fpop.isa revision 9582:0632d2d1575c
1// Copyright (c) 2007 The Hewlett-Packard Development Company
2// Copyright (c) 2012-2013 Mark D. Hill and David A. Wood
3// All rights reserved.
4//
5// The license below extends only to copyright in the software and shall
6// not be construed as granting a license to any other intellectual
7// property including but not limited to intellectual property relating
8// to a hardware implementation of the functionality of the software
9// licensed hereunder.  You may use the software subject to the license
10// terms below provided that you ensure that this notice is replicated
11// unmodified and in its entirety in all distributions of the software,
12// modified or unmodified, in source code or in binary form.
13//
14// Redistribution and use in source and binary forms, with or without
15// modification, are permitted provided that the following conditions are
16// met: redistributions of source code must retain the above copyright
17// notice, this list of conditions and the following disclaimer;
18// redistributions in binary form must reproduce the above copyright
19// notice, this list of conditions and the following disclaimer in the
20// documentation and/or other materials provided with the distribution;
21// neither the name of the copyright holders nor the names of its
22// contributors may be used to endorse or promote products derived from
23// this software without specific prior written permission.
24//
25// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36//
37// Authors: Gabe Black
38//          Nilay Vaish
39
40//////////////////////////////////////////////////////////////////////////
41//
42// FpOp Microop templates
43//
44//////////////////////////////////////////////////////////////////////////
45
46def template MicroFpOpExecute {{
47        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
48                Trace::InstRecord *traceData) const
49        {
50            Fault fault = NoFault;
51
52            DPRINTF(X86, "The data size is %d\n", dataSize);
53            %(op_decl)s;
54            %(op_rd)s;
55
56            if(%(cond_check)s)
57            {
58                %(code)s;
59                %(flag_code)s;
60                %(top_code)s;
61            }
62            else
63            {
64                %(else_code)s;
65            }
66
67            //Write the resulting state to the execution context
68            if(fault == NoFault)
69            {
70                %(op_wb)s;
71            }
72            return fault;
73        }
74}};
75
76def template MicroFpOpDeclare {{
77    class %(class_name)s : public %(base_class)s
78    {
79      public:
80        %(class_name)s(ExtMachInst _machInst,
81                const char * instMnem, uint64_t setFlags,
82                InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
83                uint8_t _dataSize, int8_t _spm);
84
85        %(BasicExecDeclare)s
86    };
87}};
88
89def template MicroFpOpConstructor {{
90    inline %(class_name)s::%(class_name)s(
91            ExtMachInst machInst, const char * instMnem, uint64_t setFlags,
92            InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
93            uint8_t _dataSize, int8_t _spm) :
94        %(base_class)s(machInst, "%(mnemonic)s", instMnem, setFlags,
95                _src1, _src2, _dest, _dataSize, _spm,
96                %(op_class)s)
97    {
98        %(constructor)s;
99    }
100}};
101
102let {{
103    # Make these empty strings so that concatenating onto
104    # them will always work.
105    header_output = ""
106    decoder_output = ""
107    exec_output = ""
108
109    class FpOpMeta(type):
110        def buildCppClasses(self, name, Name, suffix, \
111                code, flag_code, cond_check, else_code):
112
113            # Globals to stick the output in
114            global header_output
115            global decoder_output
116            global exec_output
117
118            # Stick all the code together so it can be searched at once
119            allCode = "|".join((code, flag_code, cond_check, else_code))
120
121            # If there's something optional to do with flags, generate
122            # a version without it and fix up this version to use it.
123            if flag_code is not "" or cond_check is not "true":
124                self.buildCppClasses(name, Name, suffix,
125                        code, "", "true", else_code)
126                suffix = "Flags" + suffix
127
128            base = "X86ISA::FpOp"
129
130            # Get everything ready for the substitution
131            iop_top = InstObjParams(name, Name + suffix + "Top", base,
132                    {"code" : code,
133                     "flag_code" : flag_code,
134                     "cond_check" : cond_check,
135                     "else_code" : else_code,
136                     "top_code" : "TOP = (TOP + spm + 8) % 8;"})
137            iop = InstObjParams(name, Name + suffix, base,
138                    {"code" : code,
139                     "flag_code" : flag_code,
140                     "cond_check" : cond_check,
141                     "else_code" : else_code,
142                     "top_code" : ";"})
143
144            # Generate the actual code (finally!)
145            header_output += MicroFpOpDeclare.subst(iop_top)
146            decoder_output += MicroFpOpConstructor.subst(iop_top)
147            exec_output += MicroFpOpExecute.subst(iop_top)
148            header_output += MicroFpOpDeclare.subst(iop)
149            decoder_output += MicroFpOpConstructor.subst(iop)
150            exec_output += MicroFpOpExecute.subst(iop)
151
152
153        def __new__(mcls, Name, bases, dict):
154            abstract = False
155            name = Name.lower()
156            if "abstract" in dict:
157                abstract = dict['abstract']
158                del dict['abstract']
159
160            cls = super(FpOpMeta, mcls).__new__(mcls, Name, bases, dict)
161            if not abstract:
162                cls.className = Name
163                cls.mnemonic = name
164                code = cls.code
165                flag_code = cls.flag_code
166                cond_check = cls.cond_check
167                else_code = cls.else_code
168
169                # Set up the C++ classes
170                mcls.buildCppClasses(cls, name, Name, "",
171                        code, flag_code, cond_check, else_code)
172
173                # Hook into the microassembler dict
174                global microopClasses
175                microopClasses[name] = cls
176
177            return cls
178
179    class FpUnaryOp(X86Microop):
180        __metaclass__ = FpOpMeta
181        # This class itself doesn't act as a microop
182        abstract = True
183
184        # Default template parameter values
185        flag_code = ""
186        cond_check = "true"
187        else_code = ";"
188
189        def __init__(self, dest, src1, spm=0, \
190                SetStatus=False, dataSize="env.dataSize"):
191            self.dest = dest
192            self.src1 = src1
193            self.src2 = "InstRegIndex(0)"
194            self.spm = spm
195            self.dataSize = dataSize
196            if SetStatus:
197                self.className += "Flags"
198            if spm:
199                self.className += "Top"
200
201        def getAllocator(self, microFlags):
202            return '''new %(class_name)s(machInst, macrocodeBlock,
203                    %(flags)s, %(src1)s, %(src2)s, %(dest)s,
204                    %(dataSize)s, %(spm)d)''' % {
205                "class_name" : self.className,
206                "flags" : self.microFlagsText(microFlags),
207                "src1" : self.src1, "src2" : self.src2,
208                "dest" : self.dest,
209                "dataSize" : self.dataSize,
210                "spm" : self.spm}
211
212    class FpBinaryOp(X86Microop):
213        __metaclass__ = FpOpMeta
214        # This class itself doesn't act as a microop
215        abstract = True
216
217        # Default template parameter values
218        flag_code = ""
219        cond_check = "true"
220        else_code = ";"
221
222        def __init__(self, dest, src1, src2, spm=0, \
223                SetStatus=False, dataSize="env.dataSize"):
224            self.dest = dest
225            self.src1 = src1
226            self.src2 = src2
227            self.spm = spm
228            self.dataSize = dataSize
229            if SetStatus:
230                self.className += "Flags"
231            if spm:
232                self.className += "Top"
233
234        def getAllocator(self, microFlags):
235            return '''new %(class_name)s(machInst, macrocodeBlock,
236                    %(flags)s, %(src1)s, %(src2)s, %(dest)s,
237                    %(dataSize)s, %(spm)d)''' % {
238                "class_name" : self.className,
239                "flags" : self.microFlagsText(microFlags),
240                "src1" : self.src1, "src2" : self.src2,
241                "dest" : self.dest,
242                "dataSize" : self.dataSize,
243                "spm" : self.spm}
244
245    class Movfp(FpUnaryOp):
246        code = 'FpDestReg_uqw = FpSrcReg1_uqw;'
247        else_code = 'FpDestReg_uqw = FpDestReg_uqw;'
248        cond_check = "checkCondition(ccFlagBits | cfofBits | dfBit | \
249                                     ecfBit | ezfBit, src2)"
250
251    class Xorfp(FpBinaryOp):
252        code = 'FpDestReg_uqw = FpSrcReg1_uqw ^ FpSrcReg2_uqw;'
253
254    class Sqrtfp(FpBinaryOp):
255        code = 'FpDestReg = sqrt(FpSrcReg2);'
256
257    class Cosfp(FpUnaryOp):
258        code = 'FpDestReg = cos(FpSrcReg1);'
259
260    class Sinfp(FpUnaryOp):
261        code = 'FpDestReg = sin(FpSrcReg1);'
262
263    class Tanfp(FpUnaryOp):
264        code = 'FpDestReg = tan(FpSrcReg1);'
265
266
267    # Conversion microops
268    class ConvOp(FpBinaryOp):
269        abstract = True
270        def __init__(self, dest, src1):
271            super(ConvOp, self).__init__(dest, src1, \
272                    "InstRegIndex(FLOATREG_MICROFP0)")
273
274    # These probably shouldn't look at the ExtMachInst directly to figure
275    # out what size to use and should instead delegate that to the macroop's
276    # constructor. That would be more efficient, and it would make the
277    # microops a little more modular.
278    class cvtf_i2d(ConvOp):
279        code = '''
280            X86IntReg intReg = SSrcReg1;
281            if (REX_W)
282                FpDestReg = intReg.SR;
283            else
284                FpDestReg = intReg.SE;
285            '''
286
287    class cvtf_i2d_hi(ConvOp):
288        code = 'FpDestReg = bits(SSrcReg1, 63, 32);'
289
290    class cvtf_d2i(ConvOp):
291        code = '''
292            int64_t intSrcReg1 = static_cast<int64_t>(FpSrcReg1);
293            if (REX_W)
294                SDestReg = intSrcReg1;
295            else
296                SDestReg = merge(SDestReg, intSrcReg1, 4);
297            '''
298
299    # These need to consider size at some point. They'll always use doubles
300    # for the moment.
301    class addfp(FpBinaryOp):
302        code = 'FpDestReg = FpSrcReg1 + FpSrcReg2;'
303
304    class mulfp(FpBinaryOp):
305        code = 'FpDestReg = FpSrcReg1 * FpSrcReg2;'
306
307    class divfp(FpBinaryOp):
308        code = 'FpDestReg = FpSrcReg1 / FpSrcReg2;'
309
310    class subfp(FpBinaryOp):
311        code = 'FpDestReg = FpSrcReg1 - FpSrcReg2;'
312
313    class Yl2xFp(FpBinaryOp):
314        code = '''
315            FpDestReg = FpSrcReg2 * (log(FpSrcReg1) / log(2));
316        '''
317
318    class PremFp(FpBinaryOp):
319        code = '''
320            FpDestReg = fmod(FpSrcReg1, FpSrcReg2);
321            DPRINTF(X86, "src1: %lf, src2: %lf, dest: %lf\\n", FpSrcReg1, FpSrcReg2, FpDestReg);
322        '''
323
324    class Compfp(FpBinaryOp):
325        def __init__(self, src1, src2, spm=0, setStatus=False, \
326                dataSize="env.dataSize"):
327            super(Compfp, self).__init__("InstRegIndex(FLOATREG_MICROFP0)", \
328                    src1, src2, spm, setStatus, dataSize)
329        # This class sets the condition codes in rflags according to the
330        # rules for comparing floating point.
331        code = '''
332            //               ZF PF CF
333            // Unordered      1  1  1
334            // Greater than   0  0  0
335            // Less than      0  0  1
336            // Equal          1  0  0
337            //           OF = SF = AF = 0
338            ccFlagBits = ccFlagBits & ~(SFBit | AFBit | ZFBit | PFBit);
339            cfofBits = cfofBits & ~(OFBit | CFBit);
340
341            if (std::isnan(FpSrcReg1) || std::isnan(FpSrcReg2)) {
342                ccFlagBits = ccFlagBits | (ZFBit | PFBit);
343                cfofBits = cfofBits | CFBit;
344            }
345            else if(FpSrcReg1 < FpSrcReg2)
346                cfofBits = cfofBits | CFBit;
347            else if(FpSrcReg1 == FpSrcReg2)
348                ccFlagBits = ccFlagBits | ZFBit;
349        '''
350
351    class absfp(FpUnaryOp):
352        code = 'FpDestReg = fabs(FpSrcReg1);'
353        flag_code = 'FSW &= (~CC1Bit);'
354
355    class chsfp(FpUnaryOp):
356        code = 'FpDestReg = (-1) * (FpSrcReg1);'
357        flag_code = 'FSW &= (~CC1Bit);'
358}};
359