decoder.isa revision 2944:10dcffb2904f
1// Copyright (c) 2006 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28//          Gabe Black
29//          Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// The actual decoder specification
34//
35
36decode OP default Unknown::unknown()
37{
38    0x0: decode OP2
39    {
40        //Throw an illegal instruction acception
41        0x0: Trap::illtrap({{fault = new IllegalInstruction;}});
42        format BranchN
43        {
44            0x1: decode BPCC
45            {
46                0x0: bpcci(19, {{
47                    if(passesCondition(Ccr<3:0>, COND2))
48                        NNPC = xc->readPC() + disp;
49                    else
50                        handle_annul
51                }});
52                0x2: bpccx(19, {{
53                    if(passesCondition(Ccr<7:4>, COND2))
54                        NNPC = xc->readPC() + disp;
55                    else
56                        handle_annul
57                }});
58            }
59            0x2: bicc(22, {{
60                if(passesCondition(Ccr<3:0>, COND2))
61                    NNPC = xc->readPC() + disp;
62                else
63                    handle_annul
64            }});
65        }
66        0x3: decode RCOND2
67        {
68            format BranchSplit
69            {
70                0x1: bpreq({{
71                    if(Rs1.sdw == 0)
72                        NNPC = xc->readPC() + disp;
73                    else
74                        handle_annul
75                }});
76                0x2: bprle({{
77                    if(Rs1.sdw <= 0)
78                        NNPC = xc->readPC() + disp;
79                    else
80                        handle_annul
81                }});
82                0x3: bprl({{
83                    if(Rs1.sdw < 0)
84                        NNPC = xc->readPC() + disp;
85                    else
86                        handle_annul
87                }});
88                0x5: bprne({{
89                    if(Rs1.sdw != 0)
90                        NNPC = xc->readPC() + disp;
91                    else
92                        handle_annul
93                }});
94                0x6: bprg({{
95                    if(Rs1.sdw > 0)
96                        NNPC = xc->readPC() + disp;
97                    else
98                        handle_annul
99                }});
100                0x7: bprge({{
101                    if(Rs1.sdw >= 0)
102                        NNPC = xc->readPC() + disp;
103                    else
104                        handle_annul
105                }});
106            }
107        }
108        //SETHI (or NOP if rd == 0 and imm == 0)
109        0x4: SetHi::sethi({{Rd = imm;}});
110        0x5: Trap::fbpfcc({{fault = new FpDisabled;}});
111        0x6: Trap::fbfcc({{fault = new FpDisabled;}});
112    }
113    0x1: BranchN::call(30, {{
114            R15 = xc->readPC();
115            NNPC = R15 + disp;
116    }});
117    0x2: decode OP3 {
118        format IntOp {
119            0x00: add({{Rd = Rs1.sdw + Rs2_or_imm13;}});
120            0x01: and({{Rd = Rs1.udw & Rs2_or_imm13;}});
121            0x02: or({{Rd = Rs1.udw | Rs2_or_imm13;}});
122            0x03: xor({{Rd = Rs1.udw ^ Rs2_or_imm13;}});
123            0x04: sub({{Rd = Rs1.sdw - Rs2_or_imm13;}});
124            0x05: andn({{Rd = Rs1.udw & ~Rs2_or_imm13;}});
125            0x06: orn({{Rd = Rs1.udw | ~Rs2_or_imm13;}});
126            0x07: xnor({{Rd = ~(Rs1.udw ^ Rs2_or_imm13);}});
127            0x08: addc({{Rd = Rs1.sdw + Rs2_or_imm13 + Ccr<0:0>;}});
128            0x09: mulx({{Rd = Rs1 * Rs2_or_imm13;}});
129            0x0A: umul({{
130                Rd = Rs1.udw<31:0> * Rs2_or_imm13<31:0>;
131                Y = Rd<63:32>;
132            }});
133            0x0B: smul({{
134                Rd.sdw = Rs1.sdw<31:0> * Rs2_or_imm13<31:0>;
135                Y = Rd.sdw;
136            }});
137            0x0C: subc({{Rd.sdw = Rs1.sdw + (~Rs2_or_imm13) + 1 + Ccr<0:0>}});
138            0x0D: udivx({{
139                if(Rs2_or_imm13 == 0) fault = new DivisionByZero;
140                else Rd.udw = Rs1.udw / Rs2_or_imm13;
141            }});
142            0x0E: udiv({{
143                if(Rs2_or_imm13 == 0) fault = new DivisionByZero;
144                else
145                {
146                    Rd.udw = ((Y << 32) | Rs1.udw<31:0>) / Rs2_or_imm13;
147                    if(Rd.udw >> 32 != 0)
148                        Rd.udw = 0xFFFFFFFF;
149                }
150            }});
151            0x0F: sdiv({{
152                if(Rs2_or_imm13.sdw == 0)
153                    fault = new DivisionByZero;
154                else
155                {
156                    Rd.udw = ((int64_t)((Y << 32) | Rs1.sdw<31:0>)) / Rs2_or_imm13.sdw;
157                    if(Rd.udw<63:31> != 0)
158                        Rd.udw = 0x7FFFFFFF;
159                    else if(Rd.udw<63:> && Rd.udw<62:31> != 0xFFFFFFFF)
160                        Rd.udw = 0xFFFFFFFF80000000ULL;
161                }
162            }});
163        }
164        format IntOpCc {
165            0x10: addcc({{
166                int64_t resTemp, val2 = Rs2_or_imm13;
167                Rd = resTemp = Rs1 + val2;}},
168                {{(Rs1<31:0> + val2<31:0>)<32:>}},
169                {{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
170                {{(Rs1<63:1> + val2<63:1> + (Rs1 & val2)<0:>)<63:>}},
171                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
172            );
173            0x11: IntOpCcRes::andcc({{Rd = Rs1 & Rs2_or_imm13;}});
174            0x12: IntOpCcRes::orcc({{Rd = Rs1 | Rs2_or_imm13;}});
175            0x13: IntOpCcRes::xorcc({{Rd = Rs1 ^ Rs2_or_imm13;}});
176            0x14: subcc({{
177                int64_t val2 = Rs2_or_imm13;
178                Rd = Rs1 - val2;}},
179                {{(~(Rs1<31:0> + (~val2)<31:0> + 1))<32:>}},
180                {{(Rs1<31:> != val2<31:>) && (Rs1<31:> != Rd<31:>)}},
181                {{(~(Rs1<63:1> + (~val2)<63:1> +
182                    (Rs1 | ~val2)<0:>))<63:>}},
183                {{Rs1<63:> != val2<63:> && Rs1<63:> != Rd<63:>}}
184            );
185            0x15: IntOpCcRes::andncc({{Rd = Rs1 & ~Rs2_or_imm13;}});
186            0x16: IntOpCcRes::orncc({{Rd = Rs1 | ~Rs2_or_imm13;}});
187            0x17: IntOpCcRes::xnorcc({{Rd = ~(Rs1 ^ Rs2_or_imm13);}});
188            0x18: addccc({{
189                int64_t resTemp, val2 = Rs2_or_imm13;
190                int64_t carryin = Ccr<0:0>;
191                Rd = resTemp = Rs1 + val2 + carryin;}},
192                {{(Rs1<31:0> + val2<31:0> + carryin)<32:>}},
193                {{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
194                {{(Rs1<63:1> + val2<63:1> +
195                    ((Rs1 & val2) | (carryin & (Rs1 | val2)))<0:>)<63:>}},
196                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
197            );
198            0x1A: umulcc({{
199                uint64_t resTemp;
200                Rd = resTemp = Rs1.udw<31:0> * Rs2_or_imm13.udw<31:0>;
201                Y = resTemp<63:32>;}},
202                {{0}},{{0}},{{0}},{{0}});
203            0x1B: smulcc({{
204                int64_t resTemp;
205                Rd = resTemp = Rs1.sdw<31:0> * Rs2_or_imm13.sdw<31:0>;
206                Y = resTemp<63:32>;}},
207                {{0}},{{0}},{{0}},{{0}});
208            0x1C: subccc({{
209                int64_t resTemp, val2 = Rs2_or_imm13;
210                int64_t carryin = Ccr<0:0>;
211                Rd = resTemp = Rs1 + ~(val2 + carryin) + 1;}},
212                {{(~((Rs1<31:0> + (~(val2 + carryin))<31:0> + 1))<32:>)}},
213                {{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}},
214                {{(~((Rs1<63:1> + (~(val2 + carryin))<63:1>) + (Rs1<0:> + (~(val2+carryin))<0:> + 1)<63:1>))<63:>}},
215                {{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
216            );
217            0x1D: udivxcc({{
218                if(Rs2_or_imm13.udw == 0) fault = new DivisionByZero;
219                else Rd = Rs1.udw / Rs2_or_imm13.udw;}}
220                ,{{0}},{{0}},{{0}},{{0}});
221            0x1E: udivcc({{
222                uint32_t resTemp, val2 = Rs2_or_imm13.udw;
223                int32_t overflow;
224                if(val2 == 0) fault = new DivisionByZero;
225                else
226                {
227                    resTemp = (uint64_t)((Y << 32) | Rs1.udw<31:0>) / val2;
228                    overflow = (resTemp<63:32> != 0);
229                    if(overflow) Rd = resTemp = 0xFFFFFFFF;
230                    else Rd = resTemp;
231                } }},
232                {{0}},
233                {{overflow}},
234                {{0}},
235                {{0}}
236            );
237            0x1F: sdivcc({{
238                int32_t resTemp, val2 = Rs2_or_imm13.sdw;
239                int32_t overflow, underflow;
240                if(val2 == 0) fault = new DivisionByZero;
241                else
242                {
243                    Rd = resTemp = (int64_t)((Y << 32) | Rs1.sdw<31:0>) / val2;
244                    overflow = (resTemp<63:31> != 0);
245                    underflow = (resTemp<63:> && resTemp<62:31> != 0xFFFFFFFF);
246                    if(overflow) Rd = resTemp = 0x7FFFFFFF;
247                    else if(underflow) Rd = resTemp = 0xFFFFFFFF80000000ULL;
248                    else Rd = resTemp;
249                } }},
250                {{0}},
251                {{overflow || underflow}},
252                {{0}},
253                {{0}}
254            );
255            0x20: taddcc({{
256                int64_t resTemp, val2 = Rs2_or_imm13;
257                Rd = resTemp = Rs1 + val2;
258                int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
259                {{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
260                {{overflow}},
261                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
262                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
263            );
264            0x21: tsubcc({{
265                int64_t resTemp, val2 = Rs2_or_imm13;
266                Rd = resTemp = Rs1 + val2;
267                int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
268                {{(Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31}},
269                {{overflow}},
270                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
271                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
272            );
273            0x22: taddcctv({{
274                int64_t resTemp, val2 = Rs2_or_imm13;
275                Rd = resTemp = Rs1 + val2;
276                int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
277                if(overflow) fault = new TagOverflow;}},
278                {{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
279                {{overflow}},
280                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
281                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
282            );
283            0x23: tsubcctv({{
284                int64_t resTemp, val2 = Rs2_or_imm13;
285                Rd = resTemp = Rs1 + val2;
286                int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
287                if(overflow) fault = new TagOverflow;}},
288                {{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
289                {{overflow}},
290                {{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
291                {{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
292            );
293            0x24: mulscc({{
294                int64_t resTemp, multiplicand = Rs2_or_imm13;
295                int32_t multiplier = Rs1<31:0>;
296                int32_t savedLSB = Rs1<0:>;
297                multiplier = multiplier<31:1> |
298                    ((Ccr<3:3>
299                    ^ Ccr<1:1>) << 32);
300                if(!Y<0:>)
301                    multiplicand = 0;
302                Rd = resTemp = multiplicand + multiplier;
303                Y = Y<31:1> | (savedLSB << 31);}},
304                {{((multiplicand & 0xFFFFFFFF + multiplier & 0xFFFFFFFF) >> 31)}},
305                {{multiplicand<31:> == multiplier<31:> && multiplier<31:> != resTemp<31:>}},
306                {{((multiplicand >> 1) + (multiplier >> 1) + (multiplicand & multiplier & 0x1))<63:>}},
307                {{multiplicand<63:> == multiplier<63:> && multiplier<63:> != resTemp<63:>}}
308            );
309        }
310        format IntOp
311        {
312            0x25: decode X {
313                0x0: sll({{Rd = Rs1 << (I ? SHCNT32 : Rs2<4:0>);}});
314                0x1: sllx({{Rd = Rs1 << (I ? SHCNT64 : Rs2<5:0>);}});
315            }
316            0x26: decode X {
317                0x0: srl({{Rd = Rs1.uw >> (I ? SHCNT32 : Rs2<4:0>);}});
318                0x1: srlx({{Rd = Rs1.udw >> (I ? SHCNT64 : Rs2<5:0>);}});
319            }
320            0x27: decode X {
321                0x0: sra({{Rd = Rs1.sw >> (I ? SHCNT32 : Rs2<4:0>);}});
322                0x1: srax({{Rd = Rs1.sdw >> (I ? SHCNT64 : Rs2<5:0>);}});
323            }
324            // XXX might want a format rdipr thing here
325            0x28: rdasr({{
326                Rd = xc->readMiscRegWithEffect(RS1 + AsrStart, fault);
327            }});
328            0x29: HPriv::rdhpr({{
329                // XXX Need to protect with format that traps non-priv/priv
330                // access
331                Rd = xc->readMiscRegWithEffect(RS1 + HprStart, fault);
332            }});
333            0x2A: Priv::rdpr({{
334                // XXX Need to protect with format that traps non-priv
335                // access
336                Rd = xc->readMiscRegWithEffect(RS1 + PrStart, fault);
337            }});
338            0x2B: BasicOperate::flushw({{
339                if(NWindows - 2 - Cansave == 0)
340                {
341                    if(Otherwin)
342                        fault = new SpillNOther(Wstate<5:3>);
343                    else
344                        fault = new SpillNNormal(Wstate<2:0>);
345                }
346            }});
347            0x2C: decode MOVCC3
348            {
349                0x0: Trap::movccfcc({{fault = new FpDisabled;}});
350                0x1: decode CC
351                {
352                    0x0: movcci({{
353                        if(passesCondition(Ccr<3:0>, COND4))
354                            Rd = Rs2_or_imm11;
355                        else
356                            Rd = Rd;
357                    }});
358                    0x2: movccx({{
359                        if(passesCondition(Ccr<7:4>, COND4))
360                            Rd = Rs2_or_imm11;
361                        else
362                            Rd = Rd;
363                    }});
364                }
365            }
366            0x2D: sdivx({{
367                if(Rs2_or_imm13.sdw == 0) fault = new DivisionByZero;
368                else Rd.sdw = Rs1.sdw / Rs2_or_imm13.sdw;
369            }});
370            0x2E: decode RS1 {
371                0x0: IntOp::popc({{
372                    int64_t count = 0;
373                    uint64_t temp = Rs2_or_imm13;
374                    //Count the 1s in the front 4bits until none are left
375                    uint8_t oneBits[] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4};
376                    while(temp)
377                    {
378                            count += oneBits[temp & 0xF];
379                            temp = temp >> 4;
380                    }
381                    Rd = count;
382                }});
383            }
384            0x2F: decode RCOND3
385            {
386                0x1: movreq({{Rd = (Rs1.sdw == 0) ? Rs2_or_imm10 : Rd;}});
387                0x2: movrle({{Rd = (Rs1.sdw <= 0) ? Rs2_or_imm10 : Rd;}});
388                0x3: movrl({{Rd = (Rs1.sdw < 0) ? Rs2_or_imm10 : Rd;}});
389                0x5: movrne({{Rd = (Rs1.sdw != 0) ? Rs2_or_imm10 : Rd;}});
390                0x6: movrg({{Rd = (Rs1.sdw > 0) ? Rs2_or_imm10 : Rd;}});
391                0x7: movrge({{Rd = (Rs1.sdw >= 0) ? Rs2_or_imm10 : Rd;}});
392            }
393            0x30: wrasr({{
394                xc->setMiscRegWithEffect(RD + AsrStart, Rs1 ^ Rs2_or_imm13);
395            }});
396            0x31: decode FCN {
397                0x0: BasicOperate::saved({{/*Boogy Boogy*/}});
398                0x1: BasicOperate::restored({{/*Boogy Boogy*/}});
399            }
400            0x32: Priv::wrpr({{
401                // XXX Need to protect with format that traps non-priv
402                // access
403                fault = xc->setMiscRegWithEffect(RD + PrStart, Rs1 ^ Rs2_or_imm13);
404            }});
405            0x33: HPriv::wrhpr({{
406                // XXX Need to protect with format that traps non-priv/priv
407                // access
408                fault = xc->setMiscRegWithEffect(RD + HprStart, Rs1 ^ Rs2_or_imm13);
409            }});
410            0x34: Trap::fpop1({{fault = new FpDisabled;}});
411            0x35: Trap::fpop2({{fault = new FpDisabled;}});
412            0x38: Branch::jmpl({{
413                Addr target = Rs1 + Rs2_or_imm13;
414                if(target & 0x3)
415                    fault = new MemAddressNotAligned;
416                else
417                {
418                    Rd = xc->readPC();
419                    NNPC = target;
420                }
421            }});
422            0x39: Branch::return({{
423                //If both MemAddressNotAligned and
424                //a fill trap happen, it's not clear
425                //which one should be returned.
426                Addr target = Rs1 + Rs2_or_imm13;
427                if(target & 0x3)
428                    fault = new MemAddressNotAligned;
429                else
430                    NNPC = target;
431                if(fault == NoFault)
432                {
433                    //CWP should be set directly so that it always happens
434                    //Also, this will allow writing to the new window and
435                    //reading from the old one
436                    Cwp = (Cwp - 1 + NWindows) % NWindows;
437                    if(Canrestore == 0)
438                    {
439                        if(Otherwin)
440                            fault = new FillNOther(Wstate<5:3>);
441                        else
442                            fault = new FillNNormal(Wstate<2:0>);
443                    }
444                    else
445                    {
446                        Rd = Rs1 + Rs2_or_imm13;
447                        Cansave = Cansave + 1;
448                        Canrestore = Canrestore - 1;
449                    }
450                    //This is here to make sure the CWP is written
451                    //no matter what. This ensures that the results
452                    //are written in the new window as well.
453                    xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
454                }
455            }});
456            0x3A: decode CC
457            {
458                0x0: Trap::tcci({{
459                    if(passesCondition(Ccr<3:0>, COND2))
460                    {
461                        int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2);
462                        DPRINTF(Sparc, "The trap number is %d\n", lTrapNum);
463#if FULL_SYSTEM
464                        fault = new TrapInstruction(lTrapNum);
465#else
466                        DPRINTF(Sparc, "The syscall number is %d\n", R1);
467                        xc->syscall(R1);
468#endif
469                    }
470                }});
471                0x2: Trap::tccx({{
472                    if(passesCondition(Ccr<7:4>, COND2))
473                    {
474                        int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2);
475                        DPRINTF(Sparc, "The trap number is %d\n", lTrapNum);
476#if FULL_SYSTEM
477                        fault = new TrapInstruction(lTrapNum);
478#else
479                        DPRINTF(Sparc, "The syscall number is %d\n", R1);
480                        xc->syscall(R1);
481#endif
482                    }
483                }});
484            }
485            0x3B: Nop::flush({{/*Instruction memory flush*/}});
486            0x3C: save({{
487                //CWP should be set directly so that it always happens
488                //Also, this will allow writing to the new window and
489                //reading from the old one
490                if(Cansave == 0)
491                {
492                    if(Otherwin)
493                        fault = new SpillNOther(Wstate<5:3>);
494                    else
495                        fault = new SpillNNormal(Wstate<2:0>);
496                    Cwp = (Cwp + 2) % NWindows;
497                }
498                else if(Cleanwin - Canrestore == 0)
499                {
500                    Cwp = (Cwp + 1) % NWindows;
501                    fault = new CleanWindow;
502                }
503                else
504                {
505                    Cwp = (Cwp + 1) % NWindows;
506                    Rd = Rs1 + Rs2_or_imm13;
507                    Cansave = Cansave - 1;
508                    Canrestore = Canrestore + 1;
509                }
510                //This is here to make sure the CWP is written
511                //no matter what. This ensures that the results
512                //are written in the new window as well.
513                xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
514            }});
515            0x3D: restore({{
516                //CWP should be set directly so that it always happens
517                //Also, this will allow writing to the new window and
518                //reading from the old one
519                Cwp = (Cwp - 1 + NWindows) % NWindows;
520                if(Canrestore == 0)
521                {
522                    if(Otherwin)
523                        fault = new FillNOther(Wstate<5:3>);
524                    else
525                        fault = new FillNNormal(Wstate<2:0>);
526                }
527                else
528                {
529                    Rd = Rs1 + Rs2_or_imm13;
530                    Cansave = Cansave + 1;
531                    Canrestore = Canrestore - 1;
532                }
533                //This is here to make sure the CWP is written
534                //no matter what. This ensures that the results
535                //are written in the new window as well.
536                xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
537            }});
538            0x3E: decode FCN {
539                0x0: Priv::done({{
540                    if(Tl == 0)
541                        return new IllegalInstruction;
542
543                    Cwp = Tstate<4:0>;
544                    Pstate = Tstate<20:8>;
545                    Asi = Tstate<31:24>;
546                    Ccr = Tstate<39:32>;
547                    Gl = Tstate<42:40>;
548                    NPC = Tnpc;
549                    NNPC = Tnpc + 4;
550                    Tl = Tl - 1;
551                }});
552                0x1: Priv::retry({{
553                    if(Tl == 0)
554                        return new IllegalInstruction;
555                    Cwp = Tstate<4:0>;
556                    Pstate = Tstate<20:8>;
557                    Asi = Tstate<31:24>;
558                    Ccr = Tstate<39:32>;
559                    Gl = Tstate<42:40>;
560                    NPC = Tpc;
561                    NNPC = Tnpc + 4;
562                    Tl = Tl - 1;
563                }});
564            }
565        }
566    }
567    0x3: decode OP3 {
568        format Load {
569            0x00: lduw({{Rd = Mem;}}, {{32}});
570            0x01: ldub({{Rd = Mem;}}, {{8}});
571            0x02: lduh({{Rd = Mem;}}, {{16}});
572            0x03: ldd({{
573                uint64_t val = Mem;
574                RdLow = val<31:0>;
575                RdHigh = val<63:32>;
576            }}, {{64}});
577        }
578        format Store {
579            0x04: stw({{Mem = Rd.sw;}}, {{32}});
580            0x05: stb({{Mem = Rd.sb;}}, {{8}});
581            0x06: sth({{Mem = Rd.shw;}}, {{16}});
582            0x07: std({{Mem = RdLow<31:0> | RdHigh<31:0> << 32;}}, {{64}});
583        }
584        format Load {
585            0x08: ldsw({{Rd = (int32_t)Mem;}}, {{32}});
586            0x09: ldsb({{Rd = (int8_t)Mem;}}, {{8}});
587            0x0A: ldsh({{Rd = (int16_t)Mem;}}, {{16}});
588            0x0B: ldx({{Rd = (int64_t)Mem;}}, {{64}});
589            0x0D: ldstub({{
590                Rd = Mem;
591                Mem = 0xFF;
592            }}, {{8}});
593        }
594        0x0E: Store::stx({{Mem = Rd}}, {{64}});
595        0x0F: LoadStore::swap({{
596            uint32_t temp = Rd;
597            Rd = Mem;
598            Mem = temp;
599        }}, {{32}});
600        format Load {
601            0x10: lduwa({{Rd = Mem;}}, {{32}});
602            0x11: lduba({{Rd = Mem;}}, {{8}});
603            0x12: lduha({{Rd = Mem;}}, {{16}});
604            0x13: ldda({{
605                uint64_t val = Mem;
606                RdLow = val<31:0>;
607                RdHigh = val<63:32>;
608            }}, {{64}});
609        }
610        format Store {
611            0x14: stwa({{Mem = Rd;}}, {{32}});
612            0x15: stba({{Mem = Rd;}}, {{8}});
613            0x16: stha({{Mem = Rd;}}, {{16}});
614            0x17: stda({{Mem = RdLow<31:0> | RdHigh<31:0> << 32;}}, {{64}});
615        }
616        format Load {
617            0x18: ldswa({{Rd = (int32_t)Mem;}}, {{32}});
618            0x19: ldsba({{Rd = (int8_t)Mem;}}, {{8}});
619            0x1A: ldsha({{Rd = (int16_t)Mem;}}, {{16}});
620            0x1B: ldxa({{Rd = (int64_t)Mem;}}, {{64}});
621        }
622        0x1D: LoadStore::ldstuba({{
623            Rd = Mem;
624            Mem = 0xFF;
625        }}, {{8}});
626        0x1E: Store::stxa({{Mem = Rd}}, {{64}});
627        0x1F: LoadStore::swapa({{
628            uint32_t temp = Rd;
629            Rd = Mem;
630            Mem = temp;
631        }}, {{32}});
632        format Trap {
633            0x20: ldf({{fault = new FpDisabled;}});
634            0x21: decode X {
635                0x0: Load::ldfsr({{Fsr = Mem<31:0> | Fsr<63:32>;}}, {{32}});
636                0x1: Load::ldxfsr({{Fsr = Mem;}}, {{64}});
637            }
638            0x22: ldqf({{fault = new FpDisabled;}});
639            0x23: lddf({{fault = new FpDisabled;}});
640            0x24: stf({{fault = new FpDisabled;}});
641            0x25: decode X {
642                0x0: Store::stfsr({{Mem = Fsr<31:0>;}}, {{32}});
643                0x1: Store::stxfsr({{Mem = Fsr;}}, {{64}});
644            }
645            0x26: stqf({{fault = new FpDisabled;}});
646            0x27: stdf({{fault = new FpDisabled;}});
647            0x2D: Nop::prefetch({{ }});
648            0x30: ldfa({{return new FpDisabled;}});
649            0x32: ldqfa({{fault = new FpDisabled;}});
650            0x33: lddfa({{fault = new FpDisabled;}});
651            0x34: stfa({{fault = new FpDisabled;}});
652            0x35: stqfa({{fault = new FpDisabled;}});
653            0x36: stdfa({{fault = new FpDisabled;}});
654            0x3C: Cas::casa({{
655                uint64_t val = Mem.uw;
656                if(Rs2.uw == val)
657                        Mem.uw = Rd.uw;
658                Rd.uw = val;
659            }});
660            0x3D: Nop::prefetcha({{ }});
661            0x3E: Cas::casxa({{
662                uint64_t val = Mem.udw;
663                if(Rs2 == val)
664                        Mem.udw = Rd;
665                Rd = val;
666            }});
667        }
668    }
669}
670