process.cc revision 4793:315e1db6bd39
1/*
2 * Copyright (c) 2003-2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 *          Ali Saidi
30 */
31
32#include "arch/sparc/asi.hh"
33#include "arch/sparc/handlers.hh"
34#include "arch/sparc/isa_traits.hh"
35#include "arch/sparc/process.hh"
36#include "arch/sparc/types.hh"
37#include "base/loader/object_file.hh"
38#include "base/loader/elf_object.hh"
39#include "base/misc.hh"
40#include "cpu/thread_context.hh"
41#include "mem/page_table.hh"
42#include "sim/process_impl.hh"
43#include "mem/translating_port.hh"
44#include "sim/system.hh"
45
46using namespace std;
47using namespace SparcISA;
48
49
50SparcLiveProcess::SparcLiveProcess(const std::string &nm, ObjectFile *objFile,
51        System *_system, int stdin_fd, int stdout_fd, int stderr_fd,
52        std::vector<std::string> &argv, std::vector<std::string> &envp,
53        const std::string &cwd,
54        uint64_t _uid, uint64_t _euid, uint64_t _gid, uint64_t _egid,
55        uint64_t _pid, uint64_t _ppid)
56    : LiveProcess(nm, objFile, _system, stdin_fd, stdout_fd, stderr_fd,
57        argv, envp, cwd, _uid, _euid, _gid, _egid, _pid, _ppid)
58{
59
60    // XXX all the below need to be updated for SPARC - Ali
61    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
62    brk_point = roundUp(brk_point, VMPageSize);
63
64    // Set pointer for next thread stack.  Reserve 8M for main stack.
65    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
66
67    //Initialize these to 0s
68    fillStart = 0;
69    spillStart = 0;
70}
71
72void SparcLiveProcess::handleTrap(int trapNum, ThreadContext *tc)
73{
74    switch(trapNum)
75    {
76      case 0x03: //Flush window trap
77        warn("Ignoring request to flush register windows.\n");
78        break;
79      default:
80        panic("Unimplemented trap to operating system: trap number %#x.\n", trapNum);
81    }
82}
83
84void
85Sparc32LiveProcess::startup()
86{
87    argsInit(32 / 8, VMPageSize);
88
89    //From the SPARC ABI
90
91    //The process runs in user mode with 32 bit addresses
92    threadContexts[0]->setMiscReg(MISCREG_PSTATE, 0x0a);
93
94    //Setup default FP state
95    threadContexts[0]->setMiscRegNoEffect(MISCREG_FSR, 0);
96
97    threadContexts[0]->setMiscRegNoEffect(MISCREG_TICK, 0);
98    //
99    /*
100     * Register window management registers
101     */
102
103    //No windows contain info from other programs
104    //threadContexts[0]->setMiscRegNoEffect(MISCREG_OTHERWIN, 0);
105    threadContexts[0]->setIntReg(NumIntArchRegs + 6, 0);
106    //There are no windows to pop
107    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANRESTORE, 0);
108    threadContexts[0]->setIntReg(NumIntArchRegs + 4, 0);
109    //All windows are available to save into
110    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2);
111    threadContexts[0]->setIntReg(NumIntArchRegs + 3, NWindows - 2);
112    //All windows are "clean"
113    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows);
114    threadContexts[0]->setIntReg(NumIntArchRegs + 5, NWindows);
115    //Start with register window 0
116    threadContexts[0]->setMiscRegNoEffect(MISCREG_CWP, 0);
117    //Always use spill and fill traps 0
118    //threadContexts[0]->setMiscRegNoEffect(MISCREG_WSTATE, 0);
119    threadContexts[0]->setIntReg(NumIntArchRegs + 7, 0);
120    //Set the trap level to 0
121    threadContexts[0]->setMiscRegNoEffect(MISCREG_TL, 0);
122    //Set the ASI register to something fixed
123    threadContexts[0]->setMiscRegNoEffect(MISCREG_ASI, ASI_PRIMARY);
124}
125
126void
127Sparc64LiveProcess::startup()
128{
129    argsInit(sizeof(IntReg), VMPageSize);
130
131    //From the SPARC ABI
132
133    //The process runs in user mode
134    threadContexts[0]->setMiscReg(MISCREG_PSTATE, 0x02);
135
136    //Setup default FP state
137    threadContexts[0]->setMiscRegNoEffect(MISCREG_FSR, 0);
138
139    threadContexts[0]->setMiscRegNoEffect(MISCREG_TICK, 0);
140    //
141    /*
142     * Register window management registers
143     */
144
145    //No windows contain info from other programs
146    //threadContexts[0]->setMiscRegNoEffect(MISCREG_OTHERWIN, 0);
147    threadContexts[0]->setIntReg(NumIntArchRegs + 6, 0);
148    //There are no windows to pop
149    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANRESTORE, 0);
150    threadContexts[0]->setIntReg(NumIntArchRegs + 4, 0);
151    //All windows are available to save into
152    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2);
153    threadContexts[0]->setIntReg(NumIntArchRegs + 3, NWindows - 2);
154    //All windows are "clean"
155    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows);
156    threadContexts[0]->setIntReg(NumIntArchRegs + 5, NWindows);
157    //Start with register window 0
158    threadContexts[0]->setMiscRegNoEffect(MISCREG_CWP, 0);
159    //Always use spill and fill traps 0
160    //threadContexts[0]->setMiscRegNoEffect(MISCREG_WSTATE, 0);
161    threadContexts[0]->setIntReg(NumIntArchRegs + 7, 0);
162    //Set the trap level to 0
163    threadContexts[0]->setMiscRegNoEffect(MISCREG_TL, 0);
164    //Set the ASI register to something fixed
165    threadContexts[0]->setMiscRegNoEffect(MISCREG_ASI, ASI_PRIMARY);
166}
167
168M5_32_auxv_t::M5_32_auxv_t(int32_t type, int32_t val)
169{
170    a_type = TheISA::htog(type);
171    a_val = TheISA::htog(val);
172}
173
174M5_64_auxv_t::M5_64_auxv_t(int64_t type, int64_t val)
175{
176    a_type = TheISA::htog(type);
177    a_val = TheISA::htog(val);
178}
179
180void
181Sparc64LiveProcess::argsInit(int intSize, int pageSize)
182{
183    typedef M5_64_auxv_t auxv_t;
184    Process::startup();
185
186    string filename;
187    if(argv.size() < 1)
188        filename = "";
189    else
190        filename = argv[0];
191
192    Addr alignmentMask = ~(intSize - 1);
193
194    // load object file into target memory
195    objFile->loadSections(initVirtMem);
196
197    enum hardwareCaps
198    {
199        M5_HWCAP_SPARC_FLUSH = 1,
200        M5_HWCAP_SPARC_STBAR = 2,
201        M5_HWCAP_SPARC_SWAP = 4,
202        M5_HWCAP_SPARC_MULDIV = 8,
203        M5_HWCAP_SPARC_V9 = 16,
204        //This one should technically only be set
205        //if there is a cheetah or cheetah_plus tlb,
206        //but we'll use it all the time
207        M5_HWCAP_SPARC_ULTRA3 = 32
208    };
209
210    const int64_t hwcap =
211        M5_HWCAP_SPARC_FLUSH |
212        M5_HWCAP_SPARC_STBAR |
213        M5_HWCAP_SPARC_SWAP |
214        M5_HWCAP_SPARC_MULDIV |
215        M5_HWCAP_SPARC_V9 |
216        M5_HWCAP_SPARC_ULTRA3;
217
218
219    //Setup the auxilliary vectors. These will already have endian conversion.
220    //Auxilliary vectors are loaded only for elf formatted executables.
221    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
222    if(elfObject)
223    {
224        //Bits which describe the system hardware capabilities
225        auxv.push_back(auxv_t(M5_AT_HWCAP, hwcap));
226        //The system page size
227        auxv.push_back(auxv_t(M5_AT_PAGESZ, SparcISA::VMPageSize));
228        //Defined to be 100 in the kernel source.
229        //Frequency at which times() increments
230        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
231        // For statically linked executables, this is the virtual address of the
232        // program header tables if they appear in the executable image
233        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
234        // This is the size of a program header entry from the elf file.
235        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
236        // This is the number of program headers from the original elf file.
237        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
238        //This is the address of the elf "interpreter", It should be set
239        //to 0 for regular executables. It should be something else
240        //(not sure what) for dynamic libraries.
241        auxv.push_back(auxv_t(M5_AT_BASE, 0));
242        //This is hardwired to 0 in the elf loading code in the kernel
243        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
244        //The entry point to the program
245        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
246        //Different user and group IDs
247        auxv.push_back(auxv_t(M5_AT_UID, uid()));
248        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
249        auxv.push_back(auxv_t(M5_AT_GID, gid()));
250        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
251        //Whether to enable "secure mode" in the executable
252        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
253    }
254
255    //Figure out how big the initial stack needs to be
256
257    // The unaccounted for 0 at the top of the stack
258    int mysterious_size = intSize;
259
260    //This is the name of the file which is present on the initial stack
261    //It's purpose is to let the user space linker examine the original file.
262    int file_name_size = filename.size() + 1;
263
264    int env_data_size = 0;
265    for (int i = 0; i < envp.size(); ++i) {
266        env_data_size += envp[i].size() + 1;
267    }
268    int arg_data_size = 0;
269    for (int i = 0; i < argv.size(); ++i) {
270        arg_data_size += argv[i].size() + 1;
271    }
272
273    //The info_block needs to be padded so it's size is a multiple of the
274    //alignment mask. Also, it appears that there needs to be at least some
275    //padding, so if the size is already a multiple, we need to increase it
276    //anyway.
277    int info_block_size =
278        (file_name_size +
279        env_data_size +
280        arg_data_size +
281        intSize) & alignmentMask;
282
283    int info_block_padding =
284        info_block_size -
285        file_name_size -
286        env_data_size -
287        arg_data_size;
288
289    //Each auxilliary vector is two 8 byte words
290    int aux_array_size = intSize * 2 * (auxv.size() + 1);
291
292    int envp_array_size = intSize * (envp.size() + 1);
293    int argv_array_size = intSize * (argv.size() + 1);
294
295    int argc_size = intSize;
296    int window_save_size = intSize * 16;
297
298    int space_needed =
299        mysterious_size +
300        info_block_size +
301        aux_array_size +
302        envp_array_size +
303        argv_array_size +
304        argc_size +
305        window_save_size;
306
307    stack_min = stack_base - space_needed;
308    stack_min &= alignmentMask;
309    stack_size = stack_base - stack_min;
310
311    // map memory
312    pTable->allocate(roundDown(stack_min, pageSize),
313                     roundUp(stack_size, pageSize));
314
315    // map out initial stack contents
316    Addr mysterious_base = stack_base - mysterious_size;
317    Addr file_name_base = mysterious_base - file_name_size;
318    Addr env_data_base = file_name_base - env_data_size;
319    Addr arg_data_base = env_data_base - arg_data_size;
320    Addr auxv_array_base = arg_data_base - aux_array_size - info_block_padding;
321    Addr envp_array_base = auxv_array_base - envp_array_size;
322    Addr argv_array_base = envp_array_base - argv_array_size;
323    Addr argc_base = argv_array_base - argc_size;
324#ifndef NDEBUG
325    // only used in DPRINTF
326    Addr window_save_base = argc_base - window_save_size;
327#endif
328
329    DPRINTF(Sparc, "The addresses of items on the initial stack:\n");
330    DPRINTF(Sparc, "0x%x - file name\n", file_name_base);
331    DPRINTF(Sparc, "0x%x - env data\n", env_data_base);
332    DPRINTF(Sparc, "0x%x - arg data\n", arg_data_base);
333    DPRINTF(Sparc, "0x%x - auxv array\n", auxv_array_base);
334    DPRINTF(Sparc, "0x%x - envp array\n", envp_array_base);
335    DPRINTF(Sparc, "0x%x - argv array\n", argv_array_base);
336    DPRINTF(Sparc, "0x%x - argc \n", argc_base);
337    DPRINTF(Sparc, "0x%x - window save\n", window_save_base);
338    DPRINTF(Sparc, "0x%x - stack min\n", stack_min);
339
340    // write contents to stack
341
342    // figure out argc
343    uint64_t argc = argv.size();
344    uint64_t guestArgc = TheISA::htog(argc);
345
346    //Write out the mysterious 0
347    uint64_t mysterious_zero = 0;
348    initVirtMem->writeBlob(mysterious_base,
349            (uint8_t*)&mysterious_zero, mysterious_size);
350
351    //Write the file name
352    initVirtMem->writeString(file_name_base, filename.c_str());
353
354    //Copy the aux stuff
355    for(int x = 0; x < auxv.size(); x++)
356    {
357        initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
358                (uint8_t*)&(auxv[x].a_type), intSize);
359        initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
360                (uint8_t*)&(auxv[x].a_val), intSize);
361    }
362    //Write out the terminating zeroed auxilliary vector
363    const uint64_t zero = 0;
364    initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
365            (uint8_t*)&zero, 2 * intSize);
366
367    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
368    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
369
370    initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
371
372    //Stuff the trap handlers into the processes address space.
373    //Since the stack grows down and is the highest area in the processes
374    //address space, we can put stuff above it and stay out of the way.
375    int fillSize = sizeof(MachInst) * numFillInsts;
376    int spillSize = sizeof(MachInst) * numSpillInsts;
377    fillStart = stack_base;
378    spillStart = fillStart + fillSize;
379    initVirtMem->writeBlob(fillStart, (uint8_t*)fillHandler64, fillSize);
380    initVirtMem->writeBlob(spillStart, (uint8_t*)spillHandler64, spillSize);
381
382    //Set up the thread context to start running the process
383    assert(NumArgumentRegs >= 2);
384    threadContexts[0]->setIntReg(ArgumentReg[0], argc);
385    threadContexts[0]->setIntReg(ArgumentReg[1], argv_array_base);
386    threadContexts[0]->setIntReg(StackPointerReg, stack_min - StackBias);
387
388    Addr prog_entry = objFile->entryPoint();
389    threadContexts[0]->setPC(prog_entry);
390    threadContexts[0]->setNextPC(prog_entry + sizeof(MachInst));
391    threadContexts[0]->setNextNPC(prog_entry + (2 * sizeof(MachInst)));
392
393    //Align the "stack_min" to a page boundary.
394    stack_min = roundDown(stack_min, pageSize);
395
396//    num_processes++;
397}
398
399void
400Sparc32LiveProcess::argsInit(int intSize, int pageSize)
401{
402    typedef M5_32_auxv_t auxv_t;
403    Process::startup();
404
405    string filename;
406    if(argv.size() < 1)
407        filename = "";
408    else
409        filename = argv[0];
410
411    //Even though this is a 32 bit process, the ABI says we still need to
412    //maintain double word alignment of the stack pointer.
413    Addr alignmentMask = ~(8 - 1);
414
415    // load object file into target memory
416    objFile->loadSections(initVirtMem);
417
418    //These are the auxilliary vector types
419    enum auxTypes
420    {
421        SPARC_AT_HWCAP = 16,
422        SPARC_AT_PAGESZ = 6,
423        SPARC_AT_CLKTCK = 17,
424        SPARC_AT_PHDR = 3,
425        SPARC_AT_PHENT = 4,
426        SPARC_AT_PHNUM = 5,
427        SPARC_AT_BASE = 7,
428        SPARC_AT_FLAGS = 8,
429        SPARC_AT_ENTRY = 9,
430        SPARC_AT_UID = 11,
431        SPARC_AT_EUID = 12,
432        SPARC_AT_GID = 13,
433        SPARC_AT_EGID = 14,
434        SPARC_AT_SECURE = 23
435    };
436
437    enum hardwareCaps
438    {
439        M5_HWCAP_SPARC_FLUSH = 1,
440        M5_HWCAP_SPARC_STBAR = 2,
441        M5_HWCAP_SPARC_SWAP = 4,
442        M5_HWCAP_SPARC_MULDIV = 8,
443        M5_HWCAP_SPARC_V9 = 16,
444        //This one should technically only be set
445        //if there is a cheetah or cheetah_plus tlb,
446        //but we'll use it all the time
447        M5_HWCAP_SPARC_ULTRA3 = 32
448    };
449
450    const int64_t hwcap =
451        M5_HWCAP_SPARC_FLUSH |
452        M5_HWCAP_SPARC_STBAR |
453        M5_HWCAP_SPARC_SWAP |
454        M5_HWCAP_SPARC_MULDIV |
455        M5_HWCAP_SPARC_V9 |
456        M5_HWCAP_SPARC_ULTRA3;
457
458
459    //Setup the auxilliary vectors. These will already have endian conversion.
460    //Auxilliary vectors are loaded only for elf formatted executables.
461    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
462    if(elfObject)
463    {
464        //Bits which describe the system hardware capabilities
465        auxv.push_back(auxv_t(SPARC_AT_HWCAP, hwcap));
466        //The system page size
467        auxv.push_back(auxv_t(SPARC_AT_PAGESZ, SparcISA::VMPageSize));
468        //Defined to be 100 in the kernel source.
469        //Frequency at which times() increments
470        auxv.push_back(auxv_t(SPARC_AT_CLKTCK, 100));
471        // For statically linked executables, this is the virtual address of the
472        // program header tables if they appear in the executable image
473        auxv.push_back(auxv_t(SPARC_AT_PHDR, elfObject->programHeaderTable()));
474        // This is the size of a program header entry from the elf file.
475        auxv.push_back(auxv_t(SPARC_AT_PHENT, elfObject->programHeaderSize()));
476        // This is the number of program headers from the original elf file.
477        auxv.push_back(auxv_t(SPARC_AT_PHNUM, elfObject->programHeaderCount()));
478        //This is the address of the elf "interpreter", It should be set
479        //to 0 for regular executables. It should be something else
480        //(not sure what) for dynamic libraries.
481        auxv.push_back(auxv_t(SPARC_AT_BASE, 0));
482        //This is hardwired to 0 in the elf loading code in the kernel
483        auxv.push_back(auxv_t(SPARC_AT_FLAGS, 0));
484        //The entry point to the program
485        auxv.push_back(auxv_t(SPARC_AT_ENTRY, objFile->entryPoint()));
486        //Different user and group IDs
487        auxv.push_back(auxv_t(SPARC_AT_UID, uid()));
488        auxv.push_back(auxv_t(SPARC_AT_EUID, euid()));
489        auxv.push_back(auxv_t(SPARC_AT_GID, gid()));
490        auxv.push_back(auxv_t(SPARC_AT_EGID, egid()));
491        //Whether to enable "secure mode" in the executable
492        auxv.push_back(auxv_t(SPARC_AT_SECURE, 0));
493    }
494
495    //Figure out how big the initial stack needs to be
496
497    // The unaccounted for 8 byte 0 at the top of the stack
498    int mysterious_size = 8;
499
500    //This is the name of the file which is present on the initial stack
501    //It's purpose is to let the user space linker examine the original file.
502    int file_name_size = filename.size() + 1;
503
504    int env_data_size = 0;
505    for (int i = 0; i < envp.size(); ++i) {
506        env_data_size += envp[i].size() + 1;
507    }
508    int arg_data_size = 0;
509    for (int i = 0; i < argv.size(); ++i) {
510        arg_data_size += argv[i].size() + 1;
511    }
512
513    //The info_block - This seems to need an pad for some reason.
514    int info_block_size =
515        (mysterious_size +
516        file_name_size +
517        env_data_size +
518        arg_data_size + intSize);
519
520    //Each auxilliary vector is two 4 byte words
521    int aux_array_size = intSize * 2 * (auxv.size() + 1);
522
523    int envp_array_size = intSize * (envp.size() + 1);
524    int argv_array_size = intSize * (argv.size() + 1);
525
526    int argc_size = intSize;
527    int window_save_size = intSize * 16;
528
529    int space_needed =
530        info_block_size +
531        aux_array_size +
532        envp_array_size +
533        argv_array_size +
534        argc_size +
535        window_save_size;
536
537    stack_min = stack_base - space_needed;
538    stack_min &= alignmentMask;
539    stack_size = stack_base - stack_min;
540
541    // map memory
542    pTable->allocate(roundDown(stack_min, pageSize),
543                     roundUp(stack_size, pageSize));
544
545    // map out initial stack contents
546    uint32_t window_save_base = stack_min;
547    uint32_t argc_base = window_save_base + window_save_size;
548    uint32_t argv_array_base = argc_base + argc_size;
549    uint32_t envp_array_base = argv_array_base + argv_array_size;
550    uint32_t auxv_array_base = envp_array_base + envp_array_size;
551    //The info block is pushed up against the top of the stack, while
552    //the rest of the initial stack frame is aligned to an 8 byte boudary.
553    uint32_t arg_data_base = stack_base - info_block_size + intSize;
554    uint32_t env_data_base = arg_data_base + arg_data_size;
555    uint32_t file_name_base = env_data_base + env_data_size;
556    uint32_t mysterious_base = file_name_base + file_name_size;
557
558    DPRINTF(Sparc, "The addresses of items on the initial stack:\n");
559    DPRINTF(Sparc, "0x%x - file name\n", file_name_base);
560    DPRINTF(Sparc, "0x%x - env data\n", env_data_base);
561    DPRINTF(Sparc, "0x%x - arg data\n", arg_data_base);
562    DPRINTF(Sparc, "0x%x - auxv array\n", auxv_array_base);
563    DPRINTF(Sparc, "0x%x - envp array\n", envp_array_base);
564    DPRINTF(Sparc, "0x%x - argv array\n", argv_array_base);
565    DPRINTF(Sparc, "0x%x - argc \n", argc_base);
566    DPRINTF(Sparc, "0x%x - window save\n", window_save_base);
567    DPRINTF(Sparc, "0x%x - stack min\n", stack_min);
568
569    // write contents to stack
570
571    // figure out argc
572    uint32_t argc = argv.size();
573    uint32_t guestArgc = TheISA::htog(argc);
574
575    //Write out the mysterious 0
576    uint64_t mysterious_zero = 0;
577    initVirtMem->writeBlob(mysterious_base,
578            (uint8_t*)&mysterious_zero, mysterious_size);
579
580    //Write the file name
581    initVirtMem->writeString(file_name_base, filename.c_str());
582
583    //Copy the aux stuff
584    for(int x = 0; x < auxv.size(); x++)
585    {
586        initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
587                (uint8_t*)&(auxv[x].a_type), intSize);
588        initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
589                (uint8_t*)&(auxv[x].a_val), intSize);
590    }
591    //Write out the terminating zeroed auxilliary vector
592    const uint64_t zero = 0;
593    initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
594            (uint8_t*)&zero, 2 * intSize);
595
596    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
597    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
598
599    initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
600
601    //Stuff the trap handlers into the processes address space.
602    //Since the stack grows down and is the highest area in the processes
603    //address space, we can put stuff above it and stay out of the way.
604    int fillSize = sizeof(MachInst) * numFillInsts;
605    int spillSize = sizeof(MachInst) * numSpillInsts;
606    fillStart = stack_base;
607    spillStart = fillStart + fillSize;
608    initVirtMem->writeBlob(fillStart, (uint8_t*)fillHandler32, fillSize);
609    initVirtMem->writeBlob(spillStart, (uint8_t*)spillHandler32, spillSize);
610
611    //Set up the thread context to start running the process
612    //assert(NumArgumentRegs >= 2);
613    //threadContexts[0]->setIntReg(ArgumentReg[0], argc);
614    //threadContexts[0]->setIntReg(ArgumentReg[1], argv_array_base);
615    threadContexts[0]->setIntReg(StackPointerReg, stack_min);
616
617    uint32_t prog_entry = objFile->entryPoint();
618    threadContexts[0]->setPC(prog_entry);
619    threadContexts[0]->setNextPC(prog_entry + sizeof(MachInst));
620    threadContexts[0]->setNextNPC(prog_entry + (2 * sizeof(MachInst)));
621
622    //Align the "stack_min" to a page boundary.
623    stack_min = roundDown(stack_min, pageSize);
624
625//    num_processes++;
626}
627