false);
569    } else {
570        for (int i = 0; i < contextIds.size(); i++) {
571            ThreadContext * tc = system->getThreadContext(contextIds[i]);
572
573            SegAttr dataAttr = 0;
574            dataAttr.dpl = 3;
575            dataAttr.unusable = 0;
576            dataAttr.defaultSize = 1;
577            dataAttr.longMode = 1;
578            dataAttr.avl = 0;
579            dataAttr.granularity = 1;
580            dataAttr.present = 1;
581            dataAttr.type = 3;
582            dataAttr.writable = 1;
583            dataAttr.readable = 1;
584            dataAttr.expandDown = 0;
585            dataAttr.system = 1;
586
587            // Initialize the segment registers.
588            for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
589                tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
590                tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
591                tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
592            }
593
594            SegAttr csAttr = 0;
595            csAttr.dpl = 3;
596            csAttr.unusable = 0;
597            csAttr.defaultSize = 0;
598            csAttr.longMode = 1;
599            csAttr.avl = 0;
600            csAttr.granularity = 1;
601            csAttr.present = 1;
602            csAttr.type = 10;
603            csAttr.writable = 0;
604            csAttr.readable = 1;
605            csAttr.expandDown = 0;
606            csAttr.system = 1;
607
608            tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
609
610            Efer efer = 0;
611            efer.sce = 1; // Enable system call extensions.
612            efer.lme = 1; // Enable long mode.
613            efer.lma = 1; // Activate long mode.
614            efer.nxe = 1; // Enable nx support.
615            efer.svme = 0; // Disable svm support for now. It isn't implemented.
616            efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
617            tc->setMiscReg(MISCREG_EFER, efer);
618
619            // Set up the registers that describe the operating mode.
620            CR0 cr0 = 0;
621            cr0.pg = 1; // Turn on paging.
622            cr0.cd = 0; // Don't disable caching.
623            cr0.nw = 0; // This is bit is defined to be ignored.
624            cr0.am = 0; // No alignment checking
625            cr0.wp = 0; // Supervisor mode can write read only pages
626            cr0.ne = 1;
627            cr0.et = 1; // This should always be 1
628            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
629                        // would be pointless.
630            cr0.em = 0; // Allow x87 instructions to execute natively.
631            cr0.mp = 1; // This doesn't really matter, but the manual suggests
632                        // setting it to one.
633            cr0.pe = 1; // We're definitely in protected mode.
634            tc->setMiscReg(MISCREG_CR0, cr0);
635
636            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
637        }
638    }
639}
640
641void
642I386Process::initState()
643{
644    X86Process::initState();
645
646    argsInit(PageBytes);
647
648    /*
649     * Set up a GDT for this process. The whole GDT wouldn't really be for
650     * this process, but the only parts we care about are.
651     */
652    allocateMem(_gdtStart, _gdtSize);
653    uint64_t zero = 0;
654    assert(_gdtSize % sizeof(zero) == 0);
655    for (Addr gdtCurrent = _gdtStart;
656            gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
657        initVirtMem.write(gdtCurrent, zero);
658    }
659
660    // Set up the vsyscall page for this process.
661    allocateMem(vsyscallPage.base, vsyscallPage.size);
662    uint8_t vsyscallBlob[] = {
663        0x51,       // push %ecx
664        0x52,       // push %edp
665        0x55,       // push %ebp
666        0x89, 0xe5, // mov %esp, %ebp
667        0x0f, 0x34  // sysenter
668    };
669    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
670            vsyscallBlob, sizeof(vsyscallBlob));
671
672    uint8_t vsysexitBlob[] = {
673        0x5d,       // pop %ebp
674        0x5a,       // pop %edx
675        0x59,       // pop %ecx
676        0xc3        // ret
677    };
678    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
679            vsysexitBlob, sizeof(vsysexitBlob));
680
681    for (int i = 0; i < contextIds.size(); i++) {
682        ThreadContext * tc = system->getThreadContext(contextIds[i]);
683
684        SegAttr dataAttr = 0;
685        dataAttr.dpl = 3;
686        dataAttr.unusable = 0;
687        dataAttr.defaultSize = 1;
688        dataAttr.longMode = 0;
689        dataAttr.avl = 0;
690        dataAttr.granularity = 1;
691        dataAttr.present = 1;
692        dataAttr.type = 3;
693        dataAttr.writable = 1;
694        dataAttr.readable = 1;
695        dataAttr.expandDown = 0;
696        dataAttr.system = 1;
697
698        // Initialize the segment registers.
699        for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
700            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
701            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
702            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
703            tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
704            tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
705        }
706
707        SegAttr csAttr = 0;
708        csAttr.dpl = 3;
709        csAttr.unusable = 0;
710        csAttr.defaultSize = 1;
711        csAttr.longMode = 0;
712        csAttr.avl = 0;
713        csAttr.granularity = 1;
714        csAttr.present = 1;
715        csAttr.type = 0xa;
716        csAttr.writable = 0;
717        csAttr.readable = 1;
718        csAttr.expandDown = 0;
719        csAttr.system = 1;
720
721        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
722
723        tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
724        tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
725        tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
726
727        // Set the LDT selector to 0 to deactivate it.
728        tc->setMiscRegNoEffect(MISCREG_TSL, 0);
729
730        Efer efer = 0;
731        efer.sce = 1; // Enable system call extensions.
732        efer.lme = 1; // Enable long mode.
733        efer.lma = 0; // Deactivate long mode.
734        efer.nxe = 1; // Enable nx support.
735        efer.svme = 0; // Disable svm support for now. It isn't implemented.
736        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
737        tc->setMiscReg(MISCREG_EFER, efer);
738
739        // Set up the registers that describe the operating mode.
740        CR0 cr0 = 0;
741        cr0.pg = 1; // Turn on paging.
742        cr0.cd = 0; // Don't disable caching.
743        cr0.nw = 0; // This is bit is defined to be ignored.
744        cr0.am = 0; // No alignment checking
745        cr0.wp = 0; // Supervisor mode can write read only pages
746        cr0.ne = 1;
747        cr0.et = 1; // This should always be 1
748        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
749                    // would be pointless.
750        cr0.em = 0; // Allow x87 instructions to execute natively.
751        cr0.mp = 1; // This doesn't really matter, but the manual suggests
752                    // setting it to one.
753        cr0.pe = 1; // We're definitely in protected mode.
754        tc->setMiscReg(MISCREG_CR0, cr0);
755
756        tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
757    }
758}
759
760template<class IntType>
761void
762X86Process::argsInit(int pageSize,
763                     std::vector<AuxVector<IntType> > extraAuxvs)
764{
765    int intSize = sizeof(IntType);
766
767    typedef AuxVector<IntType> auxv_t;
768    std::vector<auxv_t> auxv = extraAuxvs;
769
770    string filename;
771    if (argv.size() < 1)
772        filename = "";
773    else
774        filename = argv[0];
775
776    // We want 16 byte alignment
777    uint64_t align = 16;
778
779    // Patch the ld_bias for dynamic executables.
780    updateBias();
781
782    // load object file into target memory
783    objFile->loadSections(initVirtMem);
784
785    enum X86CpuFeature {
786        X86_OnboardFPU = 1 << 0,
787        X86_VirtualModeExtensions = 1 << 1,
788        X86_DebuggingExtensions = 1 << 2,
789        X86_PageSizeExtensions = 1 << 3,
790
791        X86_TimeStampCounter = 1 << 4,
792        X86_ModelSpecificRegisters = 1 << 5,
793        X86_PhysicalAddressExtensions = 1 << 6,
794        X86_MachineCheckExtensions = 1 << 7,
795
796        X86_CMPXCHG8Instruction = 1 << 8,
797        X86_OnboardAPIC = 1 << 9,
798        X86_SYSENTER_SYSEXIT = 1 << 11,
799
800        X86_MemoryTypeRangeRegisters = 1 << 12,
801        X86_PageGlobalEnable = 1 << 13,
802        X86_MachineCheckArchitecture = 1 << 14,
803        X86_CMOVInstruction = 1 << 15,
804
805        X86_PageAttributeTable = 1 << 16,
806        X86_36BitPSEs = 1 << 17,
807        X86_ProcessorSerialNumber = 1 << 18,
808        X86_CLFLUSHInstruction = 1 << 19,
809
810        X86_DebugTraceStore = 1 << 21,
811        X86_ACPIViaMSR = 1 << 22,
812        X86_MultimediaExtensions = 1 << 23,
813
814        X86_FXSAVE_FXRSTOR = 1 << 24,
815        X86_StreamingSIMDExtensions = 1 << 25,
816        X86_StreamingSIMDExtensions2 = 1 << 26,
817        X86_CPUSelfSnoop = 1 << 27,
818
819        X86_HyperThreading = 1 << 28,
820        X86_AutomaticClockControl = 1 << 29,
821        X86_IA64Processor = 1 << 30
822    };
823
824    // Setup the auxiliary vectors. These will already have endian
825    // conversion. Auxiliary vectors are loaded only for elf formatted
826    // executables; the auxv is responsible for passing information from
827    // the OS to the interpreter.
828    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
829    if (elfObject) {
830        uint64_t features =
831            X86_OnboardFPU |
832            X86_VirtualModeExtensions |
833            X86_DebuggingExtensions |
834            X86_PageSizeExtensions |
835            X86_TimeStampCounter |
836            X86_ModelSpecificRegisters |
837            X86_PhysicalAddressExtensions |
838            X86_MachineCheckExtensions |
839            X86_CMPXCHG8Instruction |
840            X86_OnboardAPIC |
841            X86_SYSENTER_SYSEXIT |
842            X86_MemoryTypeRangeRegisters |
843            X86_PageGlobalEnable |
844            X86_MachineCheckArchitecture |
845            X86_CMOVInstruction |
846            X86_PageAttributeTable |
847            X86_36BitPSEs |
848//            X86_ProcessorSerialNumber |
849            X86_CLFLUSHInstruction |
850//            X86_DebugTraceStore |
851//            X86_ACPIViaMSR |
852            X86_MultimediaExtensions |
853            X86_FXSAVE_FXRSTOR |
854            X86_StreamingSIMDExtensions |
855            X86_StreamingSIMDExtensions2 |
856//            X86_CPUSelfSnoop |
857//            X86_HyperThreading |
858//            X86_AutomaticClockControl |
859//            X86_IA64Processor |
860            0;
861
862        // Bits which describe the system hardware capabilities
863        // XXX Figure out what these should be
864        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
865        // The system page size
866        auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
867        // Frequency at which times() increments
868        // Defined to be 100 in the kernel source.
869        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
870        // This is the virtual address of the program header tables if they
871        // appear in the executable image.
872        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
873        // This is the size of a program header entry from the elf file.
874        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
875        // This is the number of program headers from the original elf file.
876        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
877        // This is the base address of the ELF interpreter; it should be
878        // zero for static executables or contain the base address for
879        // dynamic executables.
880        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
881        // XXX Figure out what this should be.
882        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
883        // The entry point to the program
884        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
885        // Different user and group IDs
886        auxv.push_back(auxv_t(M5_AT_UID, uid()));
887        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
888        auxv.push_back(auxv_t(M5_AT_GID, gid()));
889        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
890        // Whether to enable "secure mode" in the executable
891        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
892        // The address of 16 "random" bytes.
893        auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
894        // The name of the program
895        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
896        // The platform string
897        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
898    }
899
900    // Figure out how big the initial stack needs to be
901
902    // A sentry NULL void pointer at the top of the stack.
903    int sentry_size = intSize;
904
905    // This is the name of the file which is present on the initial stack
906    // It's purpose is to let the user space linker examine the original file.
907    int file_name_size = filename.size() + 1;
908
909    const int numRandomBytes = 16;
910    int aux_data_size = numRandomBytes;
911
912    string platform = "x86_64";
913    aux_data_size += platform.size() + 1;
914
915    int env_data_size = 0;
916    for (int i = 0; i < envp.size(); ++i)
917        env_data_size += envp[i].size() + 1;
918    int arg_data_size = 0;
919    for (int i = 0; i < argv.size(); ++i)
920        arg_data_size += argv[i].size() + 1;
921
922    // The info_block needs to be padded so its size is a multiple of the
923    // alignment mask. Also, it appears that there needs to be at least some
924    // padding, so if the size is already a multiple, we need to increase it
925    // anyway.
926    int base_info_block_size =
927        sentry_size + file_name_size + env_data_size + arg_data_size;
928
929    int info_block_size = roundUp(base_info_block_size, align);
930
931    int info_block_padding = info_block_size - base_info_block_size;
932
933    // Each auxiliary vector is two 8 byte words
934    int aux_array_size = intSize * 2 * (auxv.size() + 1);
935
936    int envp_array_size = intSize * (envp.size() + 1);
937    int argv_array_size = intSize * (argv.size() + 1);
938
939    int argc_size = intSize;
940
941    // Figure out the size of the contents of the actual initial frame
942    int frame_size =
943        aux_array_size +
944        envp_array_size +
945        argv_array_size +
946        argc_size;
947
948    // There needs to be padding after the auxiliary vector data so that the
949    // very bottom of the stack is aligned properly.
950    int partial_size = frame_size + aux_data_size;
951    int aligned_partial_size = roundUp(partial_size, align);
952    int aux_padding = aligned_partial_size - partial_size;
953
954    int space_needed =
955        info_block_size +
956        aux_data_size +
957        aux_padding +
958        frame_size;
959
960    Addr stack_base = memState->getStackBase();
961
962    Addr stack_min = stack_base - space_needed;
963    stack_min = roundDown(stack_min, align);
964
965    unsigned stack_size = stack_base - stack_min;
966    stack_size = roundUp(stack_size, pageSize);
967    memState->setStackSize(stack_size);
968
969    // map memory
970    Addr stack_end = roundDown(stack_base - stack_size, pageSize);
971
972    DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
973    allocateMem(stack_end, stack_size);
974
975    // map out initial stack contents
976    IntType sentry_base = stack_base - sentry_size;
977    IntType file_name_base = sentry_base - file_name_size;
978    IntType env_data_base = file_name_base - env_data_size;
979    IntType arg_data_base = env_data_base - arg_data_size;
980    IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
981    IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
982    IntType envp_array_base = auxv_array_base - envp_array_size;
983    IntType argv_array_base = envp_array_base - argv_array_size;
984    IntType argc_base = argv_array_base - argc_size;
985
986    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
987    DPRINTF(Stack, "0x%x - file name\n", file_name_base);
988    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
989    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
990    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
991    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
992    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
993    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
994    DPRINTF(Stack, "0x%x - argc \n", argc_base);
995    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
996
997    // write contents to stack
998
999    // figure out argc
1000    IntType argc = argv.size();
1001    IntType guestArgc = X86ISA::htog(argc);
1002
1003    // Write out the sentry void *
1004    IntType sentry_NULL = 0;
1005    initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size);
1006
1007    // Write the file name
1008    initVirtMem.writeString(file_name_base, filename.c_str());
1009
1010    // Fix up the aux vectors which point to data
1011    assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
1012    auxv[auxv.size() - 3].a_val = aux_data_base;
1013    assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
1014    auxv[auxv.size() - 2].a_val = argv_array_base;
1015    assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
1016    auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
1017
1018
1019    // Copy the aux stuff
1020    for (int x = 0; x < auxv.size(); x++) {
1021        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1022                (uint8_t*)&(auxv[x].a_type), intSize);
1023        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1024                (uint8_t*)&(auxv[x].a_val), intSize);
1025    }
1026    // Write out the terminating zeroed auxiliary vector
1027    const uint64_t zero = 0;
1028    initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1029                          (uint8_t*)&zero, intSize);
1030    initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1031                          (uint8_t*)&zero, intSize);
1032
1033    initVirtMem.writeString(aux_data_base, platform.c_str());
1034
1035    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1036    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1037
1038    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1039
1040    ThreadContext *tc = system->getThreadContext(contextIds[0]);
1041    // Set the stack pointer register
1042    tc->setIntReg(StackPointerReg, stack_min);
1043
1044    // There doesn't need to be any segment base added in since we're dealing
1045    // with the flat segmentation model.
1046    tc->pcState(getStartPC());
1047
1048    // Align the "stack_min" to a page boundary.
1049    memState->setStackMin(roundDown(stack_min, pageSize));
1050}
1051
1052void
1053X86_64Process::argsInit(int pageSize)
1054{
1055    std::vector<AuxVector<uint64_t> > extraAuxvs;
1056    extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1057                vsyscallPage.base));
1058    X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
1059}
1060
1061void
1062I386Process::argsInit(int pageSize)
1063{
1064    std::vector<AuxVector<uint32_t> > extraAuxvs;
1065    //Tell the binary where the vsyscall part of the vsyscall page is.
1066    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1067                vsyscallPage.base + vsyscallPage.vsyscallOffset));
1068    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1069                vsyscallPage.base));
1070    X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
1071}
1072
1073void
1074X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1075{
1076    tc->setIntReg(INTREG_RAX, retval.encodedValue());
1077}
1078
1079X86ISA::IntReg
1080X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
1081{
1082    assert(i < NumArgumentRegs);
1083    return tc->readIntReg(ArgumentReg[i++]);
1084}
1085
1086void
1087X86_64Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1088{
1089    assert(i < NumArgumentRegs);
1090    return tc->setIntReg(ArgumentReg[i], val);
1091}
1092
1093void
1094X86_64Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1095                     Process *p, TheISA::IntReg flags)
1096{
1097    X86Process::clone(old_tc, new_tc, p, flags);
1098    ((X86_64Process*)p)->vsyscallPage = vsyscallPage;
1099}
1100
1101X86ISA::IntReg
1102I386Process::getSyscallArg(ThreadContext *tc, int &i)
1103{
1104    assert(i < NumArgumentRegs32);
1105    return tc->readIntReg(ArgumentReg32[i++]);
1106}
1107
1108X86ISA::IntReg
1109I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
1110{
1111    assert(width == 32 || width == 64);
1112    assert(i < NumArgumentRegs);
1113    uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1114    if (width == 64)
1115        retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1116    return retVal;
1117}
1118
1119void
1120I386Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1121{
1122    assert(i < NumArgumentRegs);
1123    return tc->setIntReg(ArgumentReg[i], val);
1124}
1125
1126void
1127I386Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1128                   Process *p, TheISA::IntReg flags)
1129{
1130    X86Process::clone(old_tc, new_tc, p, flags);
1131    ((I386Process*)p)->vsyscallPage = vsyscallPage;
1132}
1133