micro_asm.py revision 5009:78d53ea88c74
1# Copyright (c) 2003-2005 The Regents of The University of Michigan
2# All rights reserved.
3#
4# Redistribution and use in source and binary forms, with or without
5# modification, are permitted provided that the following conditions are
6# met: redistributions of source code must retain the above copyright
7# notice, this list of conditions and the following disclaimer;
8# redistributions in binary form must reproduce the above copyright
9# notice, this list of conditions and the following disclaimer in the
10# documentation and/or other materials provided with the distribution;
11# neither the name of the copyright holders nor the names of its
12# contributors may be used to endorse or promote products derived from
13# this software without specific prior written permission.
14#
15# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26#
27# Authors: Gabe Black
28
29import os
30import sys
31import re
32import string
33import traceback
34# get type names
35from types import *
36
37# Prepend the directory where the PLY lex & yacc modules are found
38# to the search path.
39sys.path[0:0] = [os.environ['M5_PLY']]
40
41from ply import lex
42from ply import yacc
43
44##########################################################################
45#
46# Base classes for use outside of the assembler
47#
48##########################################################################
49
50class Micro_Container(object):
51    def __init__(self, name):
52        self.microops = []
53        self.name = name
54        self.directives = {}
55        self.micro_classes = {}
56        self.labels = {}
57
58    def add_microop(self, microop):
59        self.microops.append(microop)
60
61    def __str__(self):
62        string = "%s:\n" % self.name
63        for microop in self.microops:
64            string += "  %s\n" % microop
65        return string
66
67class Combinational_Macroop(Micro_Container):
68    pass
69
70class Rom_Macroop(object):
71    def __init__(self, name, target):
72        self.name = name
73        self.target = target
74
75    def __str__(self):
76        return "%s: %s\n" % (self.name, self.target)
77
78class Rom(Micro_Container):
79    def __init__(self, name):
80        super(Rom, self).__init__(name)
81        self.externs = {}
82
83##########################################################################
84#
85# Support classes
86#
87##########################################################################
88
89class Label(object):
90    def __init__(self):
91        self.extern = False
92        self.name = ""
93
94class Block(object):
95    def __init__(self):
96        self.statements = []
97
98class Statement(object):
99    def __init__(self):
100        self.is_microop = False
101        self.is_directive = False
102        self.params = ""
103
104class Microop(Statement):
105    def __init__(self):
106        super(Microop, self).__init__()
107        self.mnemonic = ""
108        self.labels = []
109        self.is_microop = True
110
111class Directive(Statement):
112    def __init__(self):
113        super(Directive, self).__init__()
114        self.name = ""
115        self.is_directive = True
116
117##########################################################################
118#
119# Functions that handle common tasks
120#
121##########################################################################
122
123def print_error(message):
124    print
125    print "*** %s" % message
126    print
127
128def handle_statement(parser, container, statement):
129    if statement.is_microop:
130        if statement.mnemonic not in parser.microops.keys():
131            raise Exception, "Unrecognized mnemonic: %s" % statement.mnemonic
132        parser.symbols["__microopClassFromInsideTheAssembler"] = \
133            parser.microops[statement.mnemonic]
134        try:
135            microop = eval('__microopClassFromInsideTheAssembler(%s)' %
136                    statement.params, {}, parser.symbols)
137        except:
138            print_error("Error creating microop object with mnemonic %s." % \
139                    statement.mnemonic)
140            raise
141        try:
142            for label in statement.labels:
143                container.labels[label.text] = microop
144                if label.extern:
145                    container.externs[label.text] = microop
146            container.add_microop(microop)
147        except:
148            print_error("Error adding microop.")
149            raise
150    elif statement.is_directive:
151        if statement.name not in container.directives.keys():
152            raise Exception, "Unrecognized directive: %s" % statement.name
153        parser.symbols["__directiveFunctionFromInsideTheAssembler"] = \
154            container.directives[statement.name]
155        try:
156            eval('__directiveFunctionFromInsideTheAssembler(%s)' %
157                    statement.params, {}, parser.symbols)
158        except:
159            print_error("Error executing directive.")
160            print container.directives
161            raise
162    else:
163        raise Exception, "Didn't recognize the type of statement", statement
164
165##########################################################################
166#
167# Lexer specification
168#
169##########################################################################
170
171# Error handler.  Just call exit.  Output formatted to work under
172# Emacs compile-mode.  Optional 'print_traceback' arg, if set to True,
173# prints a Python stack backtrace too (can be handy when trying to
174# debug the parser itself).
175def error(lineno, string, print_traceback = False):
176    # Print a Python stack backtrace if requested.
177    if (print_traceback):
178        traceback.print_exc()
179    if lineno != 0:
180        line_str = "%d:" % lineno
181    else:
182        line_str = ""
183    sys.exit("%s %s" % (line_str, string))
184
185reserved = ('DEF', 'MACROOP', 'ROM', 'EXTERN')
186
187tokens = reserved + (
188        # identifier
189        'ID',
190        # arguments for microops and directives
191        'PARAMS',
192
193        'LPAREN', 'RPAREN',
194        'LBRACE', 'RBRACE',
195        'COLON', 'SEMI', 'DOT',
196        'NEWLINE'
197        )
198
199# New lines are ignored at the top level, but they end statements in the
200# assembler
201states = (
202    ('asm', 'exclusive'),
203    ('params', 'exclusive'),
204)
205
206reserved_map = { }
207for r in reserved:
208    reserved_map[r.lower()] = r
209
210# Ignore comments
211def t_ANY_COMMENT(t):
212    r'\#[^\n]*(?=\n)'
213
214def t_ANY_MULTILINECOMMENT(t):
215    r'/\*([^/]|((?<!\*)/))*\*/'
216
217# A colon marks the end of a label. It should follow an ID which will
218# put the lexer in the "params" state. Seeing the colon will put it back
219# in the "asm" state since it knows it saw a label and not a mnemonic.
220def t_params_COLON(t):
221    r':'
222    t.lexer.begin('asm')
223    return t
224
225# Parameters are a string of text which don't contain an unescaped statement
226# statement terminator, ie a newline or semi colon.
227def t_params_PARAMS(t):
228    r'([^\n;\\]|(\\[\n;\\]))+'
229    t.lineno += t.value.count('\n')
230    unescapeParamsRE = re.compile(r'(\\[\n;\\])')
231    def unescapeParams(mo):
232        val = mo.group(0)
233        return val[1]
234    t.value = unescapeParamsRE.sub(unescapeParams, t.value)
235    t.lexer.begin('asm')
236    return t
237
238# An "ID" in the micro assembler is either a label, directive, or mnemonic
239# If it's either a directive or a mnemonic, it will be optionally followed by
240# parameters. If it's a label, the following colon will make the lexer stop
241# looking for parameters.
242def t_asm_ID(t):
243    r'[A-Za-z_]\w*'
244    t.type = reserved_map.get(t.value, 'ID')
245    t.lexer.begin('params')
246    return t
247
248# If there is a label and you're -not- in the assembler (which would be caught
249# above), don't start looking for parameters.
250def t_ANY_ID(t):
251    r'[A-Za-z_]\w*'
252    t.type = reserved_map.get(t.value, 'ID')
253    return t
254
255# Braces enter and exit micro assembly
256def t_INITIAL_LBRACE(t):
257    r'\{'
258    t.lexer.begin('asm')
259    return t
260
261def t_asm_RBRACE(t):
262    r'\}'
263    t.lexer.begin('INITIAL')
264    return t
265
266# At the top level, keep track of newlines only for line counting.
267def t_INITIAL_NEWLINE(t):
268    r'\n+'
269    t.lineno += t.value.count('\n')
270
271# In the micro assembler, do line counting but also return a token. The
272# token is needed by the parser to detect the end of a statement.
273def t_asm_NEWLINE(t):
274    r'\n+'
275    t.lineno += t.value.count('\n')
276    return t
277
278# A newline or semi colon when looking for params signals that the statement
279# is over and the lexer should go back to looking for regular assembly.
280def t_params_NEWLINE(t):
281    r'\n+'
282    t.lineno += t.value.count('\n')
283    t.lexer.begin('asm')
284    return t
285
286def t_params_SEMI(t):
287    r';'
288    t.lexer.begin('asm')
289    return t
290
291# Basic regular expressions to pick out simple tokens
292t_ANY_LPAREN = r'\('
293t_ANY_RPAREN = r'\)'
294t_ANY_SEMI   = r';'
295t_ANY_DOT    = r'\.'
296
297t_ANY_ignore = ' \t\x0c'
298
299def t_ANY_error(t):
300    error(t.lineno, "illegal character '%s'" % t.value[0])
301    t.skip(1)
302
303##########################################################################
304#
305# Parser specification
306#
307##########################################################################
308
309# Start symbol for a file which may have more than one macroop or rom
310# specification.
311def p_file(t):
312    'file : opt_rom_or_macros'
313
314def p_opt_rom_or_macros_0(t):
315    'opt_rom_or_macros : '
316
317def p_opt_rom_or_macros_1(t):
318    'opt_rom_or_macros : rom_or_macros'
319
320def p_rom_or_macros_0(t):
321    'rom_or_macros : rom_or_macro'
322
323def p_rom_or_macros_1(t):
324    'rom_or_macros : rom_or_macros rom_or_macro'
325
326def p_rom_or_macro_0(t):
327    '''rom_or_macro : rom_block
328                    | macroop_def'''
329
330# Defines a section of microcode that should go in the current ROM
331def p_rom_block(t):
332    'rom_block : DEF ROM block SEMI'
333    if not t.parser.rom:
334        print_error("Rom block found, but no Rom object specified.")
335        raise TypeError, "Rom block found, but no Rom object was specified."
336    for statement in t[3].statements:
337        handle_statement(t.parser, t.parser.rom, statement)
338    t[0] = t.parser.rom
339
340# Defines a macroop that jumps to an external label in the ROM
341def p_macroop_def_0(t):
342    'macroop_def : DEF MACROOP ID LPAREN ID RPAREN SEMI'
343    if not t.parser.rom_macroop_type:
344        print_error("ROM based macroop found, but no ROM macroop class was specified.")
345        raise TypeError, "ROM based macroop found, but no ROM macroop class was specified."
346    macroop = t.parser.rom_macroop_type(t[3], t[5])
347    t.parser.macroops[t[3]] = macroop
348
349
350# Defines a macroop that is combinationally generated
351def p_macroop_def_1(t):
352    'macroop_def : DEF MACROOP ID block SEMI'
353    try:
354        curop = t.parser.macro_type(t[3])
355    except TypeError:
356        print_error("Error creating macroop object.")
357        raise
358    for statement in t[4].statements:
359        handle_statement(t.parser, curop, statement)
360    t.parser.macroops[t[3]] = curop
361
362# A block of statements
363def p_block(t):
364    'block : LBRACE statements RBRACE'
365    block = Block()
366    block.statements = t[2]
367    t[0] = block
368
369def p_statements_0(t):
370    'statements : statement'
371    if t[1]:
372        t[0] = [t[1]]
373    else:
374        t[0] = []
375
376def p_statements_1(t):
377    'statements : statements statement'
378    if t[2]:
379        t[1].append(t[2])
380    t[0] = t[1]
381
382def p_statement(t):
383    'statement : content_of_statement end_of_statement'
384    t[0] = t[1]
385
386# A statement can be a microop or an assembler directive
387def p_content_of_statement_0(t):
388    '''content_of_statement : microop
389                            | directive'''
390    t[0] = t[1]
391
392# Ignore empty statements
393def p_content_of_statement_1(t):
394    'content_of_statement : '
395    pass
396
397# Statements are ended by newlines or a semi colon
398def p_end_of_statement(t):
399    '''end_of_statement : NEWLINE
400                        | SEMI'''
401    pass
402
403# Different flavors of microop to avoid shift/reduce errors
404def p_microop_0(t):
405    'microop : labels ID'
406    microop = Microop()
407    microop.labels = t[1]
408    microop.mnemonic = t[2]
409    t[0] = microop
410
411def p_microop_1(t):
412    'microop : ID'
413    microop = Microop()
414    microop.mnemonic = t[1]
415    t[0] = microop
416
417def p_microop_2(t):
418    'microop : labels ID PARAMS'
419    microop = Microop()
420    microop.labels = t[1]
421    microop.mnemonic = t[2]
422    microop.params = t[3]
423    t[0] = microop
424
425def p_microop_3(t):
426    'microop : ID PARAMS'
427    microop = Microop()
428    microop.mnemonic = t[1]
429    microop.params = t[2]
430    t[0] = microop
431
432# Labels in the microcode
433def p_labels_0(t):
434    'labels : label'
435    t[0] = [t[1]]
436
437def p_labels_1(t):
438    'labels : labels label'
439    t[1].append(t[2])
440    t[0] = t[1]
441
442# labels on lines by themselves are attached to the following instruction.
443def p_labels_2(t):
444    'labels : labels NEWLINE'
445    t[0] = t[1]
446
447def p_label_0(t):
448    'label : ID COLON'
449    label = Label()
450    label.is_extern = False
451    label.text = t[1]
452    t[0] = label
453
454def p_label_1(t):
455    'label : EXTERN ID COLON'
456    label = Label()
457    label.is_extern = True
458    label.text = t[2]
459    t[0] = label
460
461# Directives for the macroop
462def p_directive_0(t):
463    'directive : DOT ID'
464    directive = Directive()
465    directive.name = t[2]
466    t[0] = directive
467
468def p_directive_1(t):
469    'directive : DOT ID PARAMS'
470    directive = Directive()
471    directive.name = t[2]
472    directive.params = t[3]
473    t[0] = directive
474
475# Parse error handler.  Note that the argument here is the offending
476# *token*, not a grammar symbol (hence the need to use t.value)
477def p_error(t):
478    if t:
479        error(t.lineno, "syntax error at '%s'" % t.value)
480    else:
481        error(0, "unknown syntax error", True)
482
483class MicroAssembler(object):
484
485    def __init__(self, macro_type, microops,
486            rom = None, rom_macroop_type = None):
487        self.lexer = lex.lex()
488        self.parser = yacc.yacc()
489        self.parser.macro_type = macro_type
490        self.parser.macroops = {}
491        self.parser.microops = microops
492        self.parser.rom = rom
493        self.parser.rom_macroop_type = rom_macroop_type
494        self.parser.symbols = {}
495        self.symbols = self.parser.symbols
496
497    def assemble(self, asm):
498        self.parser.parse(asm, lexer=self.lexer)
499        macroops = self.parser.macroops
500        self.parser.macroops = {}
501        return macroops
502