faults.cc revision 11850:36119fa7874d
1/* 2 * Copyright (c) 2003-2005 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Gabe Black 29 * Kevin Lim 30 */ 31 32#include "arch/sparc/faults.hh" 33 34#include <algorithm> 35 36#include "arch/sparc/isa_traits.hh" 37#include "arch/sparc/process.hh" 38#include "arch/sparc/types.hh" 39#include "base/bitfield.hh" 40#include "base/trace.hh" 41#include "cpu/base.hh" 42#include "cpu/thread_context.hh" 43#include "mem/page_table.hh" 44#include "sim/full_system.hh" 45#include "sim/process.hh" 46 47using namespace std; 48 49namespace SparcISA 50{ 51 52template<> SparcFaultBase::FaultVals 53 SparcFault<PowerOnReset>::vals = 54{"power_on_reset", 0x001, 0, {H, H, H}, FaultStat()}; 55 56template<> SparcFaultBase::FaultVals 57 SparcFault<WatchDogReset>::vals = 58{"watch_dog_reset", 0x002, 120, {H, H, H}, FaultStat()}; 59 60template<> SparcFaultBase::FaultVals 61 SparcFault<ExternallyInitiatedReset>::vals = 62{"externally_initiated_reset", 0x003, 110, {H, H, H}, FaultStat()}; 63 64template<> SparcFaultBase::FaultVals 65 SparcFault<SoftwareInitiatedReset>::vals = 66{"software_initiated_reset", 0x004, 130, {SH, SH, H}, FaultStat()}; 67 68template<> SparcFaultBase::FaultVals 69 SparcFault<REDStateException>::vals = 70{"RED_state_exception", 0x005, 1, {H, H, H}, FaultStat()}; 71 72template<> SparcFaultBase::FaultVals 73 SparcFault<StoreError>::vals = 74{"store_error", 0x007, 201, {H, H, H}, FaultStat()}; 75 76template<> SparcFaultBase::FaultVals 77 SparcFault<InstructionAccessException>::vals = 78{"instruction_access_exception", 0x008, 300, {H, H, H}, FaultStat()}; 79 80//XXX This trap is apparently dropped from ua2005 81/*template<> SparcFaultBase::FaultVals 82 SparcFault<InstructionAccessMMUMiss>::vals = 83 {"inst_mmu", 0x009, 2, {H, H, H}};*/ 84 85template<> SparcFaultBase::FaultVals 86 SparcFault<InstructionAccessError>::vals = 87{"instruction_access_error", 0x00A, 400, {H, H, H}, FaultStat()}; 88 89template<> SparcFaultBase::FaultVals 90 SparcFault<IllegalInstruction>::vals = 91{"illegal_instruction", 0x010, 620, {H, H, H}, FaultStat()}; 92 93template<> SparcFaultBase::FaultVals 94 SparcFault<PrivilegedOpcode>::vals = 95{"privileged_opcode", 0x011, 700, {P, SH, SH}, FaultStat()}; 96 97//XXX This trap is apparently dropped from ua2005 98/*template<> SparcFaultBase::FaultVals 99 SparcFault<UnimplementedLDD>::vals = 100 {"unimp_ldd", 0x012, 6, {H, H, H}};*/ 101 102//XXX This trap is apparently dropped from ua2005 103/*template<> SparcFaultBase::FaultVals 104 SparcFault<UnimplementedSTD>::vals = 105 {"unimp_std", 0x013, 6, {H, H, H}};*/ 106 107template<> SparcFaultBase::FaultVals 108 SparcFault<FpDisabled>::vals = 109{"fp_disabled", 0x020, 800, {P, P, H}, FaultStat()}; 110 111template<> SparcFaultBase::FaultVals 112 SparcFault<FpExceptionIEEE754>::vals = 113{"fp_exception_ieee_754", 0x021, 1110, {P, P, H}, FaultStat()}; 114 115template<> SparcFaultBase::FaultVals 116 SparcFault<FpExceptionOther>::vals = 117{"fp_exception_other", 0x022, 1110, {P, P, H}, FaultStat()}; 118 119template<> SparcFaultBase::FaultVals 120 SparcFault<TagOverflow>::vals = 121{"tag_overflow", 0x023, 1400, {P, P, H}, FaultStat()}; 122 123template<> SparcFaultBase::FaultVals 124 SparcFault<CleanWindow>::vals = 125{"clean_window", 0x024, 1010, {P, P, H}, FaultStat()}; 126 127template<> SparcFaultBase::FaultVals 128 SparcFault<DivisionByZero>::vals = 129{"division_by_zero", 0x028, 1500, {P, P, H}, FaultStat()}; 130 131template<> SparcFaultBase::FaultVals 132 SparcFault<InternalProcessorError>::vals = 133{"internal_processor_error", 0x029, 4, {H, H, H}, FaultStat()}; 134 135template<> SparcFaultBase::FaultVals 136 SparcFault<InstructionInvalidTSBEntry>::vals = 137{"instruction_invalid_tsb_entry", 0x02A, 210, {H, H, SH}, FaultStat()}; 138 139template<> SparcFaultBase::FaultVals 140 SparcFault<DataInvalidTSBEntry>::vals = 141{"data_invalid_tsb_entry", 0x02B, 1203, {H, H, H}, FaultStat()}; 142 143template<> SparcFaultBase::FaultVals 144 SparcFault<DataAccessException>::vals = 145{"data_access_exception", 0x030, 1201, {H, H, H}, FaultStat()}; 146 147//XXX This trap is apparently dropped from ua2005 148/*template<> SparcFaultBase::FaultVals 149 SparcFault<DataAccessMMUMiss>::vals = 150 {"data_mmu", 0x031, 12, {H, H, H}};*/ 151 152template<> SparcFaultBase::FaultVals 153 SparcFault<DataAccessError>::vals = 154{"data_access_error", 0x032, 1210, {H, H, H}, FaultStat()}; 155 156template<> SparcFaultBase::FaultVals 157 SparcFault<DataAccessProtection>::vals = 158{"data_access_protection", 0x033, 1207, {H, H, H}, FaultStat()}; 159 160template<> SparcFaultBase::FaultVals 161 SparcFault<MemAddressNotAligned>::vals = 162{"mem_address_not_aligned", 0x034, 1020, {H, H, H}, FaultStat()}; 163 164template<> SparcFaultBase::FaultVals 165 SparcFault<LDDFMemAddressNotAligned>::vals = 166{"LDDF_mem_address_not_aligned", 0x035, 1010, {H, H, H}, FaultStat()}; 167 168template<> SparcFaultBase::FaultVals 169 SparcFault<STDFMemAddressNotAligned>::vals = 170{"STDF_mem_address_not_aligned", 0x036, 1010, {H, H, H}, FaultStat()}; 171 172template<> SparcFaultBase::FaultVals 173 SparcFault<PrivilegedAction>::vals = 174{"privileged_action", 0x037, 1110, {H, H, SH}, FaultStat()}; 175 176template<> SparcFaultBase::FaultVals 177 SparcFault<LDQFMemAddressNotAligned>::vals = 178{"LDQF_mem_address_not_aligned", 0x038, 1010, {H, H, H}, FaultStat()}; 179 180template<> SparcFaultBase::FaultVals 181 SparcFault<STQFMemAddressNotAligned>::vals = 182{"STQF_mem_address_not_aligned", 0x039, 1010, {H, H, H}, FaultStat()}; 183 184template<> SparcFaultBase::FaultVals 185 SparcFault<InstructionRealTranslationMiss>::vals = 186{"instruction_real_translation_miss", 0x03E, 208, {H, H, SH}, FaultStat()}; 187 188template<> SparcFaultBase::FaultVals 189 SparcFault<DataRealTranslationMiss>::vals = 190{"data_real_translation_miss", 0x03F, 1203, {H, H, H}, FaultStat()}; 191 192//XXX This trap is apparently dropped from ua2005 193/*template<> SparcFaultBase::FaultVals 194 SparcFault<AsyncDataError>::vals = 195 {"async_data", 0x040, 2, {H, H, H}};*/ 196 197template<> SparcFaultBase::FaultVals 198 SparcFault<InterruptLevelN>::vals = 199{"interrupt_level_n", 0x040, 0, {P, P, SH}, FaultStat()}; 200 201template<> SparcFaultBase::FaultVals 202 SparcFault<HstickMatch>::vals = 203{"hstick_match", 0x05E, 1601, {H, H, H}, FaultStat()}; 204 205template<> SparcFaultBase::FaultVals 206 SparcFault<TrapLevelZero>::vals = 207{"trap_level_zero", 0x05F, 202, {H, H, SH}, FaultStat()}; 208 209template<> SparcFaultBase::FaultVals 210 SparcFault<InterruptVector>::vals = 211{"interrupt_vector", 0x060, 2630, {H, H, H}, FaultStat()}; 212 213template<> SparcFaultBase::FaultVals 214 SparcFault<PAWatchpoint>::vals = 215{"PA_watchpoint", 0x061, 1209, {H, H, H}, FaultStat()}; 216 217template<> SparcFaultBase::FaultVals 218 SparcFault<VAWatchpoint>::vals = 219{"VA_watchpoint", 0x062, 1120, {P, P, SH}, FaultStat()}; 220 221template<> SparcFaultBase::FaultVals 222 SparcFault<FastInstructionAccessMMUMiss>::vals = 223{"fast_instruction_access_MMU_miss", 0x064, 208, {H, H, SH}, FaultStat()}; 224 225template<> SparcFaultBase::FaultVals 226 SparcFault<FastDataAccessMMUMiss>::vals = 227{"fast_data_access_MMU_miss", 0x068, 1203, {H, H, H}, FaultStat()}; 228 229template<> SparcFaultBase::FaultVals 230 SparcFault<FastDataAccessProtection>::vals = 231{"fast_data_access_protection", 0x06C, 1207, {H, H, H}, FaultStat()}; 232 233template<> SparcFaultBase::FaultVals 234 SparcFault<InstructionBreakpoint>::vals = 235{"instruction_break", 0x076, 610, {H, H, H}, FaultStat()}; 236 237template<> SparcFaultBase::FaultVals 238 SparcFault<CpuMondo>::vals = 239{"cpu_mondo", 0x07C, 1608, {P, P, SH}, FaultStat()}; 240 241template<> SparcFaultBase::FaultVals 242 SparcFault<DevMondo>::vals = 243{"dev_mondo", 0x07D, 1611, {P, P, SH}, FaultStat()}; 244 245template<> SparcFaultBase::FaultVals 246 SparcFault<ResumableError>::vals = 247{"resume_error", 0x07E, 3330, {P, P, SH}, FaultStat()}; 248 249template<> SparcFaultBase::FaultVals 250 SparcFault<SpillNNormal>::vals = 251{"spill_n_normal", 0x080, 900, {P, P, H}, FaultStat()}; 252 253template<> SparcFaultBase::FaultVals 254 SparcFault<SpillNOther>::vals = 255{"spill_n_other", 0x0A0, 900, {P, P, H}, FaultStat()}; 256 257template<> SparcFaultBase::FaultVals 258 SparcFault<FillNNormal>::vals = 259{"fill_n_normal", 0x0C0, 900, {P, P, H}, FaultStat()}; 260 261template<> SparcFaultBase::FaultVals 262 SparcFault<FillNOther>::vals = 263{"fill_n_other", 0x0E0, 900, {P, P, H}, FaultStat()}; 264 265template<> SparcFaultBase::FaultVals 266 SparcFault<TrapInstruction>::vals = 267{"trap_instruction", 0x100, 1602, {P, P, H}, FaultStat()}; 268 269/** 270 * This causes the thread context to enter RED state. This causes the side 271 * effects which go with entering RED state because of a trap. 272 */ 273 274void 275enterREDState(ThreadContext *tc) 276{ 277 //@todo Disable the mmu? 278 //@todo Disable watchpoints? 279 HPSTATE hpstate= tc->readMiscRegNoEffect(MISCREG_HPSTATE); 280 hpstate.red = 1; 281 hpstate.hpriv = 1; 282 tc->setMiscReg(MISCREG_HPSTATE, hpstate); 283 // PSTATE.priv is set to 1 here. The manual says it should be 0, but 284 // Legion sets it to 1. 285 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); 286 pstate.priv = 1; 287 tc->setMiscReg(MISCREG_PSTATE, pstate); 288} 289 290/** 291 * This sets everything up for a RED state trap except for actually jumping to 292 * the handler. 293 */ 294 295void 296doREDFault(ThreadContext *tc, TrapType tt) 297{ 298 MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL); 299 MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE); 300 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); 301 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); 302 MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2); 303 MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI); 304 MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP); 305 MiscReg CANSAVE = tc->readMiscRegNoEffect(NumIntArchRegs + 3); 306 MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL); 307 PCState pc = tc->pcState(); 308 309 TL++; 310 311 Addr pcMask = pstate.am ? mask(32) : mask(64); 312 313 // set TSTATE.gl to gl 314 replaceBits(TSTATE, 42, 40, GL); 315 // set TSTATE.ccr to ccr 316 replaceBits(TSTATE, 39, 32, CCR); 317 // set TSTATE.asi to asi 318 replaceBits(TSTATE, 31, 24, ASI); 319 // set TSTATE.pstate to pstate 320 replaceBits(TSTATE, 20, 8, pstate); 321 // set TSTATE.cwp to cwp 322 replaceBits(TSTATE, 4, 0, CWP); 323 324 // Write back TSTATE 325 tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE); 326 327 // set TPC to PC 328 tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask); 329 // set TNPC to NPC 330 tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask); 331 332 // set HTSTATE.hpstate to hpstate 333 tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate); 334 335 // TT = trap type; 336 tc->setMiscRegNoEffect(MISCREG_TT, tt); 337 338 // Update GL 339 tc->setMiscReg(MISCREG_GL, min<int>(GL+1, MaxGL)); 340 341 bool priv = pstate.priv; // just save the priv bit 342 pstate = 0; 343 pstate.priv = priv; 344 pstate.pef = 1; 345 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate); 346 347 hpstate.red = 1; 348 hpstate.hpriv = 1; 349 hpstate.ibe = 0; 350 hpstate.tlz = 0; 351 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate); 352 353 bool changedCWP = true; 354 if (tt == 0x24) 355 CWP++; 356 else if (0x80 <= tt && tt <= 0xbf) 357 CWP += (CANSAVE + 2); 358 else if (0xc0 <= tt && tt <= 0xff) 359 CWP--; 360 else 361 changedCWP = false; 362 363 if (changedCWP) { 364 CWP = (CWP + NWindows) % NWindows; 365 tc->setMiscReg(MISCREG_CWP, CWP); 366 } 367} 368 369/** 370 * This sets everything up for a normal trap except for actually jumping to 371 * the handler. 372 */ 373 374void 375doNormalFault(ThreadContext *tc, TrapType tt, bool gotoHpriv) 376{ 377 MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL); 378 MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE); 379 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); 380 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); 381 MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2); 382 MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI); 383 MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP); 384 MiscReg CANSAVE = tc->readIntReg(NumIntArchRegs + 3); 385 MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL); 386 PCState pc = tc->pcState(); 387 388 // Increment the trap level 389 TL++; 390 tc->setMiscRegNoEffect(MISCREG_TL, TL); 391 392 Addr pcMask = pstate.am ? mask(32) : mask(64); 393 394 // Save off state 395 396 // set TSTATE.gl to gl 397 replaceBits(TSTATE, 42, 40, GL); 398 // set TSTATE.ccr to ccr 399 replaceBits(TSTATE, 39, 32, CCR); 400 // set TSTATE.asi to asi 401 replaceBits(TSTATE, 31, 24, ASI); 402 // set TSTATE.pstate to pstate 403 replaceBits(TSTATE, 20, 8, pstate); 404 // set TSTATE.cwp to cwp 405 replaceBits(TSTATE, 4, 0, CWP); 406 407 // Write back TSTATE 408 tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE); 409 410 // set TPC to PC 411 tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask); 412 // set TNPC to NPC 413 tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask); 414 415 // set HTSTATE.hpstate to hpstate 416 tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate); 417 418 // TT = trap type; 419 tc->setMiscRegNoEffect(MISCREG_TT, tt); 420 421 // Update the global register level 422 if (!gotoHpriv) 423 tc->setMiscReg(MISCREG_GL, min<int>(GL + 1, MaxPGL)); 424 else 425 tc->setMiscReg(MISCREG_GL, min<int>(GL + 1, MaxGL)); 426 427 // pstate.mm is unchanged 428 pstate.pef = 1; // PSTATE.pef = whether or not an fpu is present 429 pstate.am = 0; 430 pstate.ie = 0; 431 // pstate.tle is unchanged 432 // pstate.tct = 0 433 434 if (gotoHpriv) { 435 pstate.cle = 0; 436 // The manual says PSTATE.priv should be 0, but Legion leaves it alone 437 hpstate.red = 0; 438 hpstate.hpriv = 1; 439 hpstate.ibe = 0; 440 // hpstate.tlz is unchanged 441 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate); 442 } else { // we are going to priv 443 pstate.priv = 1; 444 pstate.cle = pstate.tle; 445 } 446 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate); 447 448 449 bool changedCWP = true; 450 if (tt == 0x24) 451 CWP++; 452 else if (0x80 <= tt && tt <= 0xbf) 453 CWP += (CANSAVE + 2); 454 else if (0xc0 <= tt && tt <= 0xff) 455 CWP--; 456 else 457 changedCWP = false; 458 459 if (changedCWP) { 460 CWP = (CWP + NWindows) % NWindows; 461 tc->setMiscReg(MISCREG_CWP, CWP); 462 } 463} 464 465void 466getREDVector(MiscReg TT, Addr &PC, Addr &NPC) 467{ 468 //XXX The following constant might belong in a header file. 469 const Addr RSTVAddr = 0xFFF0000000ULL; 470 PC = RSTVAddr | ((TT << 5) & 0xFF); 471 NPC = PC + sizeof(MachInst); 472} 473 474void 475getHyperVector(ThreadContext * tc, Addr &PC, Addr &NPC, MiscReg TT) 476{ 477 Addr HTBA = tc->readMiscRegNoEffect(MISCREG_HTBA); 478 PC = (HTBA & ~mask(14)) | ((TT << 5) & mask(14)); 479 NPC = PC + sizeof(MachInst); 480} 481 482void 483getPrivVector(ThreadContext *tc, Addr &PC, Addr &NPC, MiscReg TT, MiscReg TL) 484{ 485 Addr TBA = tc->readMiscRegNoEffect(MISCREG_TBA); 486 PC = (TBA & ~mask(15)) | 487 (TL > 1 ? (1 << 14) : 0) | 488 ((TT << 5) & mask(14)); 489 NPC = PC + sizeof(MachInst); 490} 491 492void 493SparcFaultBase::invoke(ThreadContext * tc, const StaticInstPtr &inst) 494{ 495 FaultBase::invoke(tc); 496 if (!FullSystem) 497 return; 498 499 countStat()++; 500 501 // We can refer to this to see what the trap level -was-, but something 502 // in the middle could change it in the regfile out from under us. 503 MiscReg tl = tc->readMiscRegNoEffect(MISCREG_TL); 504 MiscReg tt = tc->readMiscRegNoEffect(MISCREG_TT); 505 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); 506 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); 507 508 Addr PC, NPC; 509 510 PrivilegeLevel current; 511 if (hpstate.hpriv) 512 current = Hyperprivileged; 513 else if (pstate.priv) 514 current = Privileged; 515 else 516 current = User; 517 518 PrivilegeLevel level = getNextLevel(current); 519 520 if (hpstate.red || (tl == MaxTL - 1)) { 521 getREDVector(5, PC, NPC); 522 doREDFault(tc, tt); 523 // This changes the hpstate and pstate, so we need to make sure we 524 // save the old version on the trap stack in doREDFault. 525 enterREDState(tc); 526 } else if (tl == MaxTL) { 527 panic("Should go to error state here.. crap\n"); 528 // Do error_state somehow? 529 // Probably inject a WDR fault using the interrupt mechanism. 530 // What should the PC and NPC be set to? 531 } else if (tl > MaxPTL && level == Privileged) { 532 // guest_watchdog fault 533 doNormalFault(tc, trapType(), true); 534 getHyperVector(tc, PC, NPC, 2); 535 } else if (level == Hyperprivileged || 536 (level == Privileged && trapType() >= 384)) { 537 doNormalFault(tc, trapType(), true); 538 getHyperVector(tc, PC, NPC, trapType()); 539 } else { 540 doNormalFault(tc, trapType(), false); 541 getPrivVector(tc, PC, NPC, trapType(), tl + 1); 542 } 543 544 PCState pc; 545 pc.pc(PC); 546 pc.npc(NPC); 547 pc.nnpc(NPC + sizeof(MachInst)); 548 pc.upc(0); 549 pc.nupc(1); 550 tc->pcState(pc); 551} 552 553void 554PowerOnReset::invoke(ThreadContext *tc, const StaticInstPtr &inst) 555{ 556 // For SPARC, when a system is first started, there is a power 557 // on reset Trap which sets the processor into the following state. 558 // Bits that aren't set aren't defined on startup. 559 560 tc->setMiscRegNoEffect(MISCREG_TL, MaxTL); 561 tc->setMiscRegNoEffect(MISCREG_TT, trapType()); 562 tc->setMiscReg(MISCREG_GL, MaxGL); 563 564 PSTATE pstate = 0; 565 pstate.pef = 1; 566 pstate.priv = 1; 567 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate); 568 569 // Turn on red and hpriv, set everything else to 0 570 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); 571 hpstate.red = 1; 572 hpstate.hpriv = 1; 573 hpstate.ibe = 0; 574 hpstate.tlz = 0; 575 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate); 576 577 // The tick register is unreadable by nonprivileged software 578 tc->setMiscRegNoEffect(MISCREG_TICK, 1ULL << 63); 579 580 // Enter RED state. We do this last so that the actual state preserved in 581 // the trap stack is the state from before this fault. 582 enterREDState(tc); 583 584 Addr PC, NPC; 585 getREDVector(trapType(), PC, NPC); 586 587 PCState pc; 588 pc.pc(PC); 589 pc.npc(NPC); 590 pc.nnpc(NPC + sizeof(MachInst)); 591 pc.upc(0); 592 pc.nupc(1); 593 tc->pcState(pc); 594 595 // These registers are specified as "undefined" after a POR, and they 596 // should have reasonable values after the miscregfile is reset 597 /* 598 // Clear all the soft interrupt bits 599 softint = 0; 600 // disable timer compare interrupts, reset tick_cmpr 601 tc->setMiscRegNoEffect(MISCREG_ 602 tick_cmprFields.int_dis = 1; 603 tick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing 604 stickFields.npt = 1; // The TICK register is unreadable by by !priv 605 stick_cmprFields.int_dis = 1; // disable timer compare interrupts 606 stick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing 607 608 tt[tl] = _trapType; 609 610 hintp = 0; // no interrupts pending 611 hstick_cmprFields.int_dis = 1; // disable timer compare interrupts 612 hstick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing 613 */ 614} 615 616void 617FastInstructionAccessMMUMiss::invoke(ThreadContext *tc, 618 const StaticInstPtr &inst) 619{ 620 if (FullSystem) { 621 SparcFaultBase::invoke(tc, inst); 622 return; 623 } 624 625 Process *p = tc->getProcessPtr(); 626 TlbEntry entry; 627 bool success = p->pTable->lookup(vaddr, entry); 628 if (!success) { 629 panic("Tried to execute unmapped address %#x.\n", vaddr); 630 } else { 631 Addr alignedvaddr = p->pTable->pageAlign(vaddr); 632 633 // Grab fields used during instruction translation to figure out 634 // which context to use. 635 uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA); 636 637 // Inside a VM, a real address is the address that guest OS would 638 // interpret to be a physical address. To map to the physical address, 639 // it still needs to undergo a translation. The instruction 640 // translation code in the SPARC ITLB code assumes that the context is 641 // zero (kernel-level) if real addressing is being used. 642 bool is_real_address = !bits(tlbdata, 4); 643 644 // The SPARC ITLB code assumes that traps are executed in context 645 // zero so we carry that assumption through here. 646 bool trapped = bits(tlbdata, 18, 16) > 0; 647 648 // The primary context acts as a PASID. It allows the MMU to 649 // distinguish between virtual addresses that would alias to the 650 // same physical address (if two or more processes shared the same 651 // virtual address mapping). 652 int primary_context = bits(tlbdata, 47, 32); 653 654 // The partition id distinguishes between virtualized environments. 655 int const partition_id = 0; 656 657 // Given the assumptions in the translateInst code in the SPARC ITLB, 658 // the logic works out to the following for the context. 659 int context_id = (is_real_address || trapped) ? 0 : primary_context; 660 661 // Insert the TLB entry. 662 // The entry specifying whether the address is "real" is set to 663 // false for syscall emulation mode regardless of whether the 664 // address is real in preceding code. Not sure sure that this is 665 // correct, but also not sure if it matters at all. 666 tc->getITBPtr()->insert(alignedvaddr, partition_id, context_id, 667 false, entry.pte); 668 } 669} 670 671void 672FastDataAccessMMUMiss::invoke(ThreadContext *tc, const StaticInstPtr &inst) 673{ 674 if (FullSystem) { 675 SparcFaultBase::invoke(tc, inst); 676 return; 677 } 678 679 Process *p = tc->getProcessPtr(); 680 TlbEntry entry; 681 bool success = p->pTable->lookup(vaddr, entry); 682 if (!success) { 683 if (p->fixupStackFault(vaddr)) 684 success = p->pTable->lookup(vaddr, entry); 685 } 686 if (!success) { 687 panic("Tried to access unmapped address %#x.\n", vaddr); 688 } else { 689 Addr alignedvaddr = p->pTable->pageAlign(vaddr); 690 691 // Grab fields used during data translation to figure out 692 // which context to use. 693 uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA); 694 695 // The primary context acts as a PASID. It allows the MMU to 696 // distinguish between virtual addresses that would alias to the 697 // same physical address (if two or more processes shared the same 698 // virtual address mapping). There's a secondary context used in the 699 // DTLB translation code, but it should __probably__ be zero for 700 // syscall emulation code. (The secondary context is used by Solaris 701 // to allow kernel privilege code to access user space code: 702 // [ISBN 0-13-022496-0]:PG199.) 703 int primary_context = bits(tlbdata, 47, 32); 704 705 // "Hyper-Privileged Mode" is in use. There are three main modes of 706 // operation for Sparc: Hyper-Privileged Mode, Privileged Mode, and 707 // User Mode. 708 int hpriv = bits(tlbdata, 0); 709 710 // Reset, Error and Debug state is in use. Something horrible has 711 // happened or the system is operating in Reset Mode. 712 int red = bits(tlbdata, 1); 713 714 // Inside a VM, a real address is the address that guest OS would 715 // interpret to be a physical address. To map to the physical address, 716 // it still needs to undergo a translation. The instruction 717 // translation code in the SPARC ITLB code assumes that the context is 718 // zero (kernel-level) if real addressing is being used. 719 int is_real_address = !bits(tlbdata, 5); 720 721 // Grab the address space identifier register from the thread context. 722 // XXX: Inspecting how setMiscReg and setMiscRegNoEffect behave for 723 // MISCREG_ASI causes me to think that the ASI register implementation 724 // might be bugged. The NoEffect variant changes the ASI register 725 // value in the architectural state while the normal variant changes 726 // the context field in the thread context's currently decoded request 727 // but does not directly affect the ASI register value in the 728 // architectural state. The ASI values and the context field in the 729 // request packet seem to have completely different uses. 730 MiscReg reg_asi = tc->readMiscRegNoEffect(MISCREG_ASI); 731 ASI asi = static_cast<ASI>(reg_asi); 732 733 // The SPARC DTLB code assumes that traps are executed in context 734 // zero if the asi value is ASI_IMPLICIT (which is 0x0). There's also 735 // an assumption that the nucleus address space is being used, but 736 // the context is the relevant issue since we need to pass it to TLB. 737 bool trapped = bits(tlbdata, 18, 16) > 0; 738 739 // Given the assumptions in the translateData code in the SPARC DTLB, 740 // the logic works out to the following for the context. 741 int context_id = ((!hpriv && !red && is_real_address) || 742 asiIsReal(asi) || 743 (trapped && asi == ASI_IMPLICIT)) 744 ? 0 : primary_context; 745 746 // The partition id distinguishes between virtualized environments. 747 int const partition_id = 0; 748 749 // Insert the TLB entry. 750 // The entry specifying whether the address is "real" is set to 751 // false for syscall emulation mode regardless of whether the 752 // address is real in preceding code. Not sure sure that this is 753 // correct, but also not sure if it matters at all. 754 tc->getDTBPtr()->insert(alignedvaddr, partition_id, context_id, 755 false, entry.pte); 756 } 757} 758 759void 760SpillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst) 761{ 762 if (FullSystem) { 763 SparcFaultBase::invoke(tc, inst); 764 return; 765 } 766 767 doNormalFault(tc, trapType(), false); 768 769 Process *p = tc->getProcessPtr(); 770 771 //XXX This will only work in faults from a SparcLiveProcess 772 SparcLiveProcess *lp = dynamic_cast<SparcLiveProcess *>(p); 773 assert(lp); 774 775 // Then adjust the PC and NPC 776 tc->pcState(lp->readSpillStart()); 777} 778 779void 780FillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst) 781{ 782 if (FullSystem) { 783 SparcFaultBase::invoke(tc, inst); 784 return; 785 } 786 787 doNormalFault(tc, trapType(), false); 788 789 Process *p = tc->getProcessPtr(); 790 791 //XXX This will only work in faults from a SparcLiveProcess 792 SparcLiveProcess *lp = dynamic_cast<SparcLiveProcess *>(p); 793 assert(lp); 794 795 // Then adjust the PC and NPC 796 tc->pcState(lp->readFillStart()); 797} 798 799void 800TrapInstruction::invoke(ThreadContext *tc, const StaticInstPtr &inst) 801{ 802 if (FullSystem) { 803 SparcFaultBase::invoke(tc, inst); 804 return; 805 } 806 807 // In SE, this mechanism is how the process requests a service from 808 // the operating system. We'll get the process object from the thread 809 // context and let it service the request. 810 811 Process *p = tc->getProcessPtr(); 812 813 SparcLiveProcess *lp = dynamic_cast<SparcLiveProcess *>(p); 814 assert(lp); 815 816 lp->handleTrap(_n, tc); 817 818 // We need to explicitly advance the pc, since that's not done for us 819 // on a faulting instruction 820 PCState pc = tc->pcState(); 821 pc.advance(); 822 tc->pcState(pc); 823} 824 825} // namespace SparcISA 826 827