process.cc revision 12457:b9b7bdb5a8ac
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 *          Ali Saidi
43 */
44
45#include "arch/x86/process.hh"
46
47#include <string>
48#include <vector>
49
50#include "arch/x86/isa_traits.hh"
51#include "arch/x86/regs/misc.hh"
52#include "arch/x86/regs/segment.hh"
53#include "arch/x86/system.hh"
54#include "arch/x86/types.hh"
55#include "base/loader/elf_object.hh"
56#include "base/loader/object_file.hh"
57#include "base/logging.hh"
58#include "base/trace.hh"
59#include "cpu/thread_context.hh"
60#include "debug/Stack.hh"
61#include "mem/multi_level_page_table.hh"
62#include "mem/page_table.hh"
63#include "params/Process.hh"
64#include "sim/aux_vector.hh"
65#include "sim/process_impl.hh"
66#include "sim/syscall_desc.hh"
67#include "sim/syscall_return.hh"
68#include "sim/system.hh"
69
70using namespace std;
71using namespace X86ISA;
72
73static const int ArgumentReg[] = {
74    INTREG_RDI,
75    INTREG_RSI,
76    INTREG_RDX,
77    // This argument register is r10 for syscalls and rcx for C.
78    INTREG_R10W,
79    // INTREG_RCX,
80    INTREG_R8W,
81    INTREG_R9W
82};
83
84static const int NumArgumentRegs M5_VAR_USED =
85    sizeof(ArgumentReg) / sizeof(const int);
86
87static const int ArgumentReg32[] = {
88    INTREG_EBX,
89    INTREG_ECX,
90    INTREG_EDX,
91    INTREG_ESI,
92    INTREG_EDI,
93    INTREG_EBP
94};
95
96static const int NumArgumentRegs32 M5_VAR_USED =
97    sizeof(ArgumentReg) / sizeof(const int);
98
99X86Process::X86Process(ProcessParams *params, ObjectFile *objFile,
100                       SyscallDesc *_syscallDescs, int _numSyscallDescs)
101    : Process(params, params->useArchPT ?
102                      static_cast<EmulationPageTable *>(
103                              new ArchPageTable(
104                                      params->name, params->pid,
105                                      params->system, PageBytes,
106                                      PageTableLayout,
107                                      pageTablePhysAddr >> PageShift)) :
108                      new EmulationPageTable(params->name, params->pid,
109                                             PageBytes),
110              objFile),
111      syscallDescs(_syscallDescs), numSyscallDescs(_numSyscallDescs)
112{
113}
114
115void X86Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
116                       Process *p, TheISA::IntReg flags)
117{
118    Process::clone(old_tc, new_tc, p, flags);
119    X86Process *process = (X86Process*)p;
120    *process = *this;
121}
122
123X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
124                             SyscallDesc *_syscallDescs, int _numSyscallDescs)
125    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
126{
127
128    vsyscallPage.base = 0xffffffffff600000ULL;
129    vsyscallPage.size = PageBytes;
130    vsyscallPage.vtimeOffset = 0x400;
131    vsyscallPage.vgettimeofdayOffset = 0x0;
132
133    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
134                             objFile->bssSize(), PageBytes);
135    Addr stack_base = 0x7FFFFFFFF000ULL;
136    Addr max_stack_size = 8 * 1024 * 1024;
137    Addr next_thread_stack_base = stack_base - max_stack_size;
138    Addr mmap_end = 0x7FFFF7FFF000ULL;
139
140    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
141                                     next_thread_stack_base, mmap_end);
142}
143
144void
145I386Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault)
146{
147    TheISA::PCState pc = tc->pcState();
148    Addr eip = pc.pc();
149    if (eip >= vsyscallPage.base &&
150            eip < vsyscallPage.base + vsyscallPage.size) {
151        pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
152        tc->pcState(pc);
153    }
154    X86Process::syscall(callnum, tc, fault);
155}
156
157
158I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
159                         SyscallDesc *_syscallDescs, int _numSyscallDescs)
160    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
161{
162    _gdtStart = ULL(0xffffd000);
163    _gdtSize = PageBytes;
164
165    vsyscallPage.base = 0xffffe000ULL;
166    vsyscallPage.size = PageBytes;
167    vsyscallPage.vsyscallOffset = 0x400;
168    vsyscallPage.vsysexitOffset = 0x410;
169
170    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
171                             objFile->bssSize(), PageBytes);
172    Addr stack_base = _gdtStart;
173    Addr max_stack_size = 8 * 1024 * 1024;
174    Addr next_thread_stack_base = stack_base - max_stack_size;
175    Addr mmap_end = 0xB7FFF000ULL;
176
177    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
178                                     next_thread_stack_base, mmap_end);
179}
180
181SyscallDesc*
182X86Process::getDesc(int callnum)
183{
184    if (callnum < 0 || callnum >= numSyscallDescs)
185        return NULL;
186    return &syscallDescs[callnum];
187}
188
189void
190X86_64Process::initState()
191{
192    X86Process::initState();
193
194    argsInit(PageBytes);
195
196    // Set up the vsyscall page for this process.
197    allocateMem(vsyscallPage.base, vsyscallPage.size);
198    uint8_t vtimeBlob[] = {
199        0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00,    // mov    $0xc9,%rax
200        0x0f,0x05,                             // syscall
201        0xc3                                   // retq
202    };
203    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
204            vtimeBlob, sizeof(vtimeBlob));
205
206    uint8_t vgettimeofdayBlob[] = {
207        0x48,0xc7,0xc0,0x60,0x00,0x00,0x00,    // mov    $0x60,%rax
208        0x0f,0x05,                             // syscall
209        0xc3                                   // retq
210    };
211    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
212            vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
213
214    if (kvmInSE) {
215        PortProxy physProxy = system->physProxy;
216
217        /*
218         * Set up the gdt.
219         */
220        uint8_t numGDTEntries = 0;
221        uint64_t nullDescriptor = 0;
222        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
223                            (uint8_t *)(&nullDescriptor), 8);
224        numGDTEntries++;
225
226        SegDescriptor initDesc = 0;
227        initDesc.type.codeOrData = 0; // code or data type
228        initDesc.type.c = 0;          // conforming
229        initDesc.type.r = 1;          // readable
230        initDesc.dpl = 0;             // privilege
231        initDesc.p = 1;               // present
232        initDesc.l = 1;               // longmode - 64 bit
233        initDesc.d = 0;               // operand size
234        initDesc.g = 1;               // granularity
235        initDesc.s = 1;               // system segment
236        initDesc.limitHigh = 0xFFFF;
237        initDesc.limitLow = 0xF;
238        initDesc.baseHigh = 0x0;
239        initDesc.baseLow = 0x0;
240
241        //64 bit code segment
242        SegDescriptor csLowPLDesc = initDesc;
243        csLowPLDesc.type.codeOrData = 1;
244        csLowPLDesc.dpl = 0;
245        uint64_t csLowPLDescVal = csLowPLDesc;
246        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
247                            (uint8_t *)(&csLowPLDescVal), 8);
248
249        numGDTEntries++;
250
251        SegSelector csLowPL = 0;
252        csLowPL.si = numGDTEntries - 1;
253        csLowPL.rpl = 0;
254
255        //64 bit data segment
256        SegDescriptor dsLowPLDesc = initDesc;
257        dsLowPLDesc.type.codeOrData = 0;
258        dsLowPLDesc.dpl = 0;
259        uint64_t dsLowPLDescVal = dsLowPLDesc;
260        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
261                            (uint8_t *)(&dsLowPLDescVal), 8);
262
263        numGDTEntries++;
264
265        SegSelector dsLowPL = 0;
266        dsLowPL.si = numGDTEntries - 1;
267        dsLowPL.rpl = 0;
268
269        //64 bit data segment
270        SegDescriptor dsDesc = initDesc;
271        dsDesc.type.codeOrData = 0;
272        dsDesc.dpl = 3;
273        uint64_t dsDescVal = dsDesc;
274        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
275                            (uint8_t *)(&dsDescVal), 8);
276
277        numGDTEntries++;
278
279        SegSelector ds = 0;
280        ds.si = numGDTEntries - 1;
281        ds.rpl = 3;
282
283        //64 bit code segment
284        SegDescriptor csDesc = initDesc;
285        csDesc.type.codeOrData = 1;
286        csDesc.dpl = 3;
287        uint64_t csDescVal = csDesc;
288        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
289                            (uint8_t *)(&csDescVal), 8);
290
291        numGDTEntries++;
292
293        SegSelector cs = 0;
294        cs.si = numGDTEntries - 1;
295        cs.rpl = 3;
296
297        SegSelector scall = 0;
298        scall.si = csLowPL.si;
299        scall.rpl = 0;
300
301        SegSelector sret = 0;
302        sret.si = dsLowPL.si;
303        sret.rpl = 3;
304
305        /* In long mode the TSS has been extended to 16 Bytes */
306        TSSlow TSSDescLow = 0;
307        TSSDescLow.type = 0xB;
308        TSSDescLow.dpl = 0; // Privelege level 0
309        TSSDescLow.p = 1; // Present
310        TSSDescLow.g = 1; // Page granularity
311        TSSDescLow.limitHigh = 0xF;
312        TSSDescLow.limitLow = 0xFFFF;
313        TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
314        TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
315
316        TSShigh TSSDescHigh = 0;
317        TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
318
319        struct TSSDesc {
320            uint64_t low;
321            uint64_t high;
322        } tssDescVal = {TSSDescLow, TSSDescHigh};
323
324        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
325                            (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
326
327        numGDTEntries++;
328
329        SegSelector tssSel = 0;
330        tssSel.si = numGDTEntries - 1;
331
332        uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
333                                 (TSSDescLow.baseHigh << 24) |
334                                  TSSDescLow.baseLow;
335        uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
336
337        SegAttr tss_attr = 0;
338
339        tss_attr.type = TSSDescLow.type;
340        tss_attr.dpl = TSSDescLow.dpl;
341        tss_attr.present = TSSDescLow.p;
342        tss_attr.granularity = TSSDescLow.g;
343        tss_attr.unusable = 0;
344
345        for (int i = 0; i < contextIds.size(); i++) {
346            ThreadContext * tc = system->getThreadContext(contextIds[i]);
347
348            tc->setMiscReg(MISCREG_CS, cs);
349            tc->setMiscReg(MISCREG_DS, ds);
350            tc->setMiscReg(MISCREG_ES, ds);
351            tc->setMiscReg(MISCREG_FS, ds);
352            tc->setMiscReg(MISCREG_GS, ds);
353            tc->setMiscReg(MISCREG_SS, ds);
354
355            // LDT
356            tc->setMiscReg(MISCREG_TSL, 0);
357            SegAttr tslAttr = 0;
358            tslAttr.present = 1;
359            tslAttr.type = 2;
360            tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
361
362            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
363            tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
364
365            tc->setMiscReg(MISCREG_TR, tssSel);
366            tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
367            tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
368            tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
369            tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
370
371            //Start using longmode segments.
372            installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
373            installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
374            installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
375            installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
376            installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
377            installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
378
379            Efer efer = 0;
380            efer.sce = 1; // Enable system call extensions.
381            efer.lme = 1; // Enable long mode.
382            efer.lma = 1; // Activate long mode.
383            efer.nxe = 0; // Enable nx support.
384            efer.svme = 1; // Enable svm support for now.
385            efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
386            tc->setMiscReg(MISCREG_EFER, efer);
387
388            //Set up the registers that describe the operating mode.
389            CR0 cr0 = 0;
390            cr0.pg = 1; // Turn on paging.
391            cr0.cd = 0; // Don't disable caching.
392            cr0.nw = 0; // This is bit is defined to be ignored.
393            cr0.am = 1; // No alignment checking
394            cr0.wp = 1; // Supervisor mode can write read only pages
395            cr0.ne = 1;
396            cr0.et = 1; // This should always be 1
397            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
398                        // would be pointless.
399            cr0.em = 0; // Allow x87 instructions to execute natively.
400            cr0.mp = 1; // This doesn't really matter, but the manual suggests
401                        // setting it to one.
402            cr0.pe = 1; // We're definitely in protected mode.
403            tc->setMiscReg(MISCREG_CR0, cr0);
404
405            CR0 cr2 = 0;
406            tc->setMiscReg(MISCREG_CR2, cr2);
407
408            CR3 cr3 = pageTablePhysAddr;
409            tc->setMiscReg(MISCREG_CR3, cr3);
410
411            CR4 cr4 = 0;
412            //Turn on pae.
413            cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
414            cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
415            cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
416            cr4.pce = 0; // Performance-Monitoring Counter Enable
417            cr4.pge = 0; // Page-Global Enable
418            cr4.mce = 0; // Machine Check Enable
419            cr4.pae = 1; // Physical-Address Extension
420            cr4.pse = 0; // Page Size Extensions
421            cr4.de = 0; // Debugging Extensions
422            cr4.tsd = 0; // Time Stamp Disable
423            cr4.pvi = 0; // Protected-Mode Virtual Interrupts
424            cr4.vme = 0; // Virtual-8086 Mode Extensions
425
426            tc->setMiscReg(MISCREG_CR4, cr4);
427
428            CR4 cr8 = 0;
429            tc->setMiscReg(MISCREG_CR8, cr8);
430
431            const Addr PageMapLevel4 = pageTablePhysAddr;
432            //Point to the page tables.
433            tc->setMiscReg(MISCREG_CR3, PageMapLevel4);
434
435            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
436
437            tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
438
439            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
440            tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
441
442            tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
443            tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
444
445            /* enabling syscall and sysret */
446            MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
447            tc->setMiscReg(MISCREG_STAR, star);
448            MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
449            tc->setMiscReg(MISCREG_LSTAR, lstar);
450            MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
451            tc->setMiscReg(MISCREG_SF_MASK, sfmask);
452        }
453
454        /* Set up the content of the TSS and write it to physical memory. */
455
456        struct {
457            uint32_t reserved0;        // +00h
458            uint32_t RSP0_low;         // +04h
459            uint32_t RSP0_high;        // +08h
460            uint32_t RSP1_low;         // +0Ch
461            uint32_t RSP1_high;        // +10h
462            uint32_t RSP2_low;         // +14h
463            uint32_t RSP2_high;        // +18h
464            uint32_t reserved1;        // +1Ch
465            uint32_t reserved2;        // +20h
466            uint32_t IST1_low;         // +24h
467            uint32_t IST1_high;        // +28h
468            uint32_t IST2_low;         // +2Ch
469            uint32_t IST2_high;        // +30h
470            uint32_t IST3_low;         // +34h
471            uint32_t IST3_high;        // +38h
472            uint32_t IST4_low;         // +3Ch
473            uint32_t IST4_high;        // +40h
474            uint32_t IST5_low;         // +44h
475            uint32_t IST5_high;        // +48h
476            uint32_t IST6_low;         // +4Ch
477            uint32_t IST6_high;        // +50h
478            uint32_t IST7_low;         // +54h
479            uint32_t IST7_high;        // +58h
480            uint32_t reserved3;        // +5Ch
481            uint32_t reserved4;        // +60h
482            uint16_t reserved5;        // +64h
483            uint16_t IO_MapBase;       // +66h
484        } tss;
485
486        /** setting Interrupt Stack Table */
487        uint64_t IST_start = ISTVirtAddr + PageBytes;
488        tss.IST1_low  = IST_start;
489        tss.IST1_high = IST_start >> 32;
490        tss.RSP0_low  = tss.IST1_low;
491        tss.RSP0_high = tss.IST1_high;
492        tss.RSP1_low  = tss.IST1_low;
493        tss.RSP1_high = tss.IST1_high;
494        tss.RSP2_low  = tss.IST1_low;
495        tss.RSP2_high = tss.IST1_high;
496        physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss));
497
498        /* Setting IDT gates */
499        GateDescriptorLow PFGateLow = 0;
500        PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
501        PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
502        PFGateLow.selector = csLowPL;
503        PFGateLow.p = 1;
504        PFGateLow.dpl = 0;
505        PFGateLow.type = 0xe;      // gate interrupt type
506        PFGateLow.IST = 0;         // setting IST to 0 and using RSP0
507
508        GateDescriptorHigh PFGateHigh = 0;
509        PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
510
511        struct {
512            uint64_t low;
513            uint64_t high;
514        } PFGate = {PFGateLow, PFGateHigh};
515
516        physProxy.writeBlob(IDTPhysAddr + 0xE0,
517                            (uint8_t *)(&PFGate), sizeof(PFGate));
518
519        /* System call handler */
520        uint8_t syscallBlob[] = {
521            // mov    %rax, (0xffffc90000005600)
522            0x48, 0xa3, 0x00, 0x60, 0x00,
523            0x00, 0x00, 0xc9, 0xff, 0xff,
524            // sysret
525            0x48, 0x0f, 0x07
526        };
527
528        physProxy.writeBlob(syscallCodePhysAddr,
529                            syscallBlob, sizeof(syscallBlob));
530
531        /** Page fault handler */
532        uint8_t faultBlob[] = {
533            // mov    %rax, (0xffffc90000005700)
534            0x48, 0xa3, 0x00, 0x61, 0x00,
535            0x00, 0x00, 0xc9, 0xff, 0xff,
536            // add    $0x8, %rsp # skip error
537            0x48, 0x83, 0xc4, 0x08,
538            // iretq
539            0x48, 0xcf
540        };
541
542        physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob));
543
544        MultiLevelPageTable<PageTableOps> *pt =
545            dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);
546
547        /* Syscall handler */
548        pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
549        /* GDT */
550        pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false);
551        /* IDT */
552        pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false);
553        /* TSS */
554        pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false);
555        /* IST */
556        pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false);
557        /* PF handler */
558        pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false);
559        /* MMIO region for m5ops */
560        pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
561    } else {
562        for (int i = 0; i < contextIds.size(); i++) {
563            ThreadContext * tc = system->getThreadContext(contextIds[i]);
564
565            SegAttr dataAttr = 0;
566            dataAttr.dpl = 3;
567            dataAttr.unusable = 0;
568            dataAttr.defaultSize = 1;
569            dataAttr.longMode = 1;
570            dataAttr.avl = 0;
571            dataAttr.granularity = 1;
572            dataAttr.present = 1;
573            dataAttr.type = 3;
574            dataAttr.writable = 1;
575            dataAttr.readable = 1;
576            dataAttr.expandDown = 0;
577            dataAttr.system = 1;
578
579            // Initialize the segment registers.
580            for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
581                tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
582                tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
583                tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
584            }
585
586            SegAttr csAttr = 0;
587            csAttr.dpl = 3;
588            csAttr.unusable = 0;
589            csAttr.defaultSize = 0;
590            csAttr.longMode = 1;
591            csAttr.avl = 0;
592            csAttr.granularity = 1;
593            csAttr.present = 1;
594            csAttr.type = 10;
595            csAttr.writable = 0;
596            csAttr.readable = 1;
597            csAttr.expandDown = 0;
598            csAttr.system = 1;
599
600            tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
601
602            Efer efer = 0;
603            efer.sce = 1; // Enable system call extensions.
604            efer.lme = 1; // Enable long mode.
605            efer.lma = 1; // Activate long mode.
606            efer.nxe = 1; // Enable nx support.
607            efer.svme = 0; // Disable svm support for now. It isn't implemented.
608            efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
609            tc->setMiscReg(MISCREG_EFER, efer);
610
611            // Set up the registers that describe the operating mode.
612            CR0 cr0 = 0;
613            cr0.pg = 1; // Turn on paging.
614            cr0.cd = 0; // Don't disable caching.
615            cr0.nw = 0; // This is bit is defined to be ignored.
616            cr0.am = 0; // No alignment checking
617            cr0.wp = 0; // Supervisor mode can write read only pages
618            cr0.ne = 1;
619            cr0.et = 1; // This should always be 1
620            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
621                        // would be pointless.
622            cr0.em = 0; // Allow x87 instructions to execute natively.
623            cr0.mp = 1; // This doesn't really matter, but the manual suggests
624                        // setting it to one.
625            cr0.pe = 1; // We're definitely in protected mode.
626            tc->setMiscReg(MISCREG_CR0, cr0);
627
628            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
629        }
630    }
631}
632
633void
634I386Process::initState()
635{
636    X86Process::initState();
637
638    argsInit(PageBytes);
639
640    /*
641     * Set up a GDT for this process. The whole GDT wouldn't really be for
642     * this process, but the only parts we care about are.
643     */
644    allocateMem(_gdtStart, _gdtSize);
645    uint64_t zero = 0;
646    assert(_gdtSize % sizeof(zero) == 0);
647    for (Addr gdtCurrent = _gdtStart;
648            gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
649        initVirtMem.write(gdtCurrent, zero);
650    }
651
652    // Set up the vsyscall page for this process.
653    allocateMem(vsyscallPage.base, vsyscallPage.size);
654    uint8_t vsyscallBlob[] = {
655        0x51,       // push %ecx
656        0x52,       // push %edp
657        0x55,       // push %ebp
658        0x89, 0xe5, // mov %esp, %ebp
659        0x0f, 0x34  // sysenter
660    };
661    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
662            vsyscallBlob, sizeof(vsyscallBlob));
663
664    uint8_t vsysexitBlob[] = {
665        0x5d,       // pop %ebp
666        0x5a,       // pop %edx
667        0x59,       // pop %ecx
668        0xc3        // ret
669    };
670    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
671            vsysexitBlob, sizeof(vsysexitBlob));
672
673    for (int i = 0; i < contextIds.size(); i++) {
674        ThreadContext * tc = system->getThreadContext(contextIds[i]);
675
676        SegAttr dataAttr = 0;
677        dataAttr.dpl = 3;
678        dataAttr.unusable = 0;
679        dataAttr.defaultSize = 1;
680        dataAttr.longMode = 0;
681        dataAttr.avl = 0;
682        dataAttr.granularity = 1;
683        dataAttr.present = 1;
684        dataAttr.type = 3;
685        dataAttr.writable = 1;
686        dataAttr.readable = 1;
687        dataAttr.expandDown = 0;
688        dataAttr.system = 1;
689
690        // Initialize the segment registers.
691        for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
692            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
693            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
694            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
695            tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
696            tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
697        }
698
699        SegAttr csAttr = 0;
700        csAttr.dpl = 3;
701        csAttr.unusable = 0;
702        csAttr.defaultSize = 1;
703        csAttr.longMode = 0;
704        csAttr.avl = 0;
705        csAttr.granularity = 1;
706        csAttr.present = 1;
707        csAttr.type = 0xa;
708        csAttr.writable = 0;
709        csAttr.readable = 1;
710        csAttr.expandDown = 0;
711        csAttr.system = 1;
712
713        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
714
715        tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
716        tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
717        tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
718
719        // Set the LDT selector to 0 to deactivate it.
720        tc->setMiscRegNoEffect(MISCREG_TSL, 0);
721
722        Efer efer = 0;
723        efer.sce = 1; // Enable system call extensions.
724        efer.lme = 1; // Enable long mode.
725        efer.lma = 0; // Deactivate long mode.
726        efer.nxe = 1; // Enable nx support.
727        efer.svme = 0; // Disable svm support for now. It isn't implemented.
728        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
729        tc->setMiscReg(MISCREG_EFER, efer);
730
731        // Set up the registers that describe the operating mode.
732        CR0 cr0 = 0;
733        cr0.pg = 1; // Turn on paging.
734        cr0.cd = 0; // Don't disable caching.
735        cr0.nw = 0; // This is bit is defined to be ignored.
736        cr0.am = 0; // No alignment checking
737        cr0.wp = 0; // Supervisor mode can write read only pages
738        cr0.ne = 1;
739        cr0.et = 1; // This should always be 1
740        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
741                    // would be pointless.
742        cr0.em = 0; // Allow x87 instructions to execute natively.
743        cr0.mp = 1; // This doesn't really matter, but the manual suggests
744                    // setting it to one.
745        cr0.pe = 1; // We're definitely in protected mode.
746        tc->setMiscReg(MISCREG_CR0, cr0);
747
748        tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
749    }
750}
751
752template<class IntType>
753void
754X86Process::argsInit(int pageSize,
755                     std::vector<AuxVector<IntType> > extraAuxvs)
756{
757    int intSize = sizeof(IntType);
758
759    typedef AuxVector<IntType> auxv_t;
760    std::vector<auxv_t> auxv = extraAuxvs;
761
762    string filename;
763    if (argv.size() < 1)
764        filename = "";
765    else
766        filename = argv[0];
767
768    // We want 16 byte alignment
769    uint64_t align = 16;
770
771    // Patch the ld_bias for dynamic executables.
772    updateBias();
773
774    // load object file into target memory
775    objFile->loadSections(initVirtMem);
776
777    enum X86CpuFeature {
778        X86_OnboardFPU = 1 << 0,
779        X86_VirtualModeExtensions = 1 << 1,
780        X86_DebuggingExtensions = 1 << 2,
781        X86_PageSizeExtensions = 1 << 3,
782
783        X86_TimeStampCounter = 1 << 4,
784        X86_ModelSpecificRegisters = 1 << 5,
785        X86_PhysicalAddressExtensions = 1 << 6,
786        X86_MachineCheckExtensions = 1 << 7,
787
788        X86_CMPXCHG8Instruction = 1 << 8,
789        X86_OnboardAPIC = 1 << 9,
790        X86_SYSENTER_SYSEXIT = 1 << 11,
791
792        X86_MemoryTypeRangeRegisters = 1 << 12,
793        X86_PageGlobalEnable = 1 << 13,
794        X86_MachineCheckArchitecture = 1 << 14,
795        X86_CMOVInstruction = 1 << 15,
796
797        X86_PageAttributeTable = 1 << 16,
798        X86_36BitPSEs = 1 << 17,
799        X86_ProcessorSerialNumber = 1 << 18,
800        X86_CLFLUSHInstruction = 1 << 19,
801
802        X86_DebugTraceStore = 1 << 21,
803        X86_ACPIViaMSR = 1 << 22,
804        X86_MultimediaExtensions = 1 << 23,
805
806        X86_FXSAVE_FXRSTOR = 1 << 24,
807        X86_StreamingSIMDExtensions = 1 << 25,
808        X86_StreamingSIMDExtensions2 = 1 << 26,
809        X86_CPUSelfSnoop = 1 << 27,
810
811        X86_HyperThreading = 1 << 28,
812        X86_AutomaticClockControl = 1 << 29,
813        X86_IA64Processor = 1 << 30
814    };
815
816    // Setup the auxiliary vectors. These will already have endian
817    // conversion. Auxiliary vectors are loaded only for elf formatted
818    // executables; the auxv is responsible for passing information from
819    // the OS to the interpreter.
820    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
821    if (elfObject) {
822        uint64_t features =
823            X86_OnboardFPU |
824            X86_VirtualModeExtensions |
825            X86_DebuggingExtensions |
826            X86_PageSizeExtensions |
827            X86_TimeStampCounter |
828            X86_ModelSpecificRegisters |
829            X86_PhysicalAddressExtensions |
830            X86_MachineCheckExtensions |
831            X86_CMPXCHG8Instruction |
832            X86_OnboardAPIC |
833            X86_SYSENTER_SYSEXIT |
834            X86_MemoryTypeRangeRegisters |
835            X86_PageGlobalEnable |
836            X86_MachineCheckArchitecture |
837            X86_CMOVInstruction |
838            X86_PageAttributeTable |
839            X86_36BitPSEs |
840//            X86_ProcessorSerialNumber |
841            X86_CLFLUSHInstruction |
842//            X86_DebugTraceStore |
843//            X86_ACPIViaMSR |
844            X86_MultimediaExtensions |
845            X86_FXSAVE_FXRSTOR |
846            X86_StreamingSIMDExtensions |
847            X86_StreamingSIMDExtensions2 |
848//            X86_CPUSelfSnoop |
849//            X86_HyperThreading |
850//            X86_AutomaticClockControl |
851//            X86_IA64Processor |
852            0;
853
854        // Bits which describe the system hardware capabilities
855        // XXX Figure out what these should be
856        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
857        // The system page size
858        auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
859        // Frequency at which times() increments
860        // Defined to be 100 in the kernel source.
861        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
862        // This is the virtual address of the program header tables if they
863        // appear in the executable image.
864        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
865        // This is the size of a program header entry from the elf file.
866        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
867        // This is the number of program headers from the original elf file.
868        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
869        // This is the base address of the ELF interpreter; it should be
870        // zero for static executables or contain the base address for
871        // dynamic executables.
872        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
873        // XXX Figure out what this should be.
874        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
875        // The entry point to the program
876        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
877        // Different user and group IDs
878        auxv.push_back(auxv_t(M5_AT_UID, uid()));
879        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
880        auxv.push_back(auxv_t(M5_AT_GID, gid()));
881        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
882        // Whether to enable "secure mode" in the executable
883        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
884        // The address of 16 "random" bytes.
885        auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
886        // The name of the program
887        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
888        // The platform string
889        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
890    }
891
892    // Figure out how big the initial stack needs to be
893
894    // A sentry NULL void pointer at the top of the stack.
895    int sentry_size = intSize;
896
897    // This is the name of the file which is present on the initial stack
898    // It's purpose is to let the user space linker examine the original file.
899    int file_name_size = filename.size() + 1;
900
901    const int numRandomBytes = 16;
902    int aux_data_size = numRandomBytes;
903
904    string platform = "x86_64";
905    aux_data_size += platform.size() + 1;
906
907    int env_data_size = 0;
908    for (int i = 0; i < envp.size(); ++i)
909        env_data_size += envp[i].size() + 1;
910    int arg_data_size = 0;
911    for (int i = 0; i < argv.size(); ++i)
912        arg_data_size += argv[i].size() + 1;
913
914    // The info_block needs to be padded so its size is a multiple of the
915    // alignment mask. Also, it appears that there needs to be at least some
916    // padding, so if the size is already a multiple, we need to increase it
917    // anyway.
918    int base_info_block_size =
919        sentry_size + file_name_size + env_data_size + arg_data_size;
920
921    int info_block_size = roundUp(base_info_block_size, align);
922
923    int info_block_padding = info_block_size - base_info_block_size;
924
925    // Each auxiliary vector is two 8 byte words
926    int aux_array_size = intSize * 2 * (auxv.size() + 1);
927
928    int envp_array_size = intSize * (envp.size() + 1);
929    int argv_array_size = intSize * (argv.size() + 1);
930
931    int argc_size = intSize;
932
933    // Figure out the size of the contents of the actual initial frame
934    int frame_size =
935        aux_array_size +
936        envp_array_size +
937        argv_array_size +
938        argc_size;
939
940    // There needs to be padding after the auxiliary vector data so that the
941    // very bottom of the stack is aligned properly.
942    int partial_size = frame_size + aux_data_size;
943    int aligned_partial_size = roundUp(partial_size, align);
944    int aux_padding = aligned_partial_size - partial_size;
945
946    int space_needed =
947        info_block_size +
948        aux_data_size +
949        aux_padding +
950        frame_size;
951
952    Addr stack_base = memState->getStackBase();
953
954    Addr stack_min = stack_base - space_needed;
955    stack_min = roundDown(stack_min, align);
956
957    unsigned stack_size = stack_base - stack_min;
958    stack_size = roundUp(stack_size, pageSize);
959    memState->setStackSize(stack_size);
960
961    // map memory
962    Addr stack_end = roundDown(stack_base - stack_size, pageSize);
963
964    DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
965    allocateMem(stack_end, stack_size);
966
967    // map out initial stack contents
968    IntType sentry_base = stack_base - sentry_size;
969    IntType file_name_base = sentry_base - file_name_size;
970    IntType env_data_base = file_name_base - env_data_size;
971    IntType arg_data_base = env_data_base - arg_data_size;
972    IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
973    IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
974    IntType envp_array_base = auxv_array_base - envp_array_size;
975    IntType argv_array_base = envp_array_base - argv_array_size;
976    IntType argc_base = argv_array_base - argc_size;
977
978    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
979    DPRINTF(Stack, "0x%x - file name\n", file_name_base);
980    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
981    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
982    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
983    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
984    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
985    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
986    DPRINTF(Stack, "0x%x - argc \n", argc_base);
987    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
988
989    // write contents to stack
990
991    // figure out argc
992    IntType argc = argv.size();
993    IntType guestArgc = X86ISA::htog(argc);
994
995    // Write out the sentry void *
996    IntType sentry_NULL = 0;
997    initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size);
998
999    // Write the file name
1000    initVirtMem.writeString(file_name_base, filename.c_str());
1001
1002    // Fix up the aux vectors which point to data
1003    assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
1004    auxv[auxv.size() - 3].a_val = aux_data_base;
1005    assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
1006    auxv[auxv.size() - 2].a_val = argv_array_base;
1007    assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
1008    auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
1009
1010
1011    // Copy the aux stuff
1012    for (int x = 0; x < auxv.size(); x++) {
1013        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1014                (uint8_t*)&(auxv[x].a_type), intSize);
1015        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1016                (uint8_t*)&(auxv[x].a_val), intSize);
1017    }
1018    // Write out the terminating zeroed auxiliary vector
1019    const uint64_t zero = 0;
1020    initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1021                          (uint8_t*)&zero, intSize);
1022    initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1023                          (uint8_t*)&zero, intSize);
1024
1025    initVirtMem.writeString(aux_data_base, platform.c_str());
1026
1027    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1028    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1029
1030    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1031
1032    ThreadContext *tc = system->getThreadContext(contextIds[0]);
1033    // Set the stack pointer register
1034    tc->setIntReg(StackPointerReg, stack_min);
1035
1036    // There doesn't need to be any segment base added in since we're dealing
1037    // with the flat segmentation model.
1038    tc->pcState(getStartPC());
1039
1040    // Align the "stack_min" to a page boundary.
1041    memState->setStackMin(roundDown(stack_min, pageSize));
1042}
1043
1044void
1045X86_64Process::argsInit(int pageSize)
1046{
1047    std::vector<AuxVector<uint64_t> > extraAuxvs;
1048    extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1049                vsyscallPage.base));
1050    X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
1051}
1052
1053void
1054I386Process::argsInit(int pageSize)
1055{
1056    std::vector<AuxVector<uint32_t> > extraAuxvs;
1057    //Tell the binary where the vsyscall part of the vsyscall page is.
1058    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1059                vsyscallPage.base + vsyscallPage.vsyscallOffset));
1060    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1061                vsyscallPage.base));
1062    X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
1063}
1064
1065void
1066X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1067{
1068    tc->setIntReg(INTREG_RAX, retval.encodedValue());
1069}
1070
1071X86ISA::IntReg
1072X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
1073{
1074    assert(i < NumArgumentRegs);
1075    return tc->readIntReg(ArgumentReg[i++]);
1076}
1077
1078void
1079X86_64Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1080{
1081    assert(i < NumArgumentRegs);
1082    return tc->setIntReg(ArgumentReg[i], val);
1083}
1084
1085void
1086X86_64Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1087                     Process *p, TheISA::IntReg flags)
1088{
1089    X86Process::clone(old_tc, new_tc, p, flags);
1090    ((X86_64Process*)p)->vsyscallPage = vsyscallPage;
1091}
1092
1093X86ISA::IntReg
1094I386Process::getSyscallArg(ThreadContext *tc, int &i)
1095{
1096    assert(i < NumArgumentRegs32);
1097    return tc->readIntReg(ArgumentReg32[i++]);
1098}
1099
1100X86ISA::IntReg
1101I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
1102{
1103    assert(width == 32 || width == 64);
1104    assert(i < NumArgumentRegs);
1105    uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1106    if (width == 64)
1107        retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1108    return retVal;
1109}
1110
1111void
1112I386Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1113{
1114    assert(i < NumArgumentRegs);
1115    return tc->setIntReg(ArgumentReg[i], val);
1116}
1117
1118void
1119I386Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1120                   Process *p, TheISA::IntReg flags)
1121{
1122    X86Process::clone(old_tc, new_tc, p, flags);
1123    ((I386Process*)p)->vsyscallPage = vsyscallPage;
1124}
1125