process.cc revision 12458:8de44b407db4
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 *          Ali Saidi
43 */
44
45#include "arch/x86/process.hh"
46
47#include <string>
48#include <vector>
49
50#include "arch/x86/isa_traits.hh"
51#include "arch/x86/regs/misc.hh"
52#include "arch/x86/regs/segment.hh"
53#include "arch/x86/system.hh"
54#include "arch/x86/types.hh"
55#include "base/loader/elf_object.hh"
56#include "base/loader/object_file.hh"
57#include "base/logging.hh"
58#include "base/trace.hh"
59#include "cpu/thread_context.hh"
60#include "debug/Stack.hh"
61#include "mem/multi_level_page_table.hh"
62#include "mem/page_table.hh"
63#include "params/Process.hh"
64#include "sim/aux_vector.hh"
65#include "sim/process_impl.hh"
66#include "sim/syscall_desc.hh"
67#include "sim/syscall_return.hh"
68#include "sim/system.hh"
69
70using namespace std;
71using namespace X86ISA;
72
73static const int ArgumentReg[] = {
74    INTREG_RDI,
75    INTREG_RSI,
76    INTREG_RDX,
77    // This argument register is r10 for syscalls and rcx for C.
78    INTREG_R10W,
79    // INTREG_RCX,
80    INTREG_R8W,
81    INTREG_R9W
82};
83
84static const int NumArgumentRegs M5_VAR_USED =
85    sizeof(ArgumentReg) / sizeof(const int);
86
87static const int ArgumentReg32[] = {
88    INTREG_EBX,
89    INTREG_ECX,
90    INTREG_EDX,
91    INTREG_ESI,
92    INTREG_EDI,
93    INTREG_EBP
94};
95
96static const int NumArgumentRegs32 M5_VAR_USED =
97    sizeof(ArgumentReg) / sizeof(const int);
98
99X86Process::X86Process(ProcessParams *params, ObjectFile *objFile,
100                       SyscallDesc *_syscallDescs, int _numSyscallDescs)
101    : Process(params, params->useArchPT ?
102                      static_cast<EmulationPageTable *>(
103                              new ArchPageTable(
104                                      params->name, params->pid,
105                                      params->system, PageBytes,
106                                      PageTableLayout)) :
107                      new EmulationPageTable(params->name, params->pid,
108                                             PageBytes),
109              objFile),
110      syscallDescs(_syscallDescs), numSyscallDescs(_numSyscallDescs)
111{
112}
113
114void X86Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
115                       Process *p, TheISA::IntReg flags)
116{
117    Process::clone(old_tc, new_tc, p, flags);
118    X86Process *process = (X86Process*)p;
119    *process = *this;
120}
121
122X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
123                             SyscallDesc *_syscallDescs, int _numSyscallDescs)
124    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
125{
126
127    vsyscallPage.base = 0xffffffffff600000ULL;
128    vsyscallPage.size = PageBytes;
129    vsyscallPage.vtimeOffset = 0x400;
130    vsyscallPage.vgettimeofdayOffset = 0x0;
131
132    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
133                             objFile->bssSize(), PageBytes);
134    Addr stack_base = 0x7FFFFFFFF000ULL;
135    Addr max_stack_size = 8 * 1024 * 1024;
136    Addr next_thread_stack_base = stack_base - max_stack_size;
137    Addr mmap_end = 0x7FFFF7FFF000ULL;
138
139    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
140                                     next_thread_stack_base, mmap_end);
141}
142
143void
144I386Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault)
145{
146    TheISA::PCState pc = tc->pcState();
147    Addr eip = pc.pc();
148    if (eip >= vsyscallPage.base &&
149            eip < vsyscallPage.base + vsyscallPage.size) {
150        pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
151        tc->pcState(pc);
152    }
153    X86Process::syscall(callnum, tc, fault);
154}
155
156
157I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
158                         SyscallDesc *_syscallDescs, int _numSyscallDescs)
159    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
160{
161    _gdtStart = ULL(0xffffd000);
162    _gdtSize = PageBytes;
163
164    vsyscallPage.base = 0xffffe000ULL;
165    vsyscallPage.size = PageBytes;
166    vsyscallPage.vsyscallOffset = 0x400;
167    vsyscallPage.vsysexitOffset = 0x410;
168
169    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
170                             objFile->bssSize(), PageBytes);
171    Addr stack_base = _gdtStart;
172    Addr max_stack_size = 8 * 1024 * 1024;
173    Addr next_thread_stack_base = stack_base - max_stack_size;
174    Addr mmap_end = 0xB7FFF000ULL;
175
176    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
177                                     next_thread_stack_base, mmap_end);
178}
179
180SyscallDesc*
181X86Process::getDesc(int callnum)
182{
183    if (callnum < 0 || callnum >= numSyscallDescs)
184        return NULL;
185    return &syscallDescs[callnum];
186}
187
188void
189X86_64Process::initState()
190{
191    X86Process::initState();
192
193    argsInit(PageBytes);
194
195    // Set up the vsyscall page for this process.
196    allocateMem(vsyscallPage.base, vsyscallPage.size);
197    uint8_t vtimeBlob[] = {
198        0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00,    // mov    $0xc9,%rax
199        0x0f,0x05,                             // syscall
200        0xc3                                   // retq
201    };
202    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
203            vtimeBlob, sizeof(vtimeBlob));
204
205    uint8_t vgettimeofdayBlob[] = {
206        0x48,0xc7,0xc0,0x60,0x00,0x00,0x00,    // mov    $0x60,%rax
207        0x0f,0x05,                             // syscall
208        0xc3                                   // retq
209    };
210    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
211            vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
212
213    if (kvmInSE) {
214        PortProxy physProxy = system->physProxy;
215
216        Addr syscallCodePhysAddr = system->allocPhysPages(1);
217        Addr gdtPhysAddr = system->allocPhysPages(1);
218        Addr idtPhysAddr = system->allocPhysPages(1);
219        Addr istPhysAddr = system->allocPhysPages(1);
220        Addr tssPhysAddr = system->allocPhysPages(1);
221        Addr pfHandlerPhysAddr = system->allocPhysPages(1);
222
223        /*
224         * Set up the gdt.
225         */
226        uint8_t numGDTEntries = 0;
227        uint64_t nullDescriptor = 0;
228        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
229                            (uint8_t *)(&nullDescriptor), 8);
230        numGDTEntries++;
231
232        SegDescriptor initDesc = 0;
233        initDesc.type.codeOrData = 0; // code or data type
234        initDesc.type.c = 0;          // conforming
235        initDesc.type.r = 1;          // readable
236        initDesc.dpl = 0;             // privilege
237        initDesc.p = 1;               // present
238        initDesc.l = 1;               // longmode - 64 bit
239        initDesc.d = 0;               // operand size
240        initDesc.g = 1;               // granularity
241        initDesc.s = 1;               // system segment
242        initDesc.limitHigh = 0xFFFF;
243        initDesc.limitLow = 0xF;
244        initDesc.baseHigh = 0x0;
245        initDesc.baseLow = 0x0;
246
247        //64 bit code segment
248        SegDescriptor csLowPLDesc = initDesc;
249        csLowPLDesc.type.codeOrData = 1;
250        csLowPLDesc.dpl = 0;
251        uint64_t csLowPLDescVal = csLowPLDesc;
252        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
253                            (uint8_t *)(&csLowPLDescVal), 8);
254
255        numGDTEntries++;
256
257        SegSelector csLowPL = 0;
258        csLowPL.si = numGDTEntries - 1;
259        csLowPL.rpl = 0;
260
261        //64 bit data segment
262        SegDescriptor dsLowPLDesc = initDesc;
263        dsLowPLDesc.type.codeOrData = 0;
264        dsLowPLDesc.dpl = 0;
265        uint64_t dsLowPLDescVal = dsLowPLDesc;
266        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
267                            (uint8_t *)(&dsLowPLDescVal), 8);
268
269        numGDTEntries++;
270
271        SegSelector dsLowPL = 0;
272        dsLowPL.si = numGDTEntries - 1;
273        dsLowPL.rpl = 0;
274
275        //64 bit data segment
276        SegDescriptor dsDesc = initDesc;
277        dsDesc.type.codeOrData = 0;
278        dsDesc.dpl = 3;
279        uint64_t dsDescVal = dsDesc;
280        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
281                            (uint8_t *)(&dsDescVal), 8);
282
283        numGDTEntries++;
284
285        SegSelector ds = 0;
286        ds.si = numGDTEntries - 1;
287        ds.rpl = 3;
288
289        //64 bit code segment
290        SegDescriptor csDesc = initDesc;
291        csDesc.type.codeOrData = 1;
292        csDesc.dpl = 3;
293        uint64_t csDescVal = csDesc;
294        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
295                            (uint8_t *)(&csDescVal), 8);
296
297        numGDTEntries++;
298
299        SegSelector cs = 0;
300        cs.si = numGDTEntries - 1;
301        cs.rpl = 3;
302
303        SegSelector scall = 0;
304        scall.si = csLowPL.si;
305        scall.rpl = 0;
306
307        SegSelector sret = 0;
308        sret.si = dsLowPL.si;
309        sret.rpl = 3;
310
311        /* In long mode the TSS has been extended to 16 Bytes */
312        TSSlow TSSDescLow = 0;
313        TSSDescLow.type = 0xB;
314        TSSDescLow.dpl = 0; // Privelege level 0
315        TSSDescLow.p = 1; // Present
316        TSSDescLow.g = 1; // Page granularity
317        TSSDescLow.limitHigh = 0xF;
318        TSSDescLow.limitLow = 0xFFFF;
319        TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
320        TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
321
322        TSShigh TSSDescHigh = 0;
323        TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
324
325        struct TSSDesc {
326            uint64_t low;
327            uint64_t high;
328        } tssDescVal = {TSSDescLow, TSSDescHigh};
329
330        physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
331                            (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
332
333        numGDTEntries++;
334
335        SegSelector tssSel = 0;
336        tssSel.si = numGDTEntries - 1;
337
338        uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
339                                 (TSSDescLow.baseHigh << 24) |
340                                  TSSDescLow.baseLow;
341        uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
342
343        SegAttr tss_attr = 0;
344
345        tss_attr.type = TSSDescLow.type;
346        tss_attr.dpl = TSSDescLow.dpl;
347        tss_attr.present = TSSDescLow.p;
348        tss_attr.granularity = TSSDescLow.g;
349        tss_attr.unusable = 0;
350
351        for (int i = 0; i < contextIds.size(); i++) {
352            ThreadContext * tc = system->getThreadContext(contextIds[i]);
353
354            tc->setMiscReg(MISCREG_CS, cs);
355            tc->setMiscReg(MISCREG_DS, ds);
356            tc->setMiscReg(MISCREG_ES, ds);
357            tc->setMiscReg(MISCREG_FS, ds);
358            tc->setMiscReg(MISCREG_GS, ds);
359            tc->setMiscReg(MISCREG_SS, ds);
360
361            // LDT
362            tc->setMiscReg(MISCREG_TSL, 0);
363            SegAttr tslAttr = 0;
364            tslAttr.present = 1;
365            tslAttr.type = 2;
366            tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
367
368            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
369            tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
370
371            tc->setMiscReg(MISCREG_TR, tssSel);
372            tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
373            tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
374            tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
375            tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
376
377            //Start using longmode segments.
378            installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
379            installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
380            installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
381            installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
382            installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
383            installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
384
385            Efer efer = 0;
386            efer.sce = 1; // Enable system call extensions.
387            efer.lme = 1; // Enable long mode.
388            efer.lma = 1; // Activate long mode.
389            efer.nxe = 0; // Enable nx support.
390            efer.svme = 1; // Enable svm support for now.
391            efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
392            tc->setMiscReg(MISCREG_EFER, efer);
393
394            //Set up the registers that describe the operating mode.
395            CR0 cr0 = 0;
396            cr0.pg = 1; // Turn on paging.
397            cr0.cd = 0; // Don't disable caching.
398            cr0.nw = 0; // This is bit is defined to be ignored.
399            cr0.am = 1; // No alignment checking
400            cr0.wp = 1; // Supervisor mode can write read only pages
401            cr0.ne = 1;
402            cr0.et = 1; // This should always be 1
403            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
404                        // would be pointless.
405            cr0.em = 0; // Allow x87 instructions to execute natively.
406            cr0.mp = 1; // This doesn't really matter, but the manual suggests
407                        // setting it to one.
408            cr0.pe = 1; // We're definitely in protected mode.
409            tc->setMiscReg(MISCREG_CR0, cr0);
410
411            CR0 cr2 = 0;
412            tc->setMiscReg(MISCREG_CR2, cr2);
413
414            CR3 cr3 = dynamic_cast<ArchPageTable *>(pTable)->basePtr();
415            tc->setMiscReg(MISCREG_CR3, cr3);
416
417            CR4 cr4 = 0;
418            //Turn on pae.
419            cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
420            cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
421            cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
422            cr4.pce = 0; // Performance-Monitoring Counter Enable
423            cr4.pge = 0; // Page-Global Enable
424            cr4.mce = 0; // Machine Check Enable
425            cr4.pae = 1; // Physical-Address Extension
426            cr4.pse = 0; // Page Size Extensions
427            cr4.de = 0; // Debugging Extensions
428            cr4.tsd = 0; // Time Stamp Disable
429            cr4.pvi = 0; // Protected-Mode Virtual Interrupts
430            cr4.vme = 0; // Virtual-8086 Mode Extensions
431
432            tc->setMiscReg(MISCREG_CR4, cr4);
433
434            CR4 cr8 = 0;
435            tc->setMiscReg(MISCREG_CR8, cr8);
436
437            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
438
439            tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
440
441            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
442            tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
443
444            tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
445            tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
446
447            /* enabling syscall and sysret */
448            MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
449            tc->setMiscReg(MISCREG_STAR, star);
450            MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
451            tc->setMiscReg(MISCREG_LSTAR, lstar);
452            MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
453            tc->setMiscReg(MISCREG_SF_MASK, sfmask);
454        }
455
456        /* Set up the content of the TSS and write it to physical memory. */
457
458        struct {
459            uint32_t reserved0;        // +00h
460            uint32_t RSP0_low;         // +04h
461            uint32_t RSP0_high;        // +08h
462            uint32_t RSP1_low;         // +0Ch
463            uint32_t RSP1_high;        // +10h
464            uint32_t RSP2_low;         // +14h
465            uint32_t RSP2_high;        // +18h
466            uint32_t reserved1;        // +1Ch
467            uint32_t reserved2;        // +20h
468            uint32_t IST1_low;         // +24h
469            uint32_t IST1_high;        // +28h
470            uint32_t IST2_low;         // +2Ch
471            uint32_t IST2_high;        // +30h
472            uint32_t IST3_low;         // +34h
473            uint32_t IST3_high;        // +38h
474            uint32_t IST4_low;         // +3Ch
475            uint32_t IST4_high;        // +40h
476            uint32_t IST5_low;         // +44h
477            uint32_t IST5_high;        // +48h
478            uint32_t IST6_low;         // +4Ch
479            uint32_t IST6_high;        // +50h
480            uint32_t IST7_low;         // +54h
481            uint32_t IST7_high;        // +58h
482            uint32_t reserved3;        // +5Ch
483            uint32_t reserved4;        // +60h
484            uint16_t reserved5;        // +64h
485            uint16_t IO_MapBase;       // +66h
486        } tss;
487
488        /** setting Interrupt Stack Table */
489        uint64_t IST_start = ISTVirtAddr + PageBytes;
490        tss.IST1_low  = IST_start;
491        tss.IST1_high = IST_start >> 32;
492        tss.RSP0_low  = tss.IST1_low;
493        tss.RSP0_high = tss.IST1_high;
494        tss.RSP1_low  = tss.IST1_low;
495        tss.RSP1_high = tss.IST1_high;
496        tss.RSP2_low  = tss.IST1_low;
497        tss.RSP2_high = tss.IST1_high;
498        physProxy.writeBlob(tssPhysAddr, (uint8_t *)(&tss), sizeof(tss));
499
500        /* Setting IDT gates */
501        GateDescriptorLow PFGateLow = 0;
502        PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
503        PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
504        PFGateLow.selector = csLowPL;
505        PFGateLow.p = 1;
506        PFGateLow.dpl = 0;
507        PFGateLow.type = 0xe;      // gate interrupt type
508        PFGateLow.IST = 0;         // setting IST to 0 and using RSP0
509
510        GateDescriptorHigh PFGateHigh = 0;
511        PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
512
513        struct {
514            uint64_t low;
515            uint64_t high;
516        } PFGate = {PFGateLow, PFGateHigh};
517
518        physProxy.writeBlob(idtPhysAddr + 0xE0,
519                            (uint8_t *)(&PFGate), sizeof(PFGate));
520
521        /* System call handler */
522        uint8_t syscallBlob[] = {
523            // mov    %rax, (0xffffc90000005600)
524            0x48, 0xa3, 0x00, 0x60, 0x00,
525            0x00, 0x00, 0xc9, 0xff, 0xff,
526            // sysret
527            0x48, 0x0f, 0x07
528        };
529
530        physProxy.writeBlob(syscallCodePhysAddr,
531                            syscallBlob, sizeof(syscallBlob));
532
533        /** Page fault handler */
534        uint8_t faultBlob[] = {
535            // mov    %rax, (0xffffc90000005700)
536            0x48, 0xa3, 0x00, 0x61, 0x00,
537            0x00, 0x00, 0xc9, 0xff, 0xff,
538            // add    $0x8, %rsp # skip error
539            0x48, 0x83, 0xc4, 0x08,
540            // iretq
541            0x48, 0xcf
542        };
543
544        physProxy.writeBlob(pfHandlerPhysAddr, faultBlob, sizeof(faultBlob));
545
546        MultiLevelPageTable<PageTableOps> *pt =
547            dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);
548
549        /* Syscall handler */
550        pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
551        /* GDT */
552        pt->map(GDTVirtAddr, gdtPhysAddr, PageBytes, false);
553        /* IDT */
554        pt->map(IDTVirtAddr, idtPhysAddr, PageBytes, false);
555        /* TSS */
556        pt->map(TSSVirtAddr, tssPhysAddr, PageBytes, false);
557        /* IST */
558        pt->map(ISTVirtAddr, istPhysAddr, PageBytes, false);
559        /* PF handler */
560        pt->map(PFHandlerVirtAddr, pfHandlerPhysAddr, PageBytes, false);
561        /* MMIO region for m5ops */
562        pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
563    } else {
564        for (int i = 0; i < contextIds.size(); i++) {
565            ThreadContext * tc = system->getThreadContext(contextIds[i]);
566
567            SegAttr dataAttr = 0;
568            dataAttr.dpl = 3;
569            dataAttr.unusable = 0;
570            dataAttr.defaultSize = 1;
571            dataAttr.longMode = 1;
572            dataAttr.avl = 0;
573            dataAttr.granularity = 1;
574            dataAttr.present = 1;
575            dataAttr.type = 3;
576            dataAttr.writable = 1;
577            dataAttr.readable = 1;
578            dataAttr.expandDown = 0;
579            dataAttr.system = 1;
580
581            // Initialize the segment registers.
582            for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
583                tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
584                tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
585                tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
586            }
587
588            SegAttr csAttr = 0;
589            csAttr.dpl = 3;
590            csAttr.unusable = 0;
591            csAttr.defaultSize = 0;
592            csAttr.longMode = 1;
593            csAttr.avl = 0;
594            csAttr.granularity = 1;
595            csAttr.present = 1;
596            csAttr.type = 10;
597            csAttr.writable = 0;
598            csAttr.readable = 1;
599            csAttr.expandDown = 0;
600            csAttr.system = 1;
601
602            tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
603
604            Efer efer = 0;
605            efer.sce = 1; // Enable system call extensions.
606            efer.lme = 1; // Enable long mode.
607            efer.lma = 1; // Activate long mode.
608            efer.nxe = 1; // Enable nx support.
609            efer.svme = 0; // Disable svm support for now. It isn't implemented.
610            efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
611            tc->setMiscReg(MISCREG_EFER, efer);
612
613            // Set up the registers that describe the operating mode.
614            CR0 cr0 = 0;
615            cr0.pg = 1; // Turn on paging.
616            cr0.cd = 0; // Don't disable caching.
617            cr0.nw = 0; // This is bit is defined to be ignored.
618            cr0.am = 0; // No alignment checking
619            cr0.wp = 0; // Supervisor mode can write read only pages
620            cr0.ne = 1;
621            cr0.et = 1; // This should always be 1
622            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
623                        // would be pointless.
624            cr0.em = 0; // Allow x87 instructions to execute natively.
625            cr0.mp = 1; // This doesn't really matter, but the manual suggests
626                        // setting it to one.
627            cr0.pe = 1; // We're definitely in protected mode.
628            tc->setMiscReg(MISCREG_CR0, cr0);
629
630            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
631        }
632    }
633}
634
635void
636I386Process::initState()
637{
638    X86Process::initState();
639
640    argsInit(PageBytes);
641
642    /*
643     * Set up a GDT for this process. The whole GDT wouldn't really be for
644     * this process, but the only parts we care about are.
645     */
646    allocateMem(_gdtStart, _gdtSize);
647    uint64_t zero = 0;
648    assert(_gdtSize % sizeof(zero) == 0);
649    for (Addr gdtCurrent = _gdtStart;
650            gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
651        initVirtMem.write(gdtCurrent, zero);
652    }
653
654    // Set up the vsyscall page for this process.
655    allocateMem(vsyscallPage.base, vsyscallPage.size);
656    uint8_t vsyscallBlob[] = {
657        0x51,       // push %ecx
658        0x52,       // push %edp
659        0x55,       // push %ebp
660        0x89, 0xe5, // mov %esp, %ebp
661        0x0f, 0x34  // sysenter
662    };
663    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
664            vsyscallBlob, sizeof(vsyscallBlob));
665
666    uint8_t vsysexitBlob[] = {
667        0x5d,       // pop %ebp
668        0x5a,       // pop %edx
669        0x59,       // pop %ecx
670        0xc3        // ret
671    };
672    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
673            vsysexitBlob, sizeof(vsysexitBlob));
674
675    for (int i = 0; i < contextIds.size(); i++) {
676        ThreadContext * tc = system->getThreadContext(contextIds[i]);
677
678        SegAttr dataAttr = 0;
679        dataAttr.dpl = 3;
680        dataAttr.unusable = 0;
681        dataAttr.defaultSize = 1;
682        dataAttr.longMode = 0;
683        dataAttr.avl = 0;
684        dataAttr.granularity = 1;
685        dataAttr.present = 1;
686        dataAttr.type = 3;
687        dataAttr.writable = 1;
688        dataAttr.readable = 1;
689        dataAttr.expandDown = 0;
690        dataAttr.system = 1;
691
692        // Initialize the segment registers.
693        for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
694            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
695            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
696            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
697            tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
698            tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
699        }
700
701        SegAttr csAttr = 0;
702        csAttr.dpl = 3;
703        csAttr.unusable = 0;
704        csAttr.defaultSize = 1;
705        csAttr.longMode = 0;
706        csAttr.avl = 0;
707        csAttr.granularity = 1;
708        csAttr.present = 1;
709        csAttr.type = 0xa;
710        csAttr.writable = 0;
711        csAttr.readable = 1;
712        csAttr.expandDown = 0;
713        csAttr.system = 1;
714
715        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
716
717        tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
718        tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
719        tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
720
721        // Set the LDT selector to 0 to deactivate it.
722        tc->setMiscRegNoEffect(MISCREG_TSL, 0);
723
724        Efer efer = 0;
725        efer.sce = 1; // Enable system call extensions.
726        efer.lme = 1; // Enable long mode.
727        efer.lma = 0; // Deactivate long mode.
728        efer.nxe = 1; // Enable nx support.
729        efer.svme = 0; // Disable svm support for now. It isn't implemented.
730        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
731        tc->setMiscReg(MISCREG_EFER, efer);
732
733        // Set up the registers that describe the operating mode.
734        CR0 cr0 = 0;
735        cr0.pg = 1; // Turn on paging.
736        cr0.cd = 0; // Don't disable caching.
737        cr0.nw = 0; // This is bit is defined to be ignored.
738        cr0.am = 0; // No alignment checking
739        cr0.wp = 0; // Supervisor mode can write read only pages
740        cr0.ne = 1;
741        cr0.et = 1; // This should always be 1
742        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
743                    // would be pointless.
744        cr0.em = 0; // Allow x87 instructions to execute natively.
745        cr0.mp = 1; // This doesn't really matter, but the manual suggests
746                    // setting it to one.
747        cr0.pe = 1; // We're definitely in protected mode.
748        tc->setMiscReg(MISCREG_CR0, cr0);
749
750        tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
751    }
752}
753
754template<class IntType>
755void
756X86Process::argsInit(int pageSize,
757                     std::vector<AuxVector<IntType> > extraAuxvs)
758{
759    int intSize = sizeof(IntType);
760
761    typedef AuxVector<IntType> auxv_t;
762    std::vector<auxv_t> auxv = extraAuxvs;
763
764    string filename;
765    if (argv.size() < 1)
766        filename = "";
767    else
768        filename = argv[0];
769
770    // We want 16 byte alignment
771    uint64_t align = 16;
772
773    // Patch the ld_bias for dynamic executables.
774    updateBias();
775
776    // load object file into target memory
777    objFile->loadSections(initVirtMem);
778
779    enum X86CpuFeature {
780        X86_OnboardFPU = 1 << 0,
781        X86_VirtualModeExtensions = 1 << 1,
782        X86_DebuggingExtensions = 1 << 2,
783        X86_PageSizeExtensions = 1 << 3,
784
785        X86_TimeStampCounter = 1 << 4,
786        X86_ModelSpecificRegisters = 1 << 5,
787        X86_PhysicalAddressExtensions = 1 << 6,
788        X86_MachineCheckExtensions = 1 << 7,
789
790        X86_CMPXCHG8Instruction = 1 << 8,
791        X86_OnboardAPIC = 1 << 9,
792        X86_SYSENTER_SYSEXIT = 1 << 11,
793
794        X86_MemoryTypeRangeRegisters = 1 << 12,
795        X86_PageGlobalEnable = 1 << 13,
796        X86_MachineCheckArchitecture = 1 << 14,
797        X86_CMOVInstruction = 1 << 15,
798
799        X86_PageAttributeTable = 1 << 16,
800        X86_36BitPSEs = 1 << 17,
801        X86_ProcessorSerialNumber = 1 << 18,
802        X86_CLFLUSHInstruction = 1 << 19,
803
804        X86_DebugTraceStore = 1 << 21,
805        X86_ACPIViaMSR = 1 << 22,
806        X86_MultimediaExtensions = 1 << 23,
807
808        X86_FXSAVE_FXRSTOR = 1 << 24,
809        X86_StreamingSIMDExtensions = 1 << 25,
810        X86_StreamingSIMDExtensions2 = 1 << 26,
811        X86_CPUSelfSnoop = 1 << 27,
812
813        X86_HyperThreading = 1 << 28,
814        X86_AutomaticClockControl = 1 << 29,
815        X86_IA64Processor = 1 << 30
816    };
817
818    // Setup the auxiliary vectors. These will already have endian
819    // conversion. Auxiliary vectors are loaded only for elf formatted
820    // executables; the auxv is responsible for passing information from
821    // the OS to the interpreter.
822    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
823    if (elfObject) {
824        uint64_t features =
825            X86_OnboardFPU |
826            X86_VirtualModeExtensions |
827            X86_DebuggingExtensions |
828            X86_PageSizeExtensions |
829            X86_TimeStampCounter |
830            X86_ModelSpecificRegisters |
831            X86_PhysicalAddressExtensions |
832            X86_MachineCheckExtensions |
833            X86_CMPXCHG8Instruction |
834            X86_OnboardAPIC |
835            X86_SYSENTER_SYSEXIT |
836            X86_MemoryTypeRangeRegisters |
837            X86_PageGlobalEnable |
838            X86_MachineCheckArchitecture |
839            X86_CMOVInstruction |
840            X86_PageAttributeTable |
841            X86_36BitPSEs |
842//            X86_ProcessorSerialNumber |
843            X86_CLFLUSHInstruction |
844//            X86_DebugTraceStore |
845//            X86_ACPIViaMSR |
846            X86_MultimediaExtensions |
847            X86_FXSAVE_FXRSTOR |
848            X86_StreamingSIMDExtensions |
849            X86_StreamingSIMDExtensions2 |
850//            X86_CPUSelfSnoop |
851//            X86_HyperThreading |
852//            X86_AutomaticClockControl |
853//            X86_IA64Processor |
854            0;
855
856        // Bits which describe the system hardware capabilities
857        // XXX Figure out what these should be
858        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
859        // The system page size
860        auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
861        // Frequency at which times() increments
862        // Defined to be 100 in the kernel source.
863        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
864        // This is the virtual address of the program header tables if they
865        // appear in the executable image.
866        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
867        // This is the size of a program header entry from the elf file.
868        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
869        // This is the number of program headers from the original elf file.
870        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
871        // This is the base address of the ELF interpreter; it should be
872        // zero for static executables or contain the base address for
873        // dynamic executables.
874        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
875        // XXX Figure out what this should be.
876        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
877        // The entry point to the program
878        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
879        // Different user and group IDs
880        auxv.push_back(auxv_t(M5_AT_UID, uid()));
881        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
882        auxv.push_back(auxv_t(M5_AT_GID, gid()));
883        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
884        // Whether to enable "secure mode" in the executable
885        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
886        // The address of 16 "random" bytes.
887        auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
888        // The name of the program
889        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
890        // The platform string
891        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
892    }
893
894    // Figure out how big the initial stack needs to be
895
896    // A sentry NULL void pointer at the top of the stack.
897    int sentry_size = intSize;
898
899    // This is the name of the file which is present on the initial stack
900    // It's purpose is to let the user space linker examine the original file.
901    int file_name_size = filename.size() + 1;
902
903    const int numRandomBytes = 16;
904    int aux_data_size = numRandomBytes;
905
906    string platform = "x86_64";
907    aux_data_size += platform.size() + 1;
908
909    int env_data_size = 0;
910    for (int i = 0; i < envp.size(); ++i)
911        env_data_size += envp[i].size() + 1;
912    int arg_data_size = 0;
913    for (int i = 0; i < argv.size(); ++i)
914        arg_data_size += argv[i].size() + 1;
915
916    // The info_block needs to be padded so its size is a multiple of the
917    // alignment mask. Also, it appears that there needs to be at least some
918    // padding, so if the size is already a multiple, we need to increase it
919    // anyway.
920    int base_info_block_size =
921        sentry_size + file_name_size + env_data_size + arg_data_size;
922
923    int info_block_size = roundUp(base_info_block_size, align);
924
925    int info_block_padding = info_block_size - base_info_block_size;
926
927    // Each auxiliary vector is two 8 byte words
928    int aux_array_size = intSize * 2 * (auxv.size() + 1);
929
930    int envp_array_size = intSize * (envp.size() + 1);
931    int argv_array_size = intSize * (argv.size() + 1);
932
933    int argc_size = intSize;
934
935    // Figure out the size of the contents of the actual initial frame
936    int frame_size =
937        aux_array_size +
938        envp_array_size +
939        argv_array_size +
940        argc_size;
941
942    // There needs to be padding after the auxiliary vector data so that the
943    // very bottom of the stack is aligned properly.
944    int partial_size = frame_size + aux_data_size;
945    int aligned_partial_size = roundUp(partial_size, align);
946    int aux_padding = aligned_partial_size - partial_size;
947
948    int space_needed =
949        info_block_size +
950        aux_data_size +
951        aux_padding +
952        frame_size;
953
954    Addr stack_base = memState->getStackBase();
955
956    Addr stack_min = stack_base - space_needed;
957    stack_min = roundDown(stack_min, align);
958
959    unsigned stack_size = stack_base - stack_min;
960    stack_size = roundUp(stack_size, pageSize);
961    memState->setStackSize(stack_size);
962
963    // map memory
964    Addr stack_end = roundDown(stack_base - stack_size, pageSize);
965
966    DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
967    allocateMem(stack_end, stack_size);
968
969    // map out initial stack contents
970    IntType sentry_base = stack_base - sentry_size;
971    IntType file_name_base = sentry_base - file_name_size;
972    IntType env_data_base = file_name_base - env_data_size;
973    IntType arg_data_base = env_data_base - arg_data_size;
974    IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
975    IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
976    IntType envp_array_base = auxv_array_base - envp_array_size;
977    IntType argv_array_base = envp_array_base - argv_array_size;
978    IntType argc_base = argv_array_base - argc_size;
979
980    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
981    DPRINTF(Stack, "0x%x - file name\n", file_name_base);
982    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
983    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
984    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
985    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
986    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
987    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
988    DPRINTF(Stack, "0x%x - argc \n", argc_base);
989    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
990
991    // write contents to stack
992
993    // figure out argc
994    IntType argc = argv.size();
995    IntType guestArgc = X86ISA::htog(argc);
996
997    // Write out the sentry void *
998    IntType sentry_NULL = 0;
999    initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size);
1000
1001    // Write the file name
1002    initVirtMem.writeString(file_name_base, filename.c_str());
1003
1004    // Fix up the aux vectors which point to data
1005    assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
1006    auxv[auxv.size() - 3].a_val = aux_data_base;
1007    assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
1008    auxv[auxv.size() - 2].a_val = argv_array_base;
1009    assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
1010    auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
1011
1012
1013    // Copy the aux stuff
1014    for (int x = 0; x < auxv.size(); x++) {
1015        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1016                (uint8_t*)&(auxv[x].a_type), intSize);
1017        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1018                (uint8_t*)&(auxv[x].a_val), intSize);
1019    }
1020    // Write out the terminating zeroed auxiliary vector
1021    const uint64_t zero = 0;
1022    initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1023                          (uint8_t*)&zero, intSize);
1024    initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1025                          (uint8_t*)&zero, intSize);
1026
1027    initVirtMem.writeString(aux_data_base, platform.c_str());
1028
1029    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1030    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1031
1032    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1033
1034    ThreadContext *tc = system->getThreadContext(contextIds[0]);
1035    // Set the stack pointer register
1036    tc->setIntReg(StackPointerReg, stack_min);
1037
1038    // There doesn't need to be any segment base added in since we're dealing
1039    // with the flat segmentation model.
1040    tc->pcState(getStartPC());
1041
1042    // Align the "stack_min" to a page boundary.
1043    memState->setStackMin(roundDown(stack_min, pageSize));
1044}
1045
1046void
1047X86_64Process::argsInit(int pageSize)
1048{
1049    std::vector<AuxVector<uint64_t> > extraAuxvs;
1050    extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1051                vsyscallPage.base));
1052    X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
1053}
1054
1055void
1056I386Process::argsInit(int pageSize)
1057{
1058    std::vector<AuxVector<uint32_t> > extraAuxvs;
1059    //Tell the binary where the vsyscall part of the vsyscall page is.
1060    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1061                vsyscallPage.base + vsyscallPage.vsyscallOffset));
1062    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1063                vsyscallPage.base));
1064    X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
1065}
1066
1067void
1068X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1069{
1070    tc->setIntReg(INTREG_RAX, retval.encodedValue());
1071}
1072
1073X86ISA::IntReg
1074X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
1075{
1076    assert(i < NumArgumentRegs);
1077    return tc->readIntReg(ArgumentReg[i++]);
1078}
1079
1080void
1081X86_64Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1082{
1083    assert(i < NumArgumentRegs);
1084    return tc->setIntReg(ArgumentReg[i], val);
1085}
1086
1087void
1088X86_64Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1089                     Process *p, TheISA::IntReg flags)
1090{
1091    X86Process::clone(old_tc, new_tc, p, flags);
1092    ((X86_64Process*)p)->vsyscallPage = vsyscallPage;
1093}
1094
1095X86ISA::IntReg
1096I386Process::getSyscallArg(ThreadContext *tc, int &i)
1097{
1098    assert(i < NumArgumentRegs32);
1099    return tc->readIntReg(ArgumentReg32[i++]);
1100}
1101
1102X86ISA::IntReg
1103I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
1104{
1105    assert(width == 32 || width == 64);
1106    assert(i < NumArgumentRegs);
1107    uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1108    if (width == 64)
1109        retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1110    return retVal;
1111}
1112
1113void
1114I386Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1115{
1116    assert(i < NumArgumentRegs);
1117    return tc->setIntReg(ArgumentReg[i], val);
1118}
1119
1120void
1121I386Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1122                   Process *p, TheISA::IntReg flags)
1123{
1124    X86Process::clone(old_tc, new_tc, p, flags);
1125    ((I386Process*)p)->vsyscallPage = vsyscallPage;
1126}
1127