decoder.isa revision 3417:41aab2d0319b
1// Copyright (c) 2006 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28//          Gabe Black
29//          Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// The actual decoder specification
34//
35
36decode OP default Unknown::unknown()
37{
38    0x0: decode OP2
39    {
40        //Throw an illegal instruction acception
41        0x0: Trap::illtrap({{fault = new IllegalInstruction;}});
42        format BranchN
43        {
44            0x1: decode COND2
45            {
46                //Branch Always
47                0x8: decode A
48                {
49                    0x0: b(19, {{
50                        NNPC = xc->readPC() + disp;
51                    }});
52                    0x1: b(19, {{
53                        NPC = xc->readPC() + disp;
54                        NNPC = NPC + 4;
55                    }}, ',a');
56                }
57                //Branch Never
58                0x0: decode A
59                {
60                    0x0: bn(19, {{
61                        NNPC = NNPC;//Don't do anything
62                    }});
63                    0x1: bn(19, {{
64                        NPC = xc->readNextPC() + 4;
65                        NNPC = NPC + 4;
66                    }}, ',a');
67                }
68                default: decode BPCC
69                {
70                    0x0: bpcci(19, {{
71                        if(passesCondition(Ccr<3:0>, COND2))
72                            NNPC = xc->readPC() + disp;
73                        else
74                            handle_annul
75                    }});
76                    0x2: bpccx(19, {{
77                        if(passesCondition(Ccr<7:4>, COND2))
78                            NNPC = xc->readPC() + disp;
79                        else
80                            handle_annul
81                    }});
82                }
83            }
84            0x2: bicc(22, {{
85                if(passesCondition(Ccr<3:0>, COND2))
86                    NNPC = xc->readPC() + disp;
87                else
88                    handle_annul
89            }});
90        }
91        0x3: decode RCOND2
92        {
93            format BranchSplit
94            {
95                0x1: bpreq({{
96                    if(Rs1.sdw == 0)
97                        NNPC = xc->readPC() + disp;
98                    else
99                        handle_annul
100                }});
101                0x2: bprle({{
102                    if(Rs1.sdw <= 0)
103                        NNPC = xc->readPC() + disp;
104                    else
105                        handle_annul
106                }});
107                0x3: bprl({{
108                    if(Rs1.sdw < 0)
109                        NNPC = xc->readPC() + disp;
110                    else
111                        handle_annul
112                }});
113                0x5: bprne({{
114                    if(Rs1.sdw != 0)
115                        NNPC = xc->readPC() + disp;
116                    else
117                        handle_annul
118                }});
119                0x6: bprg({{
120                    if(Rs1.sdw > 0)
121                        NNPC = xc->readPC() + disp;
122                    else
123                        handle_annul
124                }});
125                0x7: bprge({{
126                    if(Rs1.sdw >= 0)
127                        NNPC = xc->readPC() + disp;
128                    else
129                        handle_annul
130                }});
131            }
132        }
133        //SETHI (or NOP if rd == 0 and imm == 0)
134        0x4: SetHi::sethi({{Rd.udw = imm;}});
135        0x5: Trap::fbpfcc({{fault = new FpDisabled;}});
136        0x6: Trap::fbfcc({{fault = new FpDisabled;}});
137    }
138    0x1: BranchN::call(30, {{
139            R15 = xc->readPC();
140            NNPC = R15 + disp;
141    }});
142    0x2: decode OP3 {
143        format IntOp {
144            0x00: add({{Rd = Rs1.sdw + Rs2_or_imm13;}});
145            0x01: and({{Rd = Rs1.sdw & Rs2_or_imm13;}});
146            0x02: or({{Rd = Rs1.sdw | Rs2_or_imm13;}});
147            0x03: xor({{Rd = Rs1.sdw ^ Rs2_or_imm13;}});
148            0x04: sub({{Rd = Rs1.sdw - Rs2_or_imm13;}});
149            0x05: andn({{Rd = Rs1.sdw & ~Rs2_or_imm13;}});
150            0x06: orn({{Rd = Rs1.sdw | ~Rs2_or_imm13;}});
151            0x07: xnor({{Rd = ~(Rs1.sdw ^ Rs2_or_imm13);}});
152            0x08: addc({{Rd = Rs1.sdw + Rs2_or_imm13 + Ccr<0:0>;}});
153            0x09: mulx({{Rd = Rs1.sdw * Rs2_or_imm13;}});
154            0x0A: umul({{
155                Rd = Rs1.udw<31:0> * Rs2_or_imm13<31:0>;
156                Y = Rd<63:32>;
157            }});
158            0x0B: smul({{
159                Rd.sdw = Rs1.sdw<31:0> * Rs2_or_imm13<31:0>;
160                Y = Rd.sdw;
161            }});
162            0x0C: subc({{Rd.sdw = Rs1.sdw + (~Rs2_or_imm13) + 1 - Ccr<0:0>}});
163            0x0D: udivx({{
164                if(Rs2_or_imm13 == 0) fault = new DivisionByZero;
165                else Rd.udw = Rs1.udw / Rs2_or_imm13;
166            }});
167            0x0E: udiv({{
168                if(Rs2_or_imm13 == 0) fault = new DivisionByZero;
169                else
170                {
171                    Rd.udw = ((Y << 32) | Rs1.udw<31:0>) / Rs2_or_imm13;
172                    if(Rd.udw >> 32 != 0)
173                        Rd.udw = 0xFFFFFFFF;
174                }
175            }});
176            0x0F: sdiv({{
177                if(Rs2_or_imm13.sdw == 0)
178                    fault = new DivisionByZero;
179                else
180                {
181                    Rd.udw = ((int64_t)((Y << 32) | Rs1.sdw<31:0>)) / Rs2_or_imm13.sdw;
182                    if(Rd.udw<63:31> != 0)
183                        Rd.udw = 0x7FFFFFFF;
184                    else if(Rd.udw<63:> && Rd.udw<62:31> != 0xFFFFFFFF)
185                        Rd.udw = 0xFFFFFFFF80000000ULL;
186                }
187            }});
188        }
189        format IntOpCc {
190            0x10: addcc({{
191                int64_t resTemp, val2 = Rs2_or_imm13;
192                Rd = resTemp = Rs1 + val2;}},
193                {{(Rs1<31:0> + val2<31:0>)<32:>}},
194                {{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
195                {{(Rs1<63:1> + val2<63:1> + (Rs1 & val2)<0:>)<63:>}},
196                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
197            );
198            0x11: IntOpCcRes::andcc({{Rd = Rs1 & Rs2_or_imm13;}});
199            0x12: IntOpCcRes::orcc({{Rd = Rs1 | Rs2_or_imm13;}});
200            0x13: IntOpCcRes::xorcc({{Rd = Rs1 ^ Rs2_or_imm13;}});
201            0x14: subcc({{
202                int64_t val2 = Rs2_or_imm13;
203                Rd = Rs1 - val2;}},
204                {{(~(Rs1<31:0> + (~val2)<31:0> + 1))<32:>}},
205                {{(Rs1<31:> != val2<31:>) && (Rs1<31:> != Rd<31:>)}},
206                {{(~(Rs1<63:1> + (~val2)<63:1> +
207                    (Rs1 | ~val2)<0:>))<63:>}},
208                {{Rs1<63:> != val2<63:> && Rs1<63:> != Rd<63:>}}
209            );
210            0x15: IntOpCcRes::andncc({{Rd = Rs1 & ~Rs2_or_imm13;}});
211            0x16: IntOpCcRes::orncc({{Rd = Rs1 | ~Rs2_or_imm13;}});
212            0x17: IntOpCcRes::xnorcc({{Rd = ~(Rs1 ^ Rs2_or_imm13);}});
213            0x18: addccc({{
214                int64_t resTemp, val2 = Rs2_or_imm13;
215                int64_t carryin = Ccr<0:0>;
216                Rd = resTemp = Rs1 + val2 + carryin;}},
217                {{(Rs1<31:0> + val2<31:0> + carryin)<32:>}},
218                {{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
219                {{(Rs1<63:1> + val2<63:1> +
220                    ((Rs1 & val2) | (carryin & (Rs1 | val2)))<0:>)<63:>}},
221                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
222            );
223            0x1A: umulcc({{
224                uint64_t resTemp;
225                Rd = resTemp = Rs1.udw<31:0> * Rs2_or_imm13.udw<31:0>;
226                Y = resTemp<63:32>;}},
227                {{0}},{{0}},{{0}},{{0}});
228            0x1B: smulcc({{
229                int64_t resTemp;
230                Rd = resTemp = Rs1.sdw<31:0> * Rs2_or_imm13.sdw<31:0>;
231                Y = resTemp<63:32>;}},
232                {{0}},{{0}},{{0}},{{0}});
233            0x1C: subccc({{
234                int64_t resTemp, val2 = Rs2_or_imm13;
235                int64_t carryin = Ccr<0:0>;
236                Rd = resTemp = Rs1 + ~val2 + 1 - carryin;}},
237                {{(~((Rs1<31:0> + (~(val2 + carryin))<31:0> + 1))<32:>)}},
238                {{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}},
239                {{(~((Rs1<63:1> + (~(val2 + carryin))<63:1>) + (Rs1<0:> + (~(val2+carryin))<0:> + 1)<63:1>))<63:>}},
240                {{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
241            );
242            0x1D: udivxcc({{
243                if(Rs2_or_imm13.udw == 0) fault = new DivisionByZero;
244                else Rd = Rs1.udw / Rs2_or_imm13.udw;}}
245                ,{{0}},{{0}},{{0}},{{0}});
246            0x1E: udivcc({{
247                uint32_t resTemp, val2 = Rs2_or_imm13.udw;
248                int32_t overflow = 0;
249                if(val2 == 0) fault = new DivisionByZero;
250                else
251                {
252                    resTemp = (uint64_t)((Y << 32) | Rs1.udw<31:0>) / val2;
253                    overflow = (resTemp<63:32> != 0);
254                    if(overflow) Rd = resTemp = 0xFFFFFFFF;
255                    else Rd = resTemp;
256                } }},
257                {{0}},
258                {{overflow}},
259                {{0}},
260                {{0}}
261            );
262            0x1F: sdivcc({{
263                int64_t val2 = Rs2_or_imm13.sdw<31:0>;
264                bool overflow = false, underflow = false;
265                if(val2 == 0) fault = new DivisionByZero;
266                else
267                {
268                    Rd = (int64_t)((Y << 32) | Rs1.sdw<31:0>) / val2;
269                    overflow = (Rd<63:31> != 0);
270                    underflow = (Rd<63:> && Rd<62:31> != 0xFFFFFFFF);
271                    if(overflow) Rd = 0x7FFFFFFF;
272                    else if(underflow) Rd = 0xFFFFFFFF80000000ULL;
273                } }},
274                {{0}},
275                {{overflow || underflow}},
276                {{0}},
277                {{0}}
278            );
279            0x20: taddcc({{
280                int64_t resTemp, val2 = Rs2_or_imm13;
281                Rd = resTemp = Rs1 + val2;
282                int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
283                {{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
284                {{overflow}},
285                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
286                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
287            );
288            0x21: tsubcc({{
289                int64_t resTemp, val2 = Rs2_or_imm13;
290                Rd = resTemp = Rs1 + val2;
291                int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
292                {{(Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31}},
293                {{overflow}},
294                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
295                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
296            );
297            0x22: taddcctv({{
298                int64_t val2 = Rs2_or_imm13;
299                Rd = Rs1 + val2;
300                int32_t overflow = Rs1<1:0> || val2<1:0> ||
301                        (Rs1<31:> == val2<31:> && val2<31:> != Rd<31:>);
302                if(overflow) fault = new TagOverflow;}},
303                {{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
304                {{overflow}},
305                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
306                {{Rs1<63:> == val2<63:> && val2<63:> != Rd<63:>}}
307            );
308            0x23: tsubcctv({{
309                int64_t resTemp, val2 = Rs2_or_imm13;
310                Rd = resTemp = Rs1 + val2;
311                int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
312                if(overflow) fault = new TagOverflow;}},
313                {{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
314                {{overflow}},
315                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
316                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
317            );
318            0x24: mulscc({{
319                int64_t resTemp, multiplicand = Rs2_or_imm13;
320                int32_t multiplier = Rs1<31:0>;
321                int32_t savedLSB = Rs1<0:>;
322                multiplier = multiplier<31:1> |
323                    ((Ccr<3:3>
324                    ^ Ccr<1:1>) << 32);
325                if(!Y<0:>)
326                    multiplicand = 0;
327                Rd = resTemp = multiplicand + multiplier;
328                Y = Y<31:1> | (savedLSB << 31);}},
329                {{((multiplicand & 0xFFFFFFFF + multiplier & 0xFFFFFFFF) >> 31)}},
330                {{multiplicand<31:> == multiplier<31:> && multiplier<31:> != resTemp<31:>}},
331                {{((multiplicand >> 1) + (multiplier >> 1) + (multiplicand & multiplier & 0x1))<63:>}},
332                {{multiplicand<63:> == multiplier<63:> && multiplier<63:> != resTemp<63:>}}
333            );
334        }
335        format IntOp
336        {
337            0x25: decode X {
338                0x0: sll({{Rd = Rs1 << (I ? SHCNT32 : Rs2<4:0>);}});
339                0x1: sllx({{Rd = Rs1 << (I ? SHCNT64 : Rs2<5:0>);}});
340            }
341            0x26: decode X {
342                0x0: srl({{Rd = Rs1.uw >> (I ? SHCNT32 : Rs2<4:0>);}});
343                0x1: srlx({{Rd = Rs1.udw >> (I ? SHCNT64 : Rs2<5:0>);}});
344            }
345            0x27: decode X {
346                0x0: sra({{Rd = Rs1.sw >> (I ? SHCNT32 : Rs2<4:0>);}});
347                0x1: srax({{Rd = Rs1.sdw >> (I ? SHCNT64 : Rs2<5:0>);}});
348            }
349            // XXX might want a format rdipr thing here
350            0x28: decode RS1 {
351                0xF: decode I {
352                    0x0: Nop::stbar({{/*stuff*/}});
353                    0x1: Nop::membar({{/*stuff*/}});
354                }
355                default: rdasr({{
356                Rd = xc->readMiscRegWithEffect(RS1 + AsrStart, fault);
357                }});
358            }
359            0x29: HPriv::rdhpr({{
360                // XXX Need to protect with format that traps non-priv/priv
361                // access
362                Rd = xc->readMiscRegWithEffect(RS1 + HprStart, fault);
363            }});
364            0x2A: Priv::rdpr({{
365                // XXX Need to protect with format that traps non-priv
366                // access
367                Rd = xc->readMiscRegWithEffect(RS1 + PrStart, fault);
368            }});
369            0x2B: BasicOperate::flushw({{
370                if(NWindows - 2 - Cansave == 0)
371                {
372                    if(Otherwin)
373                        fault = new SpillNOther(Wstate<5:3>);
374                    else
375                        fault = new SpillNNormal(Wstate<2:0>);
376                }
377            }});
378            0x2C: decode MOVCC3
379            {
380                0x0: Trap::movccfcc({{fault = new FpDisabled;}});
381                0x1: decode CC
382                {
383                    0x0: movcci({{
384                        if(passesCondition(Ccr<3:0>, COND4))
385                            Rd = Rs2_or_imm11;
386                        else
387                            Rd = Rd;
388                    }});
389                    0x2: movccx({{
390                        if(passesCondition(Ccr<7:4>, COND4))
391                            Rd = Rs2_or_imm11;
392                        else
393                            Rd = Rd;
394                    }});
395                }
396            }
397            0x2D: sdivx({{
398                if(Rs2_or_imm13.sdw == 0) fault = new DivisionByZero;
399                else Rd.sdw = Rs1.sdw / Rs2_or_imm13.sdw;
400            }});
401            0x2E: decode RS1 {
402                0x0: IntOp::popc({{
403                    int64_t count = 0;
404                    uint64_t temp = Rs2_or_imm13;
405                    //Count the 1s in the front 4bits until none are left
406                    uint8_t oneBits[] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4};
407                    while(temp)
408                    {
409                            count += oneBits[temp & 0xF];
410                            temp = temp >> 4;
411                    }
412                    Rd = count;
413                }});
414            }
415            0x2F: decode RCOND3
416            {
417                0x1: movreq({{Rd = (Rs1.sdw == 0) ? Rs2_or_imm10 : Rd;}});
418                0x2: movrle({{Rd = (Rs1.sdw <= 0) ? Rs2_or_imm10 : Rd;}});
419                0x3: movrl({{Rd = (Rs1.sdw < 0) ? Rs2_or_imm10 : Rd;}});
420                0x5: movrne({{Rd = (Rs1.sdw != 0) ? Rs2_or_imm10 : Rd;}});
421                0x6: movrg({{Rd = (Rs1.sdw > 0) ? Rs2_or_imm10 : Rd;}});
422                0x7: movrge({{Rd = (Rs1.sdw >= 0) ? Rs2_or_imm10 : Rd;}});
423            }
424            0x30: wrasr({{
425                xc->setMiscRegWithEffect(RD + AsrStart, Rs1 ^ Rs2_or_imm13);
426            }});
427            0x31: decode FCN {
428                0x0: Priv::saved({{
429                    assert(Cansave < NWindows - 2);
430                    assert(Otherwin || Canrestore);
431                    Cansave = Cansave + 1;
432                    if(Otherwin == 0)
433                        Canrestore = Canrestore - 1;
434                    else
435                        Otherwin = Otherwin - 1;
436                }});
437                0x1: BasicOperate::restored({{
438                    assert(Cansave || Otherwin);
439                    assert(Canrestore < NWindows - 2);
440                    Canrestore = Canrestore + 1;
441                    if(Otherwin == 0)
442                        Cansave = Cansave - 1;
443                    else
444                        Otherwin = Otherwin - 1;
445                }});
446            }
447            0x32: Priv::wrpr({{
448                // XXX Need to protect with format that traps non-priv
449                // access
450                fault = xc->setMiscRegWithEffect(RD + PrStart, Rs1 ^ Rs2_or_imm13);
451            }});
452            0x33: HPriv::wrhpr({{
453                // XXX Need to protect with format that traps non-priv/priv
454                // access
455                fault = xc->setMiscRegWithEffect(RD + HprStart, Rs1 ^ Rs2_or_imm13);
456            }});
457            0x34: decode OPF{
458                format BasicOperate{
459                    0x01: fmovs({{
460                        Frds.uw = Frs2s.uw;
461                        //fsr.ftt = fsr.cexc = 0
462                        Fsr &= ~(7 << 14);
463                        Fsr &= ~(0x1F);
464                    }});
465                    0x02: fmovd({{
466                        Frd.udw = Frs2.udw;
467                        //fsr.ftt = fsr.cexc = 0
468                        Fsr &= ~(7 << 14);
469                        Fsr &= ~(0x1F);
470                    }});
471                    0x03: Trap::fmovq({{fault = new FpDisabled;}});
472                    0x05: fnegs({{
473                        Frds.uw = Frs2s.uw ^ (1UL << 31);
474                        //fsr.ftt = fsr.cexc = 0
475                        Fsr &= ~(7 << 14);
476                        Fsr &= ~(0x1F);
477                    }});
478                    0x06: fnegd({{
479                        Frd.udw = Frs2.udw ^ (1ULL << 63);
480                        //fsr.ftt = fsr.cexc = 0
481                        Fsr &= ~(7 << 14);
482                        Fsr &= ~(0x1F);
483                    }});
484                    0x07: Trap::fnegq({{fault = new FpDisabled;}});
485                    0x09: fabss({{
486                        Frds.uw = ((1UL << 31) - 1) & Frs2s.uw;
487                        //fsr.ftt = fsr.cexc = 0
488                        Fsr &= ~(7 << 14);
489                        Fsr &= ~(0x1F);
490                    }});
491                    0x0A: fabsd({{
492                        Frd.udw = ((1ULL << 63) - 1) & Frs2.udw;
493                        //fsr.ftt = fsr.cexc = 0
494                        Fsr &= ~(7 << 14);
495                        Fsr &= ~(0x1F);
496                    }});
497                    0x0B: Trap::fabsq({{fault = new FpDisabled;}});
498                    0x29: fsqrts({{Frds.sf = sqrt(Frs2s.sf);}});
499                    0x2A: fsqrtd({{Frd.df = sqrt(Frs2.df);}});
500                    0x2B: Trap::fsqrtq({{fault = new FpDisabled;}});
501                    0x41: fadds({{Frds.sf = Frs1s.sf + Frs2s.sf;}});
502                    0x42: faddd({{Frd.df = Frs1.df + Frs2.df;}});
503                    0x43: Trap::faddq({{fault = new FpDisabled;}});
504                    0x45: fsubs({{Frds.sf = Frs1s.sf - Frs2s.sf;}});
505                    0x46: fsubd({{Frd.df = Frs1.df - Frs2.df;}});
506                    0x47: Trap::fsubq({{fault = new FpDisabled;}});
507                    0x49: fmuls({{Frds.sf = Frs1s.sf * Frs2s.sf;}});
508                    0x4A: fmuld({{Frd.df = Frs1.df * Frs2.df;}});
509                    0x4B: Trap::fmulq({{fault = new FpDisabled;}});
510                    0x4D: fdivs({{Frds.sf = Frs1s.sf / Frs2s.sf;}});
511                    0x4E: fdivd({{Frd.df = Frs1.df / Frs2.df;}});
512                    0x4F: Trap::fdivq({{fault = new FpDisabled;}});
513                    0x69: fsmuld({{Frd.df = Frs1s.sf * Frs2s.sf;}});
514                    0x6E: Trap::fdmulq({{fault = new FpDisabled;}});
515                    0x81: fstox({{
516                            Frd.df = (double)static_cast<int64_t>(Frs2s.sf);
517                    }});
518                    0x82: fdtox({{
519                            Frd.df = (double)static_cast<int64_t>(Frs2.df);
520                    }});
521                    0x83: Trap::fqtox({{fault = new FpDisabled;}});
522                    0x84: fxtos({{
523                            Frds.sf = static_cast<float>((int64_t)Frs2.df);
524                    }});
525                    0x88: fxtod({{
526                            Frd.df = static_cast<double>((int64_t)Frs2.df);
527                    }});
528                    0x8C: Trap::fxtoq({{fault = new FpDisabled;}});
529                    0xC4: fitos({{
530                            Frds.sf = static_cast<float>((int32_t)Frs2s.sf);
531                    }});
532                    0xC6: fdtos({{Frds.sf = Frs2.df;}});
533                    0xC7: Trap::fqtos({{fault = new FpDisabled;}});
534                    0xC8: fitod({{
535                            Frd.df = static_cast<double>((int32_t)Frs2s.sf);
536                    }});
537                    0xC9: fstod({{Frd.df = Frs2s.sf;}});
538                    0xCB: Trap::fqtod({{fault = new FpDisabled;}});
539                    0xCC: Trap::fitoq({{fault = new FpDisabled;}});
540                    0xCD: Trap::fstoq({{fault = new FpDisabled;}});
541                    0xCE: Trap::fdtoq({{fault = new FpDisabled;}});
542                    0xD1: fstoi({{
543                            Frds.sf = (float)static_cast<int32_t>(Frs2s.sf);
544                    }});
545                    0xD2: fdtoi({{
546                            Frds.sf = (float)static_cast<int32_t>(Frs2.df);
547                    }});
548                    0xD3: Trap::fqtoi({{fault = new FpDisabled;}});
549                    default: Trap::fpop1({{fault = new FpDisabled;}});
550                }
551            }
552            0x35: Trap::fpop2({{fault = new FpDisabled;}});
553            //This used to be just impdep1, but now it's a whole bunch
554            //of instructions
555            0x36: decode OPF{
556                0x00: Trap::edge8({{fault = new IllegalInstruction;}});
557                0x01: Trap::edge8n({{fault = new IllegalInstruction;}});
558                0x02: Trap::edge8l({{fault = new IllegalInstruction;}});
559                0x03: Trap::edge8ln({{fault = new IllegalInstruction;}});
560                0x04: Trap::edge16({{fault = new IllegalInstruction;}});
561                0x05: Trap::edge16n({{fault = new IllegalInstruction;}});
562                0x06: Trap::edge16l({{fault = new IllegalInstruction;}});
563                0x07: Trap::edge16ln({{fault = new IllegalInstruction;}});
564                0x08: Trap::edge32({{fault = new IllegalInstruction;}});
565                0x09: Trap::edge32n({{fault = new IllegalInstruction;}});
566                0x0A: Trap::edge32l({{fault = new IllegalInstruction;}});
567                0x0B: Trap::edge32ln({{fault = new IllegalInstruction;}});
568                0x10: Trap::array8({{fault = new IllegalInstruction;}});
569                0x12: Trap::array16({{fault = new IllegalInstruction;}});
570                0x14: Trap::array32({{fault = new IllegalInstruction;}});
571                0x18: BasicOperate::alignaddr({{
572                    uint64_t sum = Rs1 + Rs2;
573                    Rd = sum & ~7;
574                    Gsr = (Gsr & ~7) | (sum & 7);
575                }});
576                0x19: Trap::bmask({{fault = new IllegalInstruction;}});
577                0x1A: BasicOperate::alignaddresslittle({{
578                    uint64_t sum = Rs1 + Rs2;
579                    Rd = sum & ~7;
580                    Gsr = (Gsr & ~7) | ((~sum + 1) & 7);
581                }});
582                0x20: Trap::fcmple16({{fault = new IllegalInstruction;}});
583                0x22: Trap::fcmpne16({{fault = new IllegalInstruction;}});
584                0x24: Trap::fcmple32({{fault = new IllegalInstruction;}});
585                0x26: Trap::fcmpne32({{fault = new IllegalInstruction;}});
586                0x28: Trap::fcmpgt16({{fault = new IllegalInstruction;}});
587                0x2A: Trap::fcmpeq16({{fault = new IllegalInstruction;}});
588                0x2C: Trap::fcmpgt32({{fault = new IllegalInstruction;}});
589                0x2E: Trap::fcmpeq32({{fault = new IllegalInstruction;}});
590                0x31: Trap::fmul8x16({{fault = new IllegalInstruction;}});
591                0x33: Trap::fmul8x16au({{fault = new IllegalInstruction;}});
592                0x35: Trap::fmul8x16al({{fault = new IllegalInstruction;}});
593                0x36: Trap::fmul8sux16({{fault = new IllegalInstruction;}});
594                0x37: Trap::fmul8ulx16({{fault = new IllegalInstruction;}});
595                0x38: Trap::fmuld8sux16({{fault = new IllegalInstruction;}});
596                0x39: Trap::fmuld8ulx16({{fault = new IllegalInstruction;}});
597                0x3A: Trap::fpack32({{fault = new IllegalInstruction;}});
598                0x3B: Trap::fpack16({{fault = new IllegalInstruction;}});
599                0x3D: Trap::fpackfix({{fault = new IllegalInstruction;}});
600                0x3E: Trap::pdist({{fault = new IllegalInstruction;}});
601                0x48: BasicOperate::faligndata({{
602                        uint64_t msbX = Frs1.udw;
603                        uint64_t lsbX = Frs2.udw;
604                        //Some special cases need to be split out, first
605                        //because they're the most likely to be used, and
606                        //second because otherwise, we end up shifting by
607                        //greater than the width of the type being shifted,
608                        //namely 64, which produces undefined results according
609                        //to the C standard.
610                        switch(Gsr<2:0>)
611                        {
612                            case 0:
613                                Frd.udw = msbX;
614                                break;
615                            case 8:
616                                Frd.udw = lsbX;
617                                break;
618                            default:
619                                uint64_t msbShift = Gsr<2:0> * 8;
620                                uint64_t lsbShift = (8 - Gsr<2:0>) * 8;
621                                uint64_t msbMask = ((uint64_t)(-1)) >> msbShift;
622                                uint64_t lsbMask = ((uint64_t)(-1)) << lsbShift;
623                                Frd.udw = ((msbX & msbMask) << msbShift) |
624                                        ((lsbX & lsbMask) >> lsbShift);
625                        }
626                }});
627                0x4B: Trap::fpmerge({{fault = new IllegalInstruction;}});
628                0x4C: Trap::bshuffle({{fault = new IllegalInstruction;}});
629                0x4D: Trap::fexpand({{fault = new IllegalInstruction;}});
630                0x50: Trap::fpadd16({{fault = new IllegalInstruction;}});
631                0x51: Trap::fpadd16s({{fault = new IllegalInstruction;}});
632                0x52: Trap::fpadd32({{fault = new IllegalInstruction;}});
633                0x53: Trap::fpadd32s({{fault = new IllegalInstruction;}});
634                0x54: Trap::fpsub16({{fault = new IllegalInstruction;}});
635                0x55: Trap::fpsub16s({{fault = new IllegalInstruction;}});
636                0x56: Trap::fpsub32({{fault = new IllegalInstruction;}});
637                0x57: Trap::fpsub32s({{fault = new IllegalInstruction;}});
638                0x60: BasicOperate::fzero({{Frd.df = 0;}});
639                0x61: BasicOperate::fzeros({{Frds.sf = 0;}});
640                0x62: Trap::fnor({{fault = new IllegalInstruction;}});
641                0x63: Trap::fnors({{fault = new IllegalInstruction;}});
642                0x64: Trap::fandnot2({{fault = new IllegalInstruction;}});
643                0x65: Trap::fandnot2s({{fault = new IllegalInstruction;}});
644                0x66: BasicOperate::fnot2({{
645                        Frd.df = (double)(~((uint64_t)Frs2.df));
646                }});
647                0x67: BasicOperate::fnot2s({{
648                        Frds.sf = (float)(~((uint32_t)Frs2s.sf));
649                }});
650                0x68: Trap::fandnot1({{fault = new IllegalInstruction;}});
651                0x69: Trap::fandnot1s({{fault = new IllegalInstruction;}});
652                0x6A: BasicOperate::fnot1({{
653                        Frd.df = (double)(~((uint64_t)Frs1.df));
654                }});
655                0x6B: BasicOperate::fnot1s({{
656                        Frds.sf = (float)(~((uint32_t)Frs1s.sf));
657                }});
658                0x6C: Trap::fxor({{fault = new IllegalInstruction;}});
659                0x6D: Trap::fxors({{fault = new IllegalInstruction;}});
660                0x6E: Trap::fnand({{fault = new IllegalInstruction;}});
661                0x6F: Trap::fnands({{fault = new IllegalInstruction;}});
662                0x70: Trap::fand({{fault = new IllegalInstruction;}});
663                0x71: Trap::fands({{fault = new IllegalInstruction;}});
664                0x72: Trap::fxnor({{fault = new IllegalInstruction;}});
665                0x73: Trap::fxnors({{fault = new IllegalInstruction;}});
666                0x74: BasicOperate::fsrc1({{Frd.udw = Frs1.udw;}});
667                0x75: BasicOperate::fsrc1s({{Frd.uw = Frs1.uw;}});
668                0x76: Trap::fornot2({{fault = new IllegalInstruction;}});
669                0x77: Trap::fornot2s({{fault = new IllegalInstruction;}});
670                0x78: BasicOperate::fsrc2({{Frd.udw = Frs2.udw;}});
671                0x79: BasicOperate::fsrc2s({{Frd.uw = Frs2.uw;}});
672                0x7A: Trap::fornot1({{fault = new IllegalInstruction;}});
673                0x7B: Trap::fornot1s({{fault = new IllegalInstruction;}});
674                0x7C: Trap::for({{fault = new IllegalInstruction;}});
675                0x7D: Trap::fors({{fault = new IllegalInstruction;}});
676                0x7E: Trap::fone({{fault = new IllegalInstruction;}});
677                0x7F: Trap::fones({{fault = new IllegalInstruction;}});
678                0x80: Trap::shutdown({{fault = new IllegalInstruction;}});
679                0x81: Trap::siam({{fault = new IllegalInstruction;}});
680            }
681            0x37: Trap::impdep2({{fault = new IllegalInstruction;}});
682            0x38: Branch::jmpl({{
683                Addr target = Rs1 + Rs2_or_imm13;
684                if(target & 0x3)
685                    fault = new MemAddressNotAligned;
686                else
687                {
688                    Rd = xc->readPC();
689                    NNPC = target;
690                }
691            }});
692            0x39: Branch::return({{
693                //If both MemAddressNotAligned and
694                //a fill trap happen, it's not clear
695                //which one should be returned.
696                Addr target = Rs1 + Rs2_or_imm13;
697                if(target & 0x3)
698                    fault = new MemAddressNotAligned;
699                else
700                    NNPC = target;
701                if(fault == NoFault)
702                {
703                    if(Canrestore == 0)
704                    {
705                        if(Otherwin)
706                            fault = new FillNOther(Wstate<5:3>);
707                        else
708                            fault = new FillNNormal(Wstate<2:0>);
709                    }
710                    else
711                    {
712                        //CWP should be set directly so that it always happens
713                        //Also, this will allow writing to the new window and
714                        //reading from the old one
715                        Cwp = (Cwp - 1 + NWindows) % NWindows;
716                        Cansave = Cansave + 1;
717                        Canrestore = Canrestore - 1;
718                        //This is here to make sure the CWP is written
719                        //no matter what. This ensures that the results
720                        //are written in the new window as well.
721                        xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
722                        warn("About to set the CWP to %d\n", Cwp);
723                    }
724                }
725            }});
726            0x3A: decode CC
727            {
728                0x0: Trap::tcci({{
729                    if(passesCondition(Ccr<3:0>, COND2))
730                    {
731#if FULL_SYSTEM
732                        int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2);
733                        DPRINTF(Sparc, "The trap number is %d\n", lTrapNum);
734                        fault = new TrapInstruction(lTrapNum);
735#else
736                        DPRINTF(Sparc, "The syscall number is %d\n", R1);
737                        xc->syscall(R1);
738#endif
739                    }
740                }});
741                0x2: Trap::tccx({{
742                    if(passesCondition(Ccr<7:4>, COND2))
743                    {
744#if FULL_SYSTEM
745                        int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2);
746                        DPRINTF(Sparc, "The trap number is %d\n", lTrapNum);
747                        fault = new TrapInstruction(lTrapNum);
748#else
749                        DPRINTF(Sparc, "The syscall number is %d\n", R1);
750                        xc->syscall(R1);
751#endif
752                    }
753                }});
754            }
755            0x3B: Nop::flush({{/*Instruction memory flush*/}});
756            0x3C: save({{
757                //CWP should be set directly so that it always happens
758                //Also, this will allow writing to the new window and
759                //reading from the old one
760                if(Cansave == 0)
761                {
762                    if(Otherwin)
763                        fault = new SpillNOther(Wstate<5:3>);
764                    else
765                        fault = new SpillNNormal(Wstate<2:0>);
766                    //Cwp = (Cwp + 2) % NWindows;
767                }
768                else if(Cleanwin - Canrestore == 0)
769                {
770                    //Cwp = (Cwp + 1) % NWindows;
771                    fault = new CleanWindow;
772                }
773                else
774                {
775                    Cwp = (Cwp + 1) % NWindows;
776                    Rd = Rs1 + Rs2_or_imm13;
777                    Cansave = Cansave - 1;
778                    Canrestore = Canrestore + 1;
779                    //This is here to make sure the CWP is written
780                    //no matter what. This ensures that the results
781                    //are written in the new window as well.
782                    xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
783                }
784            }});
785            0x3D: restore({{
786                if(Canrestore == 0)
787                {
788                    if(Otherwin)
789                        fault = new FillNOther(Wstate<5:3>);
790                    else
791                        fault = new FillNNormal(Wstate<2:0>);
792                }
793                else
794                {
795                    //CWP should be set directly so that it always happens
796                    //Also, this will allow writing to the new window and
797                    //reading from the old one
798                    Cwp = (Cwp - 1 + NWindows) % NWindows;
799                    Rd = Rs1 + Rs2_or_imm13;
800                    Cansave = Cansave + 1;
801                    Canrestore = Canrestore - 1;
802                    //This is here to make sure the CWP is written
803                    //no matter what. This ensures that the results
804                    //are written in the new window as well.
805                    xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
806                }
807            }});
808            0x3E: decode FCN {
809                0x0: Priv::done({{
810                    if(Tl == 0)
811                        return new IllegalInstruction;
812
813                    Cwp = Tstate<4:0>;
814                    Pstate = Tstate<20:8>;
815                    Asi = Tstate<31:24>;
816                    Ccr = Tstate<39:32>;
817                    Gl = Tstate<42:40>;
818                    NPC = Tnpc;
819                    NNPC = Tnpc + 4;
820                    Tl = Tl - 1;
821                }});
822                0x1: Priv::retry({{
823                    if(Tl == 0)
824                        return new IllegalInstruction;
825                    Cwp = Tstate<4:0>;
826                    Pstate = Tstate<20:8>;
827                    Asi = Tstate<31:24>;
828                    Ccr = Tstate<39:32>;
829                    Gl = Tstate<42:40>;
830                    NPC = Tpc;
831                    NNPC = Tnpc;
832                    Tl = Tl - 1;
833                }});
834            }
835        }
836    }
837    0x3: decode OP3 {
838        format Load {
839            0x00: lduw({{Rd = Mem.uw;}});
840            0x01: ldub({{Rd = Mem.ub;}});
841            0x02: lduh({{Rd = Mem.uhw;}});
842            0x03: ldd({{
843                uint64_t val = Mem.udw;
844                RdLow = val<31:0>;
845                RdHigh = val<63:32>;
846            }});
847        }
848        format Store {
849            0x04: stw({{Mem.uw = Rd.sw;}});
850            0x05: stb({{Mem.ub = Rd.sb;}});
851            0x06: sth({{Mem.uhw = Rd.shw;}});
852            0x07: std({{Mem.udw = RdLow<31:0> | (RdHigh<31:0> << 32);}});
853        }
854        format Load {
855            0x08: ldsw({{Rd = (int32_t)Mem.sw;}});
856            0x09: ldsb({{Rd = (int8_t)Mem.sb;}});
857            0x0A: ldsh({{Rd = (int16_t)Mem.shw;}});
858            0x0B: ldx({{Rd = (int64_t)Mem.sdw;}});
859            0x0D: ldstub({{
860                Rd = Mem.ub;
861                Mem.ub = 0xFF;
862            }});
863        }
864        0x0E: Store::stx({{Mem.udw = Rd}});
865        0x0F: LoadStore::swap(
866            {{*temp = Rd.uw;
867            Rd.uw = Mem.uw;}},
868            {{Mem.uw = *temp;}});
869        format Load {
870            0x10: lduwa({{Rd = Mem.uw;}});
871            0x11: lduba({{Rd = Mem.ub;}});
872            0x12: lduha({{Rd = Mem.uhw;}});
873            0x13: ldda({{
874                uint64_t val = Mem.udw;
875                RdLow = val<31:0>;
876                RdHigh = val<63:32>;
877            }});
878        }
879        format Store {
880            0x14: stwa({{Mem.uw = Rd;}});
881            0x15: stba({{Mem.ub = Rd;}});
882            0x16: stha({{Mem.uhw = Rd;}});
883            0x17: stda({{Mem.udw = RdLow<31:0> | RdHigh<31:0> << 32;}});
884        }
885        format Load {
886            0x18: ldswa({{Rd = (int32_t)Mem.sw;}});
887            0x19: ldsba({{Rd = (int8_t)Mem.sb;}});
888            0x1A: ldsha({{Rd = (int16_t)Mem.shw;}});
889            0x1B: ldxa({{Rd = (int64_t)Mem.sdw;}});
890        }
891        0x1D: LoadStore::ldstuba(
892                {{Rd = Mem.ub;}},
893                {{Mem.ub = 0xFF}});
894        0x1E: Store::stxa({{Mem.udw = Rd}});
895        0x1F: LoadStore::swapa(
896            {{*temp = Rd.uw;
897            Rd.uw = Mem.uw;}},
898            {{Mem.uw = *temp;}});
899        format Trap {
900            0x20: Load::ldf({{Frd.uw = Mem.uw;}});
901            0x21: decode X {
902                0x0: Load::ldfsr({{Fsr = Mem.uw | Fsr<63:32>;}});
903                0x1: Load::ldxfsr({{Fsr = Mem.udw;}});
904            }
905            0x22: ldqf({{fault = new FpDisabled;}});
906            0x23: Load::lddf({{Frd.udw = Mem.udw;}});
907            0x24: Store::stf({{Mem.uw = Frd.uw;}});
908            0x25: decode X {
909                0x0: Store::stfsr({{Mem.uw = Fsr<31:0>;}});
910                0x1: Store::stxfsr({{Mem.udw = Fsr;}});
911            }
912            0x26: stqf({{fault = new FpDisabled;}});
913            0x27: Store::stdf({{Mem.udw = Frd.udw;}});
914            0x2D: Nop::prefetch({{ }});
915            0x30: Load::ldfa({{Frd.uw = Mem.uw;}});
916            0x32: ldqfa({{fault = new FpDisabled;}});
917            format LoadAlt {
918                0x33: decode EXT_ASI {
919                    //ASI_NUCLEUS
920                    0x04: FailUnimpl::lddfa_n();
921                    //ASI_NUCLEUS_LITTLE
922                    0x0C: FailUnimpl::lddfa_nl();
923                    //ASI_AS_IF_USER_PRIMARY
924                    0x10: FailUnimpl::lddfa_aiup();
925                    //ASI_AS_IF_USER_PRIMARY_LITTLE
926                    0x18: FailUnimpl::lddfa_aiupl();
927                    //ASI_AS_IF_USER_SECONDARY
928                    0x11: FailUnimpl::lddfa_aius();
929                    //ASI_AS_IF_USER_SECONDARY_LITTLE
930                    0x19: FailUnimpl::lddfa_aiusl();
931                    //ASI_REAL
932                    0x14: FailUnimpl::lddfa_real();
933                    //ASI_REAL_LITTLE
934                    0x1C: FailUnimpl::lddfa_real_l();
935                    //ASI_REAL_IO
936                    0x15: FailUnimpl::lddfa_real_io();
937                    //ASI_REAL_IO_LITTLE
938                    0x1D: FailUnimpl::lddfa_real_io_l();
939                    //ASI_PRIMARY
940                    0x80: FailUnimpl::lddfa_p();
941                    //ASI_PRIMARY_LITTLE
942                    0x88: FailUnimpl::lddfa_pl();
943                    //ASI_SECONDARY
944                    0x81: FailUnimpl::lddfa_s();
945                    //ASI_SECONDARY_LITTLE
946                    0x89: FailUnimpl::lddfa_sl();
947                    //ASI_PRIMARY_NO_FAULT
948                    0x82: FailUnimpl::lddfa_pnf();
949                    //ASI_PRIMARY_NO_FAULT_LITTLE
950                    0x8A: FailUnimpl::lddfa_pnfl();
951                    //ASI_SECONDARY_NO_FAULT
952                    0x83: FailUnimpl::lddfa_snf();
953                    //ASI_SECONDARY_NO_FAULT_LITTLE
954                    0x8B: FailUnimpl::lddfa_snfl();
955
956                    format BlockLoad {
957                        // LDBLOCKF
958                        //ASI_BLOCK_AS_IF_USER_PRIMARY
959                        0x16: FailUnimpl::ldblockf_aiup();
960                        //ASI_BLOCK_AS_IF_USER_SECONDARY
961                        0x17: FailUnimpl::ldblockf_aius();
962                        //ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
963                        0x1E: FailUnimpl::ldblockf_aiupl();
964                        //ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
965                        0x1F: FailUnimpl::ldblockf_aiusl();
966                        //ASI_BLOCK_PRIMARY
967                        0xF0: ldblockf_p({{Frd_N.udw = Mem.udw;}});
968                        //ASI_BLOCK_SECONDARY
969                        0xF1: FailUnimpl::ldblockf_s();
970                        //ASI_BLOCK_PRIMARY_LITTLE
971                        0xF8: FailUnimpl::ldblockf_pl();
972                        //ASI_BLOCK_SECONDARY_LITTLE
973                        0xF9: FailUnimpl::ldblockf_sl();
974                    }
975
976                    //LDSHORTF
977                    //ASI_FL8_PRIMARY
978                    0xD0: FailUnimpl::ldshortf_8p();
979                    //ASI_FL8_SECONDARY
980                    0xD1: FailUnimpl::ldshortf_8s();
981                    //ASI_FL8_PRIMARY_LITTLE
982                    0xD8: FailUnimpl::ldshortf_8pl();
983                    //ASI_FL8_SECONDARY_LITTLE
984                    0xD9: FailUnimpl::ldshortf_8sl();
985                    //ASI_FL16_PRIMARY
986                    0xD2: FailUnimpl::ldshortf_16p();
987                    //ASI_FL16_SECONDARY
988                    0xD3: FailUnimpl::ldshortf_16s();
989                    //ASI_FL16_PRIMARY_LITTLE
990                    0xDA: FailUnimpl::ldshortf_16pl();
991                    //ASI_FL16_SECONDARY_LITTLE
992                    0xDB: FailUnimpl::ldshortf_16sl();
993                    //Not an ASI which is legal with lddfa
994                    default: Trap::lddfa_bad_asi(
995                        {{fault = new DataAccessException;}});
996                }
997            }
998            0x34: Store::stfa({{Mem.uw = Frd.uw;}});
999            0x36: stqfa({{fault = new FpDisabled;}});
1000            format StoreAlt {
1001                0x37: decode EXT_ASI {
1002                    //ASI_NUCLEUS
1003                    0x04: FailUnimpl::stdfa_n();
1004                    //ASI_NUCLEUS_LITTLE
1005                    0x0C: FailUnimpl::stdfa_nl();
1006                    //ASI_AS_IF_USER_PRIMARY
1007                    0x10: FailUnimpl::stdfa_aiup();
1008                    //ASI_AS_IF_USER_PRIMARY_LITTLE
1009                    0x18: FailUnimpl::stdfa_aiupl();
1010                    //ASI_AS_IF_USER_SECONDARY
1011                    0x11: FailUnimpl::stdfa_aius();
1012                    //ASI_AS_IF_USER_SECONDARY_LITTLE
1013                    0x19: FailUnimpl::stdfa_aiusl();
1014                    //ASI_REAL
1015                    0x14: FailUnimpl::stdfa_real();
1016                    //ASI_REAL_LITTLE
1017                    0x1C: FailUnimpl::stdfa_real_l();
1018                    //ASI_REAL_IO
1019                    0x15: FailUnimpl::stdfa_real_io();
1020                    //ASI_REAL_IO_LITTLE
1021                    0x1D: FailUnimpl::stdfa_real_io_l();
1022                    //ASI_PRIMARY
1023                    0x80: FailUnimpl::stdfa_p();
1024                    //ASI_PRIMARY_LITTLE
1025                    0x88: FailUnimpl::stdfa_pl();
1026                    //ASI_SECONDARY
1027                    0x81: FailUnimpl::stdfa_s();
1028                    //ASI_SECONDARY_LITTLE
1029                    0x89: FailUnimpl::stdfa_sl();
1030                    //ASI_PRIMARY_NO_FAULT
1031                    0x82: FailUnimpl::stdfa_pnf();
1032                    //ASI_PRIMARY_NO_FAULT_LITTLE
1033                    0x8A: FailUnimpl::stdfa_pnfl();
1034                    //ASI_SECONDARY_NO_FAULT
1035                    0x83: FailUnimpl::stdfa_snf();
1036                    //ASI_SECONDARY_NO_FAULT_LITTLE
1037                    0x8B: FailUnimpl::stdfa_snfl();
1038
1039                    format BlockStore {
1040                        // STBLOCKF
1041                        //ASI_BLOCK_AS_IF_USER_PRIMARY
1042                        0x16: FailUnimpl::stblockf_aiup();
1043                        //ASI_BLOCK_AS_IF_USER_SECONDARY
1044                        0x17: FailUnimpl::stblockf_aius();
1045                        //ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
1046                        0x1E: FailUnimpl::stblockf_aiupl();
1047                        //ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
1048                        0x1F: FailUnimpl::stblockf_aiusl();
1049                        //ASI_BLOCK_PRIMARY
1050                        0xF0: stblockf_p({{Mem.udw = Frd_N.udw;}});
1051                        //ASI_BLOCK_SECONDARY
1052                        0xF1: FailUnimpl::stblockf_s();
1053                        //ASI_BLOCK_PRIMARY_LITTLE
1054                        0xF8: FailUnimpl::stblockf_pl();
1055                        //ASI_BLOCK_SECONDARY_LITTLE
1056                        0xF9: FailUnimpl::stblockf_sl();
1057                    }
1058
1059                    //STSHORTF
1060                    //ASI_FL8_PRIMARY
1061                    0xD0: FailUnimpl::stshortf_8p();
1062                    //ASI_FL8_SECONDARY
1063                    0xD1: FailUnimpl::stshortf_8s();
1064                    //ASI_FL8_PRIMARY_LITTLE
1065                    0xD8: FailUnimpl::stshortf_8pl();
1066                    //ASI_FL8_SECONDARY_LITTLE
1067                    0xD9: FailUnimpl::stshortf_8sl();
1068                    //ASI_FL16_PRIMARY
1069                    0xD2: FailUnimpl::stshortf_16p();
1070                    //ASI_FL16_SECONDARY
1071                    0xD3: FailUnimpl::stshortf_16s();
1072                    //ASI_FL16_PRIMARY_LITTLE
1073                    0xDA: FailUnimpl::stshortf_16pl();
1074                    //ASI_FL16_SECONDARY_LITTLE
1075                    0xDB: FailUnimpl::stshortf_16sl();
1076                    //Not an ASI which is legal with lddfa
1077                    default: Trap::stdfa_bad_asi(
1078                        {{fault = new DataAccessException;}});
1079                }
1080            }
1081            0x3C: Cas::casa({{
1082                uint64_t val = Mem.uw;
1083                if(Rs2.uw == val)
1084                        Mem.uw = Rd.uw;
1085                Rd.uw = val;
1086            }});
1087            0x3D: Nop::prefetcha({{ }});
1088            0x3E: Cas::casxa({{
1089                uint64_t val = Mem.udw;
1090                if(Rs2 == val)
1091                        Mem.udw = Rd;
1092                Rd = val;
1093            }});
1094        }
1095    }
1096}
1097