decoder.isa revision 3941
1// Copyright (c) 2006-2007 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28//          Gabe Black
29//          Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// The actual decoder specification
34//
35
36decode OP default Unknown::unknown()
37{
38    0x0: decode OP2
39    {
40        //Throw an illegal instruction acception
41        0x0: Trap::illtrap({{fault = new IllegalInstruction;}});
42        format BranchN
43        {
44            //bpcc
45            0x1: decode COND2
46            {
47                //Branch Always
48                0x8: decode A
49                {
50                    0x0: bpa(19, {{
51                        NNPC = xc->readPC() + disp;
52                    }});
53                    0x1: bpa(19, {{
54                        NPC = xc->readPC() + disp;
55                        NNPC = NPC + 4;
56                    }}, ',a');
57                }
58                //Branch Never
59                0x0: decode A
60                {
61                    0x0: bpn(19, {{
62                        NNPC = NNPC;//Don't do anything
63                    }});
64                    0x1: bpn(19, {{
65                        NPC = xc->readNextPC() + 4;
66                        NNPC = NPC + 4;
67                    }}, ',a');
68                }
69                default: decode BPCC
70                {
71                    0x0: bpcci(19, {{
72                        if(passesCondition(Ccr<3:0>, COND2))
73                            NNPC = xc->readPC() + disp;
74                        else
75                            handle_annul
76                    }});
77                    0x2: bpccx(19, {{
78                        if(passesCondition(Ccr<7:4>, COND2))
79                            NNPC = xc->readPC() + disp;
80                        else
81                            handle_annul
82                    }});
83                }
84            }
85            //bicc
86            0x2: decode COND2
87            {
88                //Branch Always
89                0x8: decode A
90                {
91                    0x0: ba(22, {{
92                        NNPC = xc->readPC() + disp;
93                    }});
94                    0x1: ba(22, {{
95                        NPC = xc->readPC() + disp;
96                        NNPC = NPC + 4;
97                    }}, ',a');
98                }
99                //Branch Never
100                0x0: decode A
101                {
102                    0x0: bn(22, {{
103                        NNPC = NNPC;//Don't do anything
104                    }});
105                    0x1: bn(22, {{
106                        NPC = xc->readNextPC() + 4;
107                        NNPC = NPC + 4;
108                    }}, ',a');
109                }
110                default: bicc(22, {{
111                    if(passesCondition(Ccr<3:0>, COND2))
112                        NNPC = xc->readPC() + disp;
113                    else
114                        handle_annul
115                }});
116            }
117        }
118        0x3: decode RCOND2
119        {
120            format BranchSplit
121            {
122                0x1: bpreq({{
123                    if(Rs1.sdw == 0)
124                        NNPC = xc->readPC() + disp;
125                    else
126                        handle_annul
127                }});
128                0x2: bprle({{
129                    if(Rs1.sdw <= 0)
130                        NNPC = xc->readPC() + disp;
131                    else
132                        handle_annul
133                }});
134                0x3: bprl({{
135                    if(Rs1.sdw < 0)
136                        NNPC = xc->readPC() + disp;
137                    else
138                        handle_annul
139                }});
140                0x5: bprne({{
141                    if(Rs1.sdw != 0)
142                        NNPC = xc->readPC() + disp;
143                    else
144                        handle_annul
145                }});
146                0x6: bprg({{
147                    if(Rs1.sdw > 0)
148                        NNPC = xc->readPC() + disp;
149                    else
150                        handle_annul
151                }});
152                0x7: bprge({{
153                    if(Rs1.sdw >= 0)
154                        NNPC = xc->readPC() + disp;
155                    else
156                        handle_annul
157                }});
158            }
159        }
160        //SETHI (or NOP if rd == 0 and imm == 0)
161        0x4: SetHi::sethi({{Rd.udw = imm;}});
162        0x5: FailUnimpl::fbpfcc();
163        0x6: FailUnimpl::fbfcc();
164    }
165    0x1: BranchN::call(30, {{
166            if (Pstate<3:>)
167                R15 = (xc->readPC())<31:0>;
168            else
169                R15 = xc->readPC();
170            NNPC = R15 + disp;
171    }});
172    0x2: decode OP3 {
173        format IntOp {
174            0x00: add({{Rd = Rs1.sdw + Rs2_or_imm13;}});
175            0x01: and({{Rd = Rs1.sdw & Rs2_or_imm13;}});
176            0x02: or({{Rd = Rs1.sdw | Rs2_or_imm13;}});
177            0x03: xor({{Rd = Rs1.sdw ^ Rs2_or_imm13;}});
178            0x04: sub({{Rd = Rs1.sdw - Rs2_or_imm13;}});
179            0x05: andn({{Rd = Rs1.sdw & ~Rs2_or_imm13;}});
180            0x06: orn({{Rd = Rs1.sdw | ~Rs2_or_imm13;}});
181            0x07: xnor({{Rd = ~(Rs1.sdw ^ Rs2_or_imm13);}});
182            0x08: addc({{Rd = Rs1.sdw + Rs2_or_imm13 + Ccr<0:0>;}});
183            0x09: mulx({{Rd = Rs1.sdw * Rs2_or_imm13;}});
184            0x0A: umul({{
185                Rd = Rs1.udw<31:0> * Rs2_or_imm13<31:0>;
186                Y = Rd<63:32>;
187            }});
188            0x0B: smul({{
189                Rd.sdw = sext<32>(Rs1.sdw<31:0>) * sext<32>(Rs2_or_imm13<31:0>);
190                Y = Rd.sdw<63:32>;
191            }});
192            0x0C: subc({{Rd.sdw = Rs1.sdw + (~Rs2_or_imm13) + 1 - Ccr<0:0>}});
193            0x0D: udivx({{
194                if(Rs2_or_imm13 == 0) fault = new DivisionByZero;
195                else Rd.udw = Rs1.udw / Rs2_or_imm13;
196            }});
197            0x0E: udiv({{
198                if(Rs2_or_imm13 == 0) fault = new DivisionByZero;
199                else
200                {
201                    Rd.udw = ((Y << 32) | Rs1.udw<31:0>) / Rs2_or_imm13;
202                    if(Rd.udw >> 32 != 0)
203                        Rd.udw = 0xFFFFFFFF;
204                }
205            }});
206            0x0F: sdiv({{
207                if(Rs2_or_imm13.sdw == 0)
208                    fault = new DivisionByZero;
209                else
210                {
211                    Rd.udw = ((int64_t)((Y << 32) | Rs1.sdw<31:0>)) / Rs2_or_imm13.sdw;
212                    if((int64_t)Rd.udw >= std::numeric_limits<int32_t>::max())
213                        Rd.udw = 0x7FFFFFFF;
214                    else if((int64_t)Rd.udw <= std::numeric_limits<int32_t>::min())
215                        Rd.udw = ULL(0xFFFFFFFF80000000);
216                }
217            }});
218        }
219        format IntOpCc {
220            0x10: addcc({{
221                int64_t resTemp, val2 = Rs2_or_imm13;
222                Rd = resTemp = Rs1 + val2;}},
223                {{(Rs1<31:0> + val2<31:0>)<32:>}},
224                {{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
225                {{(Rs1<63:1> + val2<63:1> + (Rs1 & val2)<0:>)<63:>}},
226                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
227            );
228            0x11: IntOpCcRes::andcc({{Rd = Rs1 & Rs2_or_imm13;}});
229            0x12: IntOpCcRes::orcc({{Rd = Rs1 | Rs2_or_imm13;}});
230            0x13: IntOpCcRes::xorcc({{Rd = Rs1 ^ Rs2_or_imm13;}});
231            0x14: subcc({{
232                int64_t val2 = Rs2_or_imm13;
233                Rd = Rs1 - val2;}},
234                {{(~(Rs1<31:0> + (~val2)<31:0> + 1))<32:>}},
235                {{(Rs1<31:> != val2<31:>) && (Rs1<31:> != Rd<31:>)}},
236                {{(~(Rs1<63:1> + (~val2)<63:1> +
237                    (Rs1 | ~val2)<0:>))<63:>}},
238                {{Rs1<63:> != val2<63:> && Rs1<63:> != Rd<63:>}}
239            );
240            0x15: IntOpCcRes::andncc({{Rd = Rs1 & ~Rs2_or_imm13;}});
241            0x16: IntOpCcRes::orncc({{Rd = Rs1 | ~Rs2_or_imm13;}});
242            0x17: IntOpCcRes::xnorcc({{Rd = ~(Rs1 ^ Rs2_or_imm13);}});
243            0x18: addccc({{
244                int64_t resTemp, val2 = Rs2_or_imm13;
245                int64_t carryin = Ccr<0:0>;
246                Rd = resTemp = Rs1 + val2 + carryin;}},
247                {{(Rs1<31:0> + val2<31:0> + carryin)<32:>}},
248                {{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
249                {{((Rs1 & val2) | (~resTemp & (Rs1 | val2)))<63:>}},
250                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
251            );
252            0x1A: umulcc({{
253                uint64_t resTemp;
254                Rd = resTemp = Rs1.udw<31:0> * Rs2_or_imm13.udw<31:0>;
255                Y = resTemp<63:32>;}},
256                {{0}},{{0}},{{0}},{{0}});
257            0x1B: smulcc({{
258                int64_t resTemp;
259                Rd = resTemp = sext<32>(Rs1.sdw<31:0>) * sext<32>(Rs2_or_imm13<31:0>);
260                Y = resTemp<63:32>;}},
261                {{0}},{{0}},{{0}},{{0}});
262            0x1C: subccc({{
263                int64_t resTemp, val2 = Rs2_or_imm13;
264                int64_t carryin = Ccr<0:0>;
265                Rd = resTemp = Rs1 + ~val2 + 1 - carryin;}},
266                {{((~Rs1 & val2) | (resTemp & (~Rs1 | val2)))<31:>}},
267                {{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}},
268                {{((~Rs1 & val2) | (resTemp & (~Rs1 | val2)))<63:>}},
269                {{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
270            );
271            0x1D: udivxcc({{
272                if(Rs2_or_imm13.udw == 0) fault = new DivisionByZero;
273                else Rd = Rs1.udw / Rs2_or_imm13.udw;}}
274                ,{{0}},{{0}},{{0}},{{0}});
275            0x1E: udivcc({{
276                uint32_t resTemp, val2 = Rs2_or_imm13.udw;
277                int32_t overflow = 0;
278                if(val2 == 0) fault = new DivisionByZero;
279                else
280                {
281                    resTemp = (uint64_t)((Y << 32) | Rs1.udw<31:0>) / val2;
282                    overflow = (resTemp<63:32> != 0);
283                    if(overflow) Rd = resTemp = 0xFFFFFFFF;
284                    else Rd = resTemp;
285                } }},
286                {{0}},
287                {{overflow}},
288                {{0}},
289                {{0}}
290            );
291            0x1F: sdivcc({{
292                int64_t val2 = Rs2_or_imm13.sdw<31:0>;
293                bool overflow = false, underflow = false;
294                if(val2 == 0) fault = new DivisionByZero;
295                else
296                {
297                    Rd = (int64_t)((Y << 32) | Rs1.sdw<31:0>) / val2;
298                    overflow = ((int64_t)Rd >= std::numeric_limits<int32_t>::max());
299                    underflow = ((int64_t)Rd <= std::numeric_limits<int32_t>::min());
300                    if(overflow) Rd = 0x7FFFFFFF;
301                    else if(underflow) Rd = ULL(0xFFFFFFFF80000000);
302                } }},
303                {{0}},
304                {{overflow || underflow}},
305                {{0}},
306                {{0}}
307            );
308            0x20: taddcc({{
309                int64_t resTemp, val2 = Rs2_or_imm13;
310                Rd = resTemp = Rs1 + val2;
311                int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
312                {{((Rs1<31:0> + val2<31:0>)<32:0>)}},
313                {{overflow}},
314                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
315                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
316            );
317            0x21: tsubcc({{
318                int64_t resTemp, val2 = Rs2_or_imm13;
319                Rd = resTemp = Rs1 + val2;
320                int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
321                {{(Rs1<31:0> + val2<31:0>)<32:0>}},
322                {{overflow}},
323                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
324                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
325            );
326            0x22: taddcctv({{
327                int64_t val2 = Rs2_or_imm13;
328                Rd = Rs1 + val2;
329                int32_t overflow = Rs1<1:0> || val2<1:0> ||
330                        (Rs1<31:> == val2<31:> && val2<31:> != Rd<31:>);
331                if(overflow) fault = new TagOverflow;}},
332                {{((Rs1<31:0> + val2<31:0>)<32:0>)}},
333                {{overflow}},
334                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
335                {{Rs1<63:> == val2<63:> && val2<63:> != Rd<63:>}}
336            );
337            0x23: tsubcctv({{
338                int64_t resTemp, val2 = Rs2_or_imm13;
339                Rd = resTemp = Rs1 + val2;
340                int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
341                if(overflow) fault = new TagOverflow;}},
342                {{((Rs1<31:0> + val2<31:0>)<32:0>)}},
343                {{overflow}},
344                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
345                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
346            );
347            0x24: mulscc({{
348                int64_t resTemp, multiplicand = Rs2_or_imm13;
349                int32_t multiplier = Rs1<31:0>;
350                int32_t savedLSB = Rs1<0:>;
351                multiplier = multiplier<31:1> |
352                    ((Ccr<3:3> ^ Ccr<1:1>) << 32);
353                if(!Y<0:>)
354                    multiplicand = 0;
355                Rd = resTemp = multiplicand + multiplier;
356                Y = Y<31:1> | (savedLSB << 31);}},
357                {{((multiplicand<31:0> + multiplier<31:0>)<32:0>)}},
358                {{multiplicand<31:> == multiplier<31:> && multiplier<31:> != resTemp<31:>}},
359                {{((multiplicand >> 1) + (multiplier >> 1) + (multiplicand & multiplier & 0x1))<63:>}},
360                {{multiplicand<63:> == multiplier<63:> && multiplier<63:> != resTemp<63:>}}
361            );
362        }
363        format IntOp
364        {
365            0x25: decode X {
366                0x0: sll({{Rd = Rs1 << (I ? SHCNT32 : Rs2<4:0>);}});
367                0x1: sllx({{Rd = Rs1 << (I ? SHCNT64 : Rs2<5:0>);}});
368            }
369            0x26: decode X {
370                0x0: srl({{Rd = Rs1.uw >> (I ? SHCNT32 : Rs2<4:0>);}});
371                0x1: srlx({{Rd = Rs1.udw >> (I ? SHCNT64 : Rs2<5:0>);}});
372            }
373            0x27: decode X {
374                0x0: sra({{Rd = Rs1.sw >> (I ? SHCNT32 : Rs2<4:0>);}});
375                0x1: srax({{Rd = Rs1.sdw >> (I ? SHCNT64 : Rs2<5:0>);}});
376            }
377            0x28: decode RS1 {
378                0x00: NoPriv::rdy({{Rd = Y<31:0>;}});
379                //1 should cause an illegal instruction exception
380                0x02: NoPriv::rdccr({{Rd = Ccr;}});
381                0x03: NoPriv::rdasi({{Rd = Asi;}});
382                0x04: PrivCheck::rdtick({{Rd = Tick;}}, {{Tick<63:>}});
383                0x05: NoPriv::rdpc({{
384                    if(Pstate<3:>)
385                        Rd = (xc->readPC())<31:0>;
386                    else
387                        Rd = xc->readPC();}});
388                0x06: NoPriv::rdfprs({{
389                    //Wait for all fpops to finish.
390                    Rd = Fprs;
391                }});
392                //7-14 should cause an illegal instruction exception
393                0x0F: decode I {
394                    0x0: Nop::stbar({{/*stuff*/}});
395                    0x1: Nop::membar({{/*stuff*/}});
396                }
397                0x10: Priv::rdpcr({{Rd = Pcr;}});
398                0x11: PrivCheck::rdpic({{Rd = Pic;}}, {{Pcr<0:>}});
399                //0x12 should cause an illegal instruction exception
400                0x13: NoPriv::rdgsr({{
401                    if(Fprs<2:> == 0 || Pstate<4:> == 0)
402                        Rd = Gsr;
403                    else
404                        fault = new FpDisabled;
405                }});
406                //0x14-0x15 should cause an illegal instruction exception
407                0x16: Priv::rdsoftint({{Rd = Softint;}});
408                0x17: Priv::rdtick_cmpr({{Rd = TickCmpr;}});
409                0x18: PrivCheck::rdstick({{Rd = Stick}}, {{Stick<63:>}});
410                0x19: Priv::rdstick_cmpr({{Rd = StickCmpr;}});
411                0x1A: Priv::rdstrand_sts_reg({{
412                    if(Pstate<2:> && !Hpstate<2:>)
413                        Rd = StrandStsReg<0:>;
414                    else
415                        Rd = StrandStsReg;
416                }});
417                //0x1A is supposed to be reserved, but it reads the strand
418                //status register.
419                //0x1B-0x1F should cause an illegal instruction exception
420            }
421            0x29: decode RS1 {
422                0x00: HPriv::rdhprhpstate({{Rd = Hpstate;}});
423                0x01: HPriv::rdhprhtstate({{
424                    if(Tl == 0)
425                        return new IllegalInstruction;
426                    Rd = Htstate;
427                }});
428                //0x02 should cause an illegal instruction exception
429                0x03: HPriv::rdhprhintp({{Rd = Hintp;}});
430                //0x04 should cause an illegal instruction exception
431                0x05: HPriv::rdhprhtba({{Rd = Htba;}});
432                0x06: HPriv::rdhprhver({{Rd = Hver;}});
433                //0x07-0x1E should cause an illegal instruction exception
434                0x1F: HPriv::rdhprhstick_cmpr({{Rd = HstickCmpr;}});
435            }
436            0x2A: decode RS1 {
437                0x00: Priv::rdprtpc({{
438                    if(Tl == 0)
439                        return new IllegalInstruction;
440                    Rd = Tpc;
441                }});
442                0x01: Priv::rdprtnpc({{
443                    if(Tl == 0)
444                        return new IllegalInstruction;
445                    Rd = Tnpc;
446                }});
447                0x02: Priv::rdprtstate({{
448                    if(Tl == 0)
449                        return new IllegalInstruction;
450                    Rd = Tstate;
451                }});
452                0x03: Priv::rdprtt({{
453                    if(Tl == 0)
454                        return new IllegalInstruction;
455                    Rd = Tt;
456                }});
457                0x04: Priv::rdprtick({{Rd = Tick;}});
458                0x05: Priv::rdprtba({{Rd = Tba;}});
459                0x06: Priv::rdprpstate({{Rd = Pstate;}});
460                0x07: Priv::rdprtl({{Rd = Tl;}});
461                0x08: Priv::rdprpil({{Rd = Pil;}});
462                0x09: Priv::rdprcwp({{Rd = Cwp;}});
463                0x0A: Priv::rdprcansave({{Rd = Cansave;}});
464                0x0B: Priv::rdprcanrestore({{Rd = Canrestore;}});
465                0x0C: Priv::rdprcleanwin({{Rd = Cleanwin;}});
466                0x0D: Priv::rdprotherwin({{Rd = Otherwin;}});
467                0x0E: Priv::rdprwstate({{Rd = Wstate;}});
468                //0x0F should cause an illegal instruction exception
469                0x10: Priv::rdprgl({{Rd = Gl;}});
470                //0x11-0x1F should cause an illegal instruction exception
471            }
472            0x2B: BasicOperate::flushw({{
473                if(NWindows - 2 - Cansave != 0)
474                {
475                    if(Otherwin)
476                        fault = new SpillNOther(4*Wstate<5:3>);
477                    else
478                        fault = new SpillNNormal(4*Wstate<2:0>);
479                }
480            }});
481            0x2C: decode MOVCC3
482            {
483                0x0: Trap::movccfcc({{fault = new FpDisabled;}});
484                0x1: decode CC
485                {
486                    0x0: movcci({{
487                        if(passesCondition(Ccr<3:0>, COND4))
488                            Rd = Rs2_or_imm11;
489                        else
490                            Rd = Rd;
491                    }});
492                    0x2: movccx({{
493                        if(passesCondition(Ccr<7:4>, COND4))
494                            Rd = Rs2_or_imm11;
495                        else
496                            Rd = Rd;
497                    }});
498                }
499            }
500            0x2D: sdivx({{
501                if(Rs2_or_imm13.sdw == 0) fault = new DivisionByZero;
502                else Rd.sdw = Rs1.sdw / Rs2_or_imm13.sdw;
503            }});
504            0x2E: Trap::popc({{fault = new IllegalInstruction;}});
505            0x2F: decode RCOND3
506            {
507                0x1: movreq({{Rd = (Rs1.sdw == 0) ? Rs2_or_imm10 : Rd;}});
508                0x2: movrle({{Rd = (Rs1.sdw <= 0) ? Rs2_or_imm10 : Rd;}});
509                0x3: movrl({{Rd = (Rs1.sdw < 0) ? Rs2_or_imm10 : Rd;}});
510                0x5: movrne({{Rd = (Rs1.sdw != 0) ? Rs2_or_imm10 : Rd;}});
511                0x6: movrg({{Rd = (Rs1.sdw > 0) ? Rs2_or_imm10 : Rd;}});
512                0x7: movrge({{Rd = (Rs1.sdw >= 0) ? Rs2_or_imm10 : Rd;}});
513            }
514            0x30: decode RD {
515                0x00: NoPriv::wry({{Y = (Rs1 ^ Rs2_or_imm13)<31:0>;}});
516                //0x01 should cause an illegal instruction exception
517                0x02: NoPriv::wrccr({{Ccr = Rs1 ^ Rs2_or_imm13;}});
518                0x03: NoPriv::wrasi({{Asi = Rs1 ^ Rs2_or_imm13;}});
519                //0x04-0x05 should cause an illegal instruction exception
520                0x06: NoPriv::wrfprs({{Fprs = Rs1 ^ Rs2_or_imm13;}});
521                //0x07-0x0E should cause an illegal instruction exception
522                0x0F: Trap::softreset({{fault = new SoftwareInitiatedReset;}});
523                0x10: Priv::wrpcr({{Pcr = Rs1 ^ Rs2_or_imm13;}});
524                0x11: PrivCheck::wrpic({{Pic = Rs1 ^ Rs2_or_imm13;}}, {{Pcr<0:>}});
525                //0x12 should cause an illegal instruction exception
526                0x13: NoPriv::wrgsr({{
527                    if(Fprs<2:> == 0 || Pstate<4:> == 0)
528                        return new FpDisabled;
529                    Gsr = Rs1 ^ Rs2_or_imm13;
530                }});
531                0x14: Priv::wrsoftint_set({{SoftintSet = Rs1 ^ Rs2_or_imm13;}});
532                0x15: Priv::wrsoftint_clr({{SoftintClr = Rs1 ^ Rs2_or_imm13;}});
533                0x16: Priv::wrsoftint({{Softint = Rs1 ^ Rs2_or_imm13;}});
534                0x17: Priv::wrtick_cmpr({{TickCmpr = Rs1 ^ Rs2_or_imm13;}});
535                0x18: NoPriv::wrstick({{
536                    if(!Hpstate<2:>)
537                        return new IllegalInstruction;
538                    Stick = Rs1 ^ Rs2_or_imm13;
539                }});
540                0x19: Priv::wrstick_cmpr({{StickCmpr = Rs1 ^ Rs2_or_imm13;}});
541                0x1A: Priv::wrstrand_sts_reg({{
542                    if(Pstate<2:> && !Hpstate<2:>)
543                        StrandStsReg = StrandStsReg<63:1> |
544                                (Rs1 ^ Rs2_or_imm13)<0:>;
545                    else
546                        StrandStsReg = Rs1 ^ Rs2_or_imm13;
547                }});
548                //0x1A is supposed to be reserved, but it writes the strand
549                //status register.
550                //0x1B-0x1F should cause an illegal instruction exception
551            }
552            0x31: decode FCN {
553                0x0: Priv::saved({{
554                    assert(Cansave < NWindows - 2);
555                    assert(Otherwin || Canrestore);
556                    Cansave = Cansave + 1;
557                    if(Otherwin == 0)
558                        Canrestore = Canrestore - 1;
559                    else
560                        Otherwin = Otherwin - 1;
561                }});
562                0x1: Priv::restored({{
563                    assert(Cansave || Otherwin);
564                    assert(Canrestore < NWindows - 2);
565                    Canrestore = Canrestore + 1;
566                    if(Otherwin == 0)
567                        Cansave = Cansave - 1;
568                    else
569                        Otherwin = Otherwin - 1;
570
571                    if(Cleanwin < NWindows - 1)
572                        Cleanwin = Cleanwin + 1;
573                }});
574            }
575            0x32: decode RD {
576                0x00: Priv::wrprtpc({{
577                    if(Tl == 0)
578                        return new IllegalInstruction;
579                    else
580                        Tpc = Rs1 ^ Rs2_or_imm13;
581                }});
582                0x01: Priv::wrprtnpc({{
583                    if(Tl == 0)
584                        return new IllegalInstruction;
585                    else
586                        Tnpc = Rs1 ^ Rs2_or_imm13;
587                }});
588                0x02: Priv::wrprtstate({{
589                    if(Tl == 0)
590                        return new IllegalInstruction;
591                    else
592                        Tstate = Rs1 ^ Rs2_or_imm13;
593                }});
594                0x03: Priv::wrprtt({{
595                    if(Tl == 0)
596                        return new IllegalInstruction;
597                    else
598                        Tt = Rs1 ^ Rs2_or_imm13;
599                }});
600                0x04: HPriv::wrprtick({{Tick = Rs1 ^ Rs2_or_imm13;}});
601                0x05: Priv::wrprtba({{Tba = Rs1 ^ Rs2_or_imm13;}});
602                0x06: Priv::wrprpstate({{Pstate = Rs1 ^ Rs2_or_imm13;}});
603                0x07: Priv::wrprtl({{
604                    if(Pstate<2:> && !Hpstate<2:>)
605                        Tl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxPTL);
606                    else
607                        Tl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxTL);
608                }});
609                0x08: Priv::wrprpil({{Pil = Rs1 ^ Rs2_or_imm13;}});
610                0x09: Priv::wrprcwp({{Cwp = Rs1 ^ Rs2_or_imm13;}});
611                0x0A: Priv::wrprcansave({{Cansave = Rs1 ^ Rs2_or_imm13;}});
612                0x0B: Priv::wrprcanrestore({{Canrestore = Rs1 ^ Rs2_or_imm13;}});
613                0x0C: Priv::wrprcleanwin({{Cleanwin = Rs1 ^ Rs2_or_imm13;}});
614                0x0D: Priv::wrprotherwin({{Otherwin = Rs1 ^ Rs2_or_imm13;}});
615                0x0E: Priv::wrprwstate({{Wstate = Rs1 ^ Rs2_or_imm13;}});
616                //0x0F should cause an illegal instruction exception
617                0x10: Priv::wrprgl({{
618                    if(Pstate<2:> && !Hpstate<2:>)
619                        Gl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxPGL);
620                    else
621                        Gl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxGL);
622                }});
623                //0x11-0x1F should cause an illegal instruction exception
624            }
625            0x33: decode RD {
626                0x00: HPriv::wrhprhpstate({{Hpstate = Rs1 ^ Rs2_or_imm13;}});
627                0x01: HPriv::wrhprhtstate({{
628                    if(Tl == 0)
629                        return new IllegalInstruction;
630                    Htstate = Rs1 ^ Rs2_or_imm13;
631                }});
632                //0x02 should cause an illegal instruction exception
633                0x03: HPriv::wrhprhintp({{Hintp = Rs1 ^ Rs2_or_imm13;}});
634                //0x04 should cause an illegal instruction exception
635                0x05: HPriv::wrhprhtba({{Htba = Rs1 ^ Rs2_or_imm13;}});
636                //0x06-0x01D should cause an illegal instruction exception
637                0x1F: HPriv::wrhprhstick_cmpr({{HstickCmpr = Rs1 ^ Rs2_or_imm13;}});
638            }
639            0x34: decode OPF{
640                format BasicOperate{
641                    0x01: fmovs({{
642                        Frds.uw = Frs2s.uw;
643                        //fsr.ftt = fsr.cexc = 0
644                        Fsr &= ~(7 << 14);
645                        Fsr &= ~(0x1F);
646                    }});
647                    0x02: fmovd({{
648                        Frd.udw = Frs2.udw;
649                        //fsr.ftt = fsr.cexc = 0
650                        Fsr &= ~(7 << 14);
651                        Fsr &= ~(0x1F);
652                    }});
653                    0x03: Trap::fmovq({{fault = new FpExceptionOther;}}); //unimp fpop
654                    0x05: fnegs({{
655                        Frds.uw = Frs2s.uw ^ (1UL << 31);
656                        //fsr.ftt = fsr.cexc = 0
657                        Fsr &= ~(7 << 14);
658                        Fsr &= ~(0x1F);
659                    }});
660                    0x06: fnegd({{
661                        Frd.udw = Frs2.udw ^ (1ULL << 63);
662                        //fsr.ftt = fsr.cexc = 0
663                        Fsr &= ~(7 << 14);
664                        Fsr &= ~(0x1F);
665                    }});
666                    0x07: Trap::fnegq({{fault = new FpExceptionOther;}}); //fpop unimp
667                    0x09: fabss({{
668                        Frds.uw = ((1UL << 31) - 1) & Frs2s.uw;
669                        //fsr.ftt = fsr.cexc = 0
670                        Fsr &= ~(7 << 14);
671                        Fsr &= ~(0x1F);
672                    }});
673                    0x0A: fabsd({{
674                        Frd.udw = ((1ULL << 63) - 1) & Frs2.udw;
675                        //fsr.ftt = fsr.cexc = 0
676                        Fsr &= ~(7 << 14);
677                        Fsr &= ~(0x1F);
678                    }});
679                    0x0B: Trap::fabsq({{fault = new FpExceptionOther;}}); //fpop unimp
680                    0x29: fsqrts({{Frds.sf = std::sqrt(Frs2s.sf);}});
681                    0x2A: fsqrtd({{Frd.df = std::sqrt(Frs2.df);}});
682                    0x2B: Trap::fsqrtq({{fault = new FpExceptionOther;}}); //unimp fpop
683                    0x41: fadds({{Frds.sf = Frs1s.sf + Frs2s.sf;}});
684                    0x42: faddd({{Frd.df = Frs1.df + Frs2.df;}});
685                    0x43: Trap::faddq({{fault = new FpExceptionOther;}}); //unimp fpop
686                    0x45: fsubs({{Frds.sf = Frs1s.sf - Frs2s.sf;}});
687                    0x46: fsubd({{Frd.df = Frs1.df - Frs2.df;}});
688                    0x47: Trap::fsubq({{fault = new FpExceptionOther;}}); //unimp fpop
689                    0x49: fmuls({{Frds.sf = Frs1s.sf * Frs2s.sf;}});
690                    0x4A: fmuld({{Frd.df = Frs1.df * Frs2.df;}});
691                    0x4B: Trap::fmulq({{fault = new FpExceptionOther;}}); //unimp fpop
692                    0x4D: fdivs({{Frds.sf = Frs1s.sf / Frs2s.sf;}});
693                    0x4E: fdivd({{Frd.df = Frs1.df / Frs2.df;}});
694                    0x4F: Trap::fdivq({{fault = new FpExceptionOther;}}); //unimp fpop
695                    0x69: fsmuld({{Frd.df = Frs1s.sf * Frs2s.sf;}});
696                    0x6E: Trap::fdmulq({{fault = new FpExceptionOther;}}); //unimp fpop
697                    0x81: fstox({{
698                            Frd.df = (double)static_cast<int64_t>(Frs2s.sf);
699                    }});
700                    0x82: fdtox({{
701                            Frd.df = (double)static_cast<int64_t>(Frs2.df);
702                    }});
703                    0x83: Trap::fqtox({{fault = new FpExceptionOther;}}); //unimp fpop
704                    0x84: fxtos({{
705                            Frds.sf = static_cast<float>((int64_t)Frs2.df);
706                    }});
707                    0x88: fxtod({{
708                            Frd.df = static_cast<double>((int64_t)Frs2.df);
709                    }});
710                    0x8C: Trap::fxtoq({{fault = new FpExceptionOther;}}); //unimp fpop
711                    0xC4: fitos({{
712                            Frds.sf = static_cast<float>((int32_t)Frs2s.sf);
713                    }});
714                    0xC6: fdtos({{Frds.sf = Frs2.df;}});
715                    0xC7: Trap::fqtos({{fault = new FpExceptionOther;}}); //unimp fpop
716                    0xC8: fitod({{
717                            Frd.df = static_cast<double>((int32_t)Frs2s.sf);
718                    }});
719                    0xC9: fstod({{Frd.df = Frs2s.sf;}});
720                    0xCB: Trap::fqtod({{fault = new FpExceptionOther;}}); // unimp fpop
721                    0xCC: Trap::fitoq({{fault = new FpExceptionOther;}}); // unimp fpop
722                    0xCD: Trap::fstoq({{fault = new FpExceptionOther;}}); // unimp fpop
723                    0xCE: Trap::fdtoq({{fault = new FpExceptionOther;}}); // unimp fpop
724                    0xD1: fstoi({{
725                            Frds.sf = (float)static_cast<int32_t>(Frs2s.sf);
726                    }});
727                    0xD2: fdtoi({{
728                            Frds.sf = (float)static_cast<int32_t>(Frs2.df);
729                    }});
730                    0xD3: Trap::fqtoi({{fault = new FpExceptionOther;}}); // unimp fpop
731                    default: FailUnimpl::fpop1();
732                }
733            }
734            0x35: Trap::fpop2({{fault = new FpDisabled;}});
735            //This used to be just impdep1, but now it's a whole bunch
736            //of instructions
737            0x36: decode OPF{
738                0x00: FailUnimpl::edge8();
739                0x01: FailUnimpl::edge8n();
740                0x02: FailUnimpl::edge8l();
741                0x03: FailUnimpl::edge8ln();
742                0x04: FailUnimpl::edge16();
743                0x05: FailUnimpl::edge16n();
744                0x06: FailUnimpl::edge16l();
745                0x07: FailUnimpl::edge16ln();
746                0x08: FailUnimpl::edge32();
747                0x09: FailUnimpl::edge32n();
748                0x0A: FailUnimpl::edge32l();
749                0x0B: FailUnimpl::edge32ln();
750                0x10: FailUnimpl::array8();
751                0x12: FailUnimpl::array16();
752                0x14: FailUnimpl::array32();
753                0x18: BasicOperate::alignaddr({{
754                    uint64_t sum = Rs1 + Rs2;
755                    Rd = sum & ~7;
756                    Gsr = (Gsr & ~7) | (sum & 7);
757                }});
758                0x19: FailUnimpl::bmask();
759                0x1A: BasicOperate::alignaddresslittle({{
760                    uint64_t sum = Rs1 + Rs2;
761                    Rd = sum & ~7;
762                    Gsr = (Gsr & ~7) | ((~sum + 1) & 7);
763                }});
764                0x20: FailUnimpl::fcmple16();
765                0x22: FailUnimpl::fcmpne16();
766                0x24: FailUnimpl::fcmple32();
767                0x26: FailUnimpl::fcmpne32();
768                0x28: FailUnimpl::fcmpgt16();
769                0x2A: FailUnimpl::fcmpeq16();
770                0x2C: FailUnimpl::fcmpgt32();
771                0x2E: FailUnimpl::fcmpeq32();
772                0x31: FailUnimpl::fmul8x16();
773                0x33: FailUnimpl::fmul8x16au();
774                0x35: FailUnimpl::fmul8x16al();
775                0x36: FailUnimpl::fmul8sux16();
776                0x37: FailUnimpl::fmul8ulx16();
777                0x38: FailUnimpl::fmuld8sux16();
778                0x39: FailUnimpl::fmuld8ulx16();
779                0x3A: Trap::fpack32({{fault = new IllegalInstruction;}});
780                0x3B: Trap::fpack16({{fault = new IllegalInstruction;}});
781                0x3D: Trap::fpackfix({{fault = new IllegalInstruction;}});
782                0x3E: Trap::pdist({{fault = new IllegalInstruction;}});
783                0x48: BasicOperate::faligndata({{
784                        uint64_t msbX = Frs1.udw;
785                        uint64_t lsbX = Frs2.udw;
786                        //Some special cases need to be split out, first
787                        //because they're the most likely to be used, and
788                        //second because otherwise, we end up shifting by
789                        //greater than the width of the type being shifted,
790                        //namely 64, which produces undefined results according
791                        //to the C standard.
792                        switch(Gsr<2:0>)
793                        {
794                            case 0:
795                                Frd.udw = msbX;
796                                break;
797                            case 8:
798                                Frd.udw = lsbX;
799                                break;
800                            default:
801                                uint64_t msbShift = Gsr<2:0> * 8;
802                                uint64_t lsbShift = (8 - Gsr<2:0>) * 8;
803                                uint64_t msbMask = ((uint64_t)(-1)) >> msbShift;
804                                uint64_t lsbMask = ((uint64_t)(-1)) << lsbShift;
805                                Frd.udw = ((msbX & msbMask) << msbShift) |
806                                        ((lsbX & lsbMask) >> lsbShift);
807                        }
808                }});
809                0x4B: Trap::fpmerge({{fault = new IllegalInstruction;}});
810                0x4C: FailUnimpl::bshuffle();
811                0x4D: FailUnimpl::fexpand();
812                0x50: FailUnimpl::fpadd16();
813                0x51: FailUnimpl::fpadd16s();
814                0x52: FailUnimpl::fpadd32();
815                0x53: FailUnimpl::fpadd32s();
816                0x54: FailUnimpl::fpsub16();
817                0x55: FailUnimpl::fpsub16s();
818                0x56: FailUnimpl::fpsub32();
819                0x57: FailUnimpl::fpsub32s();
820                0x60: BasicOperate::fzero({{Frd.df = 0;}});
821                0x61: BasicOperate::fzeros({{Frds.sf = 0;}});
822                0x62: FailUnimpl::fnor();
823                0x63: FailUnimpl::fnors();
824                0x64: FailUnimpl::fandnot2();
825                0x65: FailUnimpl::fandnot2s();
826                0x66: BasicOperate::fnot2({{
827                        Frd.df = (double)(~((uint64_t)Frs2.df));
828                }});
829                0x67: BasicOperate::fnot2s({{
830                        Frds.sf = (float)(~((uint32_t)Frs2s.sf));
831                }});
832                0x68: FailUnimpl::fandnot1();
833                0x69: FailUnimpl::fandnot1s();
834                0x6A: BasicOperate::fnot1({{
835                        Frd.df = (double)(~((uint64_t)Frs1.df));
836                }});
837                0x6B: BasicOperate::fnot1s({{
838                        Frds.sf = (float)(~((uint32_t)Frs1s.sf));
839                }});
840                0x6C: FailUnimpl::fxor();
841                0x6D: FailUnimpl::fxors();
842                0x6E: FailUnimpl::fnand();
843                0x6F: FailUnimpl::fnands();
844                0x70: FailUnimpl::fand();
845                0x71: FailUnimpl::fands();
846                0x72: FailUnimpl::fxnor();
847                0x73: FailUnimpl::fxnors();
848                0x74: BasicOperate::fsrc1({{Frd.udw = Frs1.udw;}});
849                0x75: BasicOperate::fsrc1s({{Frds.uw = Frs1s.uw;}});
850                0x76: FailUnimpl::fornot2();
851                0x77: FailUnimpl::fornot2s();
852                0x78: BasicOperate::fsrc2({{Frd.udw = Frs2.udw;}});
853                0x79: BasicOperate::fsrc2s({{Frds.uw = Frs2s.uw;}});
854                0x7A: FailUnimpl::fornot1();
855                0x7B: FailUnimpl::fornot1s();
856                0x7C: FailUnimpl::for();
857                0x7D: FailUnimpl::fors();
858                0x7E: BasicOperate::fone({{Frd.udw = std::numeric_limits<uint64_t>::max();}});
859                0x7F: BasicOperate::fones({{Frds.uw = std::numeric_limits<uint32_t>::max();}});
860                0x80: Trap::shutdown({{fault = new IllegalInstruction;}});
861                0x81: FailUnimpl::siam();
862            }
863            0x37: Trap::impdep2({{fault = new IllegalInstruction;}});
864            0x38: Branch::jmpl({{
865                Addr target = Rs1 + Rs2_or_imm13;
866                if(target & 0x3)
867                    fault = new MemAddressNotAligned;
868                else
869                {
870                    if (Pstate<3:>)
871                        Rd = (xc->readPC())<31:0>;
872                    else
873                        Rd = xc->readPC();
874                    NNPC = target;
875                }
876            }});
877            0x39: Branch::return({{
878                //If both MemAddressNotAligned and
879                //a fill trap happen, it's not clear
880                //which one should be returned.
881                Addr target = Rs1 + Rs2_or_imm13;
882                if(target & 0x3)
883                    fault = new MemAddressNotAligned;
884                else
885                    NNPC = target;
886                if(fault == NoFault)
887                {
888                    if(Canrestore == 0)
889                    {
890                        if(Otherwin)
891                            fault = new FillNOther(4*Wstate<5:3>);
892                        else
893                            fault = new FillNNormal(4*Wstate<2:0>);
894                    }
895                    else
896                    {
897                        //CWP should be set directly so that it always happens
898                        //Also, this will allow writing to the new window and
899                        //reading from the old one
900                        Cwp = (Cwp - 1 + NWindows) % NWindows;
901                        Cansave = Cansave + 1;
902                        Canrestore = Canrestore - 1;
903                        //This is here to make sure the CWP is written
904                        //no matter what. This ensures that the results
905                        //are written in the new window as well.
906                        xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
907                    }
908                }
909            }});
910            0x3A: decode CC
911            {
912                0x0: Trap::tcci({{
913                    if(passesCondition(Ccr<3:0>, COND2))
914                    {
915#if FULL_SYSTEM
916                        int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2);
917                        DPRINTF(Sparc, "The trap number is %d\n", lTrapNum);
918                        fault = new TrapInstruction(lTrapNum);
919#else
920                        DPRINTF(Sparc, "The syscall number is %d\n", R1);
921                        xc->syscall(R1);
922#endif
923                    }
924                }});
925                0x2: Trap::tccx({{
926                    if(passesCondition(Ccr<7:4>, COND2))
927                    {
928#if FULL_SYSTEM
929                        int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2);
930                        DPRINTF(Sparc, "The trap number is %d\n", lTrapNum);
931                        fault = new TrapInstruction(lTrapNum);
932#else
933                        DPRINTF(Sparc, "The syscall number is %d\n", R1);
934                        xc->syscall(R1);
935#endif
936                    }
937                }});
938            }
939            0x3B: Nop::flush({{/*Instruction memory flush*/}});
940            0x3C: save({{
941                //CWP should be set directly so that it always happens
942                //Also, this will allow writing to the new window and
943                //reading from the old one
944                if(Cansave == 0)
945                {
946                    if(Otherwin)
947                        fault = new SpillNOther(4*Wstate<5:3>);
948                    else
949                        fault = new SpillNNormal(4*Wstate<2:0>);
950                    //Cwp = (Cwp + 2) % NWindows;
951                }
952                else if(Cleanwin - Canrestore == 0)
953                {
954                    //Cwp = (Cwp + 1) % NWindows;
955                    fault = new CleanWindow;
956                }
957                else
958                {
959                    Cwp = (Cwp + 1) % NWindows;
960                    Rd = Rs1 + Rs2_or_imm13;
961                    Cansave = Cansave - 1;
962                    Canrestore = Canrestore + 1;
963                    //This is here to make sure the CWP is written
964                    //no matter what. This ensures that the results
965                    //are written in the new window as well.
966                    xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
967                }
968            }});
969            0x3D: restore({{
970                if(Canrestore == 0)
971                {
972                    if(Otherwin)
973                        fault = new FillNOther(4*Wstate<5:3>);
974                    else
975                        fault = new FillNNormal(4*Wstate<2:0>);
976                }
977                else
978                {
979                    //CWP should be set directly so that it always happens
980                    //Also, this will allow writing to the new window and
981                    //reading from the old one
982                    Cwp = (Cwp - 1 + NWindows) % NWindows;
983                    Rd = Rs1 + Rs2_or_imm13;
984                    Cansave = Cansave + 1;
985                    Canrestore = Canrestore - 1;
986                    //This is here to make sure the CWP is written
987                    //no matter what. This ensures that the results
988                    //are written in the new window as well.
989                    xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
990                }
991            }});
992            0x3E: decode FCN {
993                0x0: Priv::done({{
994                    if(Tl == 0)
995                        return new IllegalInstruction;
996
997                    Cwp = Tstate<4:0>;
998                    Pstate = Tstate<20:8>;
999                    Asi = Tstate<31:24>;
1000                    Ccr = Tstate<39:32>;
1001                    Gl = Tstate<42:40>;
1002                    Hpstate = Htstate;
1003                    NPC = Tnpc;
1004                    NNPC = Tnpc + 4;
1005                    Tl = Tl - 1;
1006                }});
1007                0x1: Priv::retry({{
1008                    if(Tl == 0)
1009                        return new IllegalInstruction;
1010                    Cwp = Tstate<4:0>;
1011                    Pstate = Tstate<20:8>;
1012                    Asi = Tstate<31:24>;
1013                    Ccr = Tstate<39:32>;
1014                    Gl = Tstate<42:40>;
1015                    Hpstate = Htstate;
1016                    NPC = Tpc;
1017                    NNPC = Tnpc;
1018                    Tl = Tl - 1;
1019                }});
1020            }
1021        }
1022    }
1023    0x3: decode OP3 {
1024        format Load {
1025            0x00: lduw({{Rd = Mem.uw;}});
1026            0x01: ldub({{Rd = Mem.ub;}});
1027            0x02: lduh({{Rd = Mem.uhw;}});
1028            0x03: ldtw({{
1029                uint64_t val = Mem.udw;
1030                RdLow = val<31:0>;
1031                RdHigh = val<63:32>;
1032            }});
1033        }
1034        format Store {
1035            0x04: stw({{Mem.uw = Rd.sw;}});
1036            0x05: stb({{Mem.ub = Rd.sb;}});
1037            0x06: sth({{Mem.uhw = Rd.shw;}});
1038            0x07: sttw({{Mem.udw = RdLow<31:0> | (RdHigh<31:0> << 32);}});
1039        }
1040        format Load {
1041            0x08: ldsw({{Rd = (int32_t)Mem.sw;}});
1042            0x09: ldsb({{Rd = (int8_t)Mem.sb;}});
1043            0x0A: ldsh({{Rd = (int16_t)Mem.shw;}});
1044            0x0B: ldx({{Rd = (int64_t)Mem.sdw;}});
1045        }
1046        0x0D: LoadStore::ldstub(
1047        {{uReg0 = Mem.ub;}},
1048        {{Rd.ub = uReg0;
1049          Mem.ub = 0xFF;}});
1050        0x0E: Store::stx({{Mem.udw = Rd}});
1051        0x0F: LoadStore::swap(
1052            {{ uReg0 = Mem.uw}},
1053            {{ Mem.uw = Rd.uw;
1054               Rd.uw = uReg0;}});
1055        format LoadAlt {
1056            0x10: lduwa({{Rd = Mem.uw;}}, {{EXT_ASI}});
1057            0x11: lduba({{Rd = Mem.ub;}}, {{EXT_ASI}});
1058            0x12: lduha({{Rd = Mem.uhw;}}, {{EXT_ASI}});
1059            0x13: decode EXT_ASI {
1060                //ASI_LDTD_AIUP
1061                0x22: TwinLoad::ldtx_aiup(
1062                    {{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
1063                //ASI_LDTD_AIUS
1064                0x23: TwinLoad::ldtx_aius(
1065                    {{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
1066                //ASI_QUAD_LDD
1067                0x24: TwinLoad::ldtx_quad_ldd(
1068                    {{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
1069                //ASI_LDTX_REAL
1070                0x26: TwinLoad::ldtx_real(
1071                    {{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
1072               //ASI_LDTX_N
1073               0x27: TwinLoad::ldtx_n(
1074                    {{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
1075               //ASI_LDTX_L
1076               0x2C: TwinLoad::ldtx_l(
1077                    {{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
1078                //ASI_LDTX_REAL_L
1079                0x2E: TwinLoad::ldtx_real_l(
1080                    {{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
1081                //ASI_LDTX_N_L
1082                0x2F: TwinLoad::ldtx_n_l(
1083                    {{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
1084                //ASI_LDTX_P
1085                0xE2: TwinLoad::ldtx_p(
1086                    {{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
1087                //ASI_LDTX_S
1088                0xE3: TwinLoad::ldtx_s(
1089                    {{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
1090                default: ldtwa({{
1091                        uint64_t val = Mem.udw;
1092                        RdLow = val<31:0>;
1093                        RdHigh = val<63:32>;
1094                        }}, {{EXT_ASI}});
1095            }
1096        }
1097        format StoreAlt {
1098            0x14: stwa({{Mem.uw = Rd;}}, {{EXT_ASI}});
1099            0x15: stba({{Mem.ub = Rd;}}, {{EXT_ASI}});
1100            0x16: stha({{Mem.uhw = Rd;}}, {{EXT_ASI}});
1101            0x17: sttwa({{Mem.udw = RdLow<31:0> | RdHigh<31:0> << 32;}}, {{EXT_ASI}});
1102        }
1103        format LoadAlt {
1104            0x18: ldswa({{Rd = (int32_t)Mem.sw;}}, {{EXT_ASI}});
1105            0x19: ldsba({{Rd = (int8_t)Mem.sb;}}, {{EXT_ASI}});
1106            0x1A: ldsha({{Rd = (int16_t)Mem.shw;}}, {{EXT_ASI}});
1107            0x1B: ldxa({{Rd = (int64_t)Mem.sdw;}}, {{EXT_ASI}});
1108        }
1109        0x1D: LoadStoreAlt::ldstuba(
1110                {{uReg0 = Mem.ub;}},
1111                {{Rd.ub = uReg0;
1112                  Mem.ub = 0xFF;}}, {{EXT_ASI}});
1113        0x1E: StoreAlt::stxa({{Mem.udw = Rd}}, {{EXT_ASI}});
1114        0x1F: LoadStoreAlt::swapa(
1115            {{ uReg0 = Mem.uw}},
1116            {{ Mem.uw = Rd.uw;
1117               Rd.uw = uReg0;}}, {{EXT_ASI}});
1118        format Trap {
1119            0x20: Load::ldf({{Frds.uw = Mem.uw;}});
1120            0x21: decode X {
1121                0x0: Load::ldfsr({{Fsr = Mem.uw | Fsr<63:32>;}});
1122                0x1: Load::ldxfsr({{Fsr = Mem.udw;}});
1123            }
1124            0x22: ldqf({{fault = new FpDisabled;}});
1125            0x23: Load::lddf({{Frd.udw = Mem.udw;}});
1126            0x24: Store::stf({{Mem.uw = Frds.uw;}});
1127            0x25: decode X {
1128                0x0: Store::stfsr({{Mem.uw = Fsr<31:0>;}});
1129                0x1: Store::stxfsr({{Mem.udw = Fsr;}});
1130            }
1131            0x26: stqf({{fault = new FpDisabled;}});
1132            0x27: Store::stdf({{Mem.udw = Frd.udw;}});
1133            0x2D: Nop::prefetch({{ }});
1134            0x30: LoadAlt::ldfa({{Frds.uw = Mem.uw;}}, {{EXT_ASI}});
1135            0x32: ldqfa({{fault = new FpDisabled;}});
1136            format LoadAlt {
1137                0x33: decode EXT_ASI {
1138                    //ASI_NUCLEUS
1139                    0x04: FailUnimpl::lddfa_n();
1140                    //ASI_NUCLEUS_LITTLE
1141                    0x0C: FailUnimpl::lddfa_nl();
1142                    //ASI_AS_IF_USER_PRIMARY
1143                    0x10: FailUnimpl::lddfa_aiup();
1144                    //ASI_AS_IF_USER_PRIMARY_LITTLE
1145                    0x18: FailUnimpl::lddfa_aiupl();
1146                    //ASI_AS_IF_USER_SECONDARY
1147                    0x11: FailUnimpl::lddfa_aius();
1148                    //ASI_AS_IF_USER_SECONDARY_LITTLE
1149                    0x19: FailUnimpl::lddfa_aiusl();
1150                    //ASI_REAL
1151                    0x14: FailUnimpl::lddfa_real();
1152                    //ASI_REAL_LITTLE
1153                    0x1C: FailUnimpl::lddfa_real_l();
1154                    //ASI_REAL_IO
1155                    0x15: FailUnimpl::lddfa_real_io();
1156                    //ASI_REAL_IO_LITTLE
1157                    0x1D: FailUnimpl::lddfa_real_io_l();
1158                    //ASI_PRIMARY
1159                    0x80: FailUnimpl::lddfa_p();
1160                    //ASI_PRIMARY_LITTLE
1161                    0x88: FailUnimpl::lddfa_pl();
1162                    //ASI_SECONDARY
1163                    0x81: FailUnimpl::lddfa_s();
1164                    //ASI_SECONDARY_LITTLE
1165                    0x89: FailUnimpl::lddfa_sl();
1166                    //ASI_PRIMARY_NO_FAULT
1167                    0x82: FailUnimpl::lddfa_pnf();
1168                    //ASI_PRIMARY_NO_FAULT_LITTLE
1169                    0x8A: FailUnimpl::lddfa_pnfl();
1170                    //ASI_SECONDARY_NO_FAULT
1171                    0x83: FailUnimpl::lddfa_snf();
1172                    //ASI_SECONDARY_NO_FAULT_LITTLE
1173                    0x8B: FailUnimpl::lddfa_snfl();
1174
1175                    format BlockLoad {
1176                        // LDBLOCKF
1177                        //ASI_BLOCK_AS_IF_USER_PRIMARY
1178                        0x16: FailUnimpl::ldblockf_aiup();
1179                        //ASI_BLOCK_AS_IF_USER_SECONDARY
1180                        0x17: FailUnimpl::ldblockf_aius();
1181                        //ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
1182                        0x1E: FailUnimpl::ldblockf_aiupl();
1183                        //ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
1184                        0x1F: FailUnimpl::ldblockf_aiusl();
1185                        //ASI_BLOCK_PRIMARY
1186                        0xF0: ldblockf_p({{Frd_N.udw = Mem.udw;}}, {{EXT_ASI}});
1187                        //ASI_BLOCK_SECONDARY
1188                        0xF1: FailUnimpl::ldblockf_s();
1189                        //ASI_BLOCK_PRIMARY_LITTLE
1190                        0xF8: FailUnimpl::ldblockf_pl();
1191                        //ASI_BLOCK_SECONDARY_LITTLE
1192                        0xF9: FailUnimpl::ldblockf_sl();
1193                    }
1194
1195                    //LDSHORTF
1196                    //ASI_FL8_PRIMARY
1197                    0xD0: FailUnimpl::ldshortf_8p();
1198                    //ASI_FL8_SECONDARY
1199                    0xD1: FailUnimpl::ldshortf_8s();
1200                    //ASI_FL8_PRIMARY_LITTLE
1201                    0xD8: FailUnimpl::ldshortf_8pl();
1202                    //ASI_FL8_SECONDARY_LITTLE
1203                    0xD9: FailUnimpl::ldshortf_8sl();
1204                    //ASI_FL16_PRIMARY
1205                    0xD2: FailUnimpl::ldshortf_16p();
1206                    //ASI_FL16_SECONDARY
1207                    0xD3: FailUnimpl::ldshortf_16s();
1208                    //ASI_FL16_PRIMARY_LITTLE
1209                    0xDA: FailUnimpl::ldshortf_16pl();
1210                    //ASI_FL16_SECONDARY_LITTLE
1211                    0xDB: FailUnimpl::ldshortf_16sl();
1212                    //Not an ASI which is legal with lddfa
1213                    default: Trap::lddfa_bad_asi(
1214                        {{fault = new DataAccessException;}});
1215                }
1216            }
1217            0x34: Store::stfa({{Mem.uw = Frds.uw;}});
1218            0x36: stqfa({{fault = new FpDisabled;}});
1219            format StoreAlt {
1220                0x37: decode EXT_ASI {
1221                    //ASI_NUCLEUS
1222                    0x04: FailUnimpl::stdfa_n();
1223                    //ASI_NUCLEUS_LITTLE
1224                    0x0C: FailUnimpl::stdfa_nl();
1225                    //ASI_AS_IF_USER_PRIMARY
1226                    0x10: FailUnimpl::stdfa_aiup();
1227                    //ASI_AS_IF_USER_PRIMARY_LITTLE
1228                    0x18: FailUnimpl::stdfa_aiupl();
1229                    //ASI_AS_IF_USER_SECONDARY
1230                    0x11: FailUnimpl::stdfa_aius();
1231                    //ASI_AS_IF_USER_SECONDARY_LITTLE
1232                    0x19: FailUnimpl::stdfa_aiusl();
1233                    //ASI_REAL
1234                    0x14: FailUnimpl::stdfa_real();
1235                    //ASI_REAL_LITTLE
1236                    0x1C: FailUnimpl::stdfa_real_l();
1237                    //ASI_REAL_IO
1238                    0x15: FailUnimpl::stdfa_real_io();
1239                    //ASI_REAL_IO_LITTLE
1240                    0x1D: FailUnimpl::stdfa_real_io_l();
1241                    //ASI_PRIMARY
1242                    0x80: FailUnimpl::stdfa_p();
1243                    //ASI_PRIMARY_LITTLE
1244                    0x88: FailUnimpl::stdfa_pl();
1245                    //ASI_SECONDARY
1246                    0x81: FailUnimpl::stdfa_s();
1247                    //ASI_SECONDARY_LITTLE
1248                    0x89: FailUnimpl::stdfa_sl();
1249                    //ASI_PRIMARY_NO_FAULT
1250                    0x82: FailUnimpl::stdfa_pnf();
1251                    //ASI_PRIMARY_NO_FAULT_LITTLE
1252                    0x8A: FailUnimpl::stdfa_pnfl();
1253                    //ASI_SECONDARY_NO_FAULT
1254                    0x83: FailUnimpl::stdfa_snf();
1255                    //ASI_SECONDARY_NO_FAULT_LITTLE
1256                    0x8B: FailUnimpl::stdfa_snfl();
1257
1258                    format BlockStore {
1259                        // STBLOCKF
1260                        //ASI_BLOCK_AS_IF_USER_PRIMARY
1261                        0x16: FailUnimpl::stblockf_aiup();
1262                        //ASI_BLOCK_AS_IF_USER_SECONDARY
1263                        0x17: FailUnimpl::stblockf_aius();
1264                        //ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
1265                        0x1E: FailUnimpl::stblockf_aiupl();
1266                        //ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
1267                        0x1F: FailUnimpl::stblockf_aiusl();
1268                        //ASI_BLOCK_PRIMARY
1269                        0xF0: stblockf_p({{Mem.udw = Frd_N.udw;}}, {{EXT_ASI}});
1270                        //ASI_BLOCK_SECONDARY
1271                        0xF1: FailUnimpl::stblockf_s();
1272                        //ASI_BLOCK_PRIMARY_LITTLE
1273                        0xF8: FailUnimpl::stblockf_pl();
1274                        //ASI_BLOCK_SECONDARY_LITTLE
1275                        0xF9: FailUnimpl::stblockf_sl();
1276                    }
1277
1278                    //STSHORTF
1279                    //ASI_FL8_PRIMARY
1280                    0xD0: FailUnimpl::stshortf_8p();
1281                    //ASI_FL8_SECONDARY
1282                    0xD1: FailUnimpl::stshortf_8s();
1283                    //ASI_FL8_PRIMARY_LITTLE
1284                    0xD8: FailUnimpl::stshortf_8pl();
1285                    //ASI_FL8_SECONDARY_LITTLE
1286                    0xD9: FailUnimpl::stshortf_8sl();
1287                    //ASI_FL16_PRIMARY
1288                    0xD2: FailUnimpl::stshortf_16p();
1289                    //ASI_FL16_SECONDARY
1290                    0xD3: FailUnimpl::stshortf_16s();
1291                    //ASI_FL16_PRIMARY_LITTLE
1292                    0xDA: FailUnimpl::stshortf_16pl();
1293                    //ASI_FL16_SECONDARY_LITTLE
1294                    0xDB: FailUnimpl::stshortf_16sl();
1295                    //Not an ASI which is legal with lddfa
1296                    default: Trap::stdfa_bad_asi(
1297                        {{fault = new DataAccessException;}});
1298                }
1299            }
1300            0x3C: Cas::casa(
1301                {{uReg0 = Mem.uw;}},
1302                {{if(Rs2.uw == uReg0)
1303                        Mem.uw = Rd.uw;
1304                else
1305                        storeCond = false;
1306                Rd.uw = uReg0;}}, {{EXT_ASI}});
1307            0x3D: Nop::prefetcha({{ }});
1308            0x3E: Cas::casxa(
1309                {{uReg0 = Mem.udw;}},
1310                {{if(Rs2 == uReg0)
1311                        Mem.udw = Rd;
1312                else
1313                        storeCond = false;
1314                Rd = uReg0;}}, {{EXT_ASI}});
1315        }
1316    }
1317}
1318