micro_asm.py revision 4566:a0ec2dee1a1b
1# Copyright (c) 2003-2005 The Regents of The University of Michigan
2# All rights reserved.
3#
4# Redistribution and use in source and binary forms, with or without
5# modification, are permitted provided that the following conditions are
6# met: redistributions of source code must retain the above copyright
7# notice, this list of conditions and the following disclaimer;
8# redistributions in binary form must reproduce the above copyright
9# notice, this list of conditions and the following disclaimer in the
10# documentation and/or other materials provided with the distribution;
11# neither the name of the copyright holders nor the names of its
12# contributors may be used to endorse or promote products derived from
13# this software without specific prior written permission.
14#
15# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26#
27# Authors: Gabe Black
28
29import os
30import sys
31import re
32import string
33import traceback
34# get type names
35from types import *
36
37# Prepend the directory where the PLY lex & yacc modules are found
38# to the search path.
39sys.path[0:0] = [os.environ['M5_PLY']]
40
41from ply import lex
42from ply import yacc
43
44##########################################################################
45#
46# Base classes for use outside of the assembler
47#
48##########################################################################
49
50class Micro_Container(object):
51    def __init__(self, name):
52        self.microops = []
53        self.name = name
54        self.directives = {}
55        self.micro_classes = {}
56        self.labels = {}
57
58    def add_microop(self, microop):
59        self.microops.append(microop)
60
61    def __str__(self):
62        string = "%s:\n" % self.name
63        for microop in self.microops:
64            string += "  %s\n" % microop
65        return string
66
67class Combinational_Macroop(Micro_Container):
68    pass
69
70class Rom_Macroop(object):
71    def __init__(self, name, target):
72        self.name = name
73        self.target = target
74
75    def __str__(self):
76        return "%s: %s\n" % (self.name, self.target)
77
78class Rom(Micro_Container):
79    def __init__(self, name):
80        super(Rom, self).__init__(name)
81        self.externs = {}
82
83##########################################################################
84#
85# Support classes
86#
87##########################################################################
88
89class Label(object):
90    def __init__(self):
91        self.extern = False
92        self.name = ""
93
94class Block(object):
95    def __init__(self):
96        self.statements = []
97
98class Statement(object):
99    def __init__(self):
100        self.is_microop = False
101        self.is_directive = False
102        self.params = ""
103
104class Microop(Statement):
105    def __init__(self):
106        super(Microop, self).__init__()
107        self.mnemonic = ""
108        self.labels = []
109        self.is_microop = True
110
111class Directive(Statement):
112    def __init__(self):
113        super(Directive, self).__init__()
114        self.name = ""
115        self.is_directive = True
116
117##########################################################################
118#
119# Functions that handle common tasks
120#
121##########################################################################
122
123def print_error(message):
124    print
125    print "*** %s" % message
126    print
127
128def handle_statement(parser, container, statement):
129    if statement.is_microop:
130        try:
131            microop = eval('parser.microops[statement.mnemonic](%s)' %
132                    statement.params)
133        except:
134            print_error("Error creating microop object.")
135            raise
136        try:
137            for label in statement.labels:
138                container.labels[label.name] = microop
139                if label.extern:
140                    container.externs[label.name] = microop
141            container.add_microop(microop)
142        except:
143            print_error("Error adding microop.")
144            raise
145    elif statement.is_directive:
146        try:
147            eval('container.directives[statement.name](%s)' % statement.params)
148        except:
149            print_error("Error executing directive.")
150            print container.directives
151            raise
152    else:
153        raise Exception, "Didn't recognize the type of statement", statement
154
155##########################################################################
156#
157# Lexer specification
158#
159##########################################################################
160
161# Error handler.  Just call exit.  Output formatted to work under
162# Emacs compile-mode.  Optional 'print_traceback' arg, if set to True,
163# prints a Python stack backtrace too (can be handy when trying to
164# debug the parser itself).
165def error(lineno, string, print_traceback = False):
166    # Print a Python stack backtrace if requested.
167    if (print_traceback):
168        traceback.print_exc()
169    if lineno != 0:
170        line_str = "%d:" % lineno
171    else:
172        line_str = ""
173    sys.exit("%s %s" % (line_str, string))
174
175reserved = ('DEF', 'MACROOP', 'ROM', 'EXTERN')
176
177tokens = reserved + (
178        # identifier
179        'ID',
180        # arguments for microops and directives
181        'PARAMS',
182
183        'LPAREN', 'RPAREN',
184        'LBRACE', 'RBRACE',
185        'COLON', 'SEMI', 'DOT',
186        'NEWLINE'
187        )
188
189# New lines are ignored at the top level, but they end statements in the
190# assembler
191states = (
192    ('asm', 'exclusive'),
193    ('params', 'exclusive'),
194)
195
196reserved_map = { }
197for r in reserved:
198    reserved_map[r.lower()] = r
199
200# Ignore comments
201def t_ANY_COMMENT(t):
202    r'\#[^\n]*(?=\n)'
203
204def t_ANY_MULTILINECOMMENT(t):
205    r'/\*([^/]|((?<!\*)/))*\*/'
206
207# A colon marks the end of a label. It should follow an ID which will
208# put the lexer in the "params" state. Seeing the colon will put it back
209# in the "asm" state since it knows it saw a label and not a mnemonic.
210def t_params_COLON(t):
211    r':'
212    t.lexer.begin('asm')
213    return t
214
215# An "ID" in the micro assembler is either a label, directive, or mnemonic
216# If it's either a directive or a mnemonic, it will be optionally followed by
217# parameters. If it's a label, the following colon will make the lexer stop
218# looking for parameters.
219def t_asm_ID(t):
220    r'[A-Za-z_]\w*'
221    t.type = reserved_map.get(t.value, 'ID')
222    t.lexer.begin('params')
223    return t
224
225# If there is a label and you're -not- in the assember (which would be caught
226# above), don't start looking for parameters.
227def t_ANY_ID(t):
228    r'[A-Za-z_]\w*'
229    t.type = reserved_map.get(t.value, 'ID')
230    return t
231
232# Parameters are a string of text which don't contain an unescaped statement
233# statement terminator, ie a newline or semi colon.
234def t_params_PARAMS(t):
235    r'([^\n;\\]|(\\[\n;\\]))+'
236    t.lineno += t.value.count('\n')
237    unescapeParamsRE = re.compile(r'(\\[\n;\\])')
238    def unescapeParams(mo):
239        val = mo.group(0)
240        print "About to sub %s for %s" % (val[1], val)
241        return val[1]
242    print "Looking for matches in %s" % t.value
243    t.value = unescapeParamsRE.sub(unescapeParams, t.value)
244    t.lexer.begin('asm')
245    return t
246
247# Braces enter and exit micro assembly
248def t_INITIAL_LBRACE(t):
249    r'\{'
250    t.lexer.begin('asm')
251    return t
252
253def t_asm_RBRACE(t):
254    r'\}'
255    t.lexer.begin('INITIAL')
256    return t
257
258# At the top level, keep track of newlines only for line counting.
259def t_INITIAL_NEWLINE(t):
260    r'\n+'
261    t.lineno += t.value.count('\n')
262
263# In the micro assembler, do line counting but also return a token. The
264# token is needed by the parser to detect the end of a statement.
265def t_asm_NEWLINE(t):
266    r'\n+'
267    t.lineno += t.value.count('\n')
268    return t
269
270# A newline or semi colon when looking for params signals that the statement
271# is over and the lexer should go back to looking for regular assembly.
272def t_params_NEWLINE(t):
273    r'\n+'
274    t.lineno += t.value.count('\n')
275    t.lexer.begin('asm')
276    return t
277
278def t_params_SEMI(t):
279    r';'
280    t.lexer.begin('asm')
281    return t
282
283# Basic regular expressions to pick out simple tokens
284t_ANY_LPAREN = r'\('
285t_ANY_RPAREN = r'\)'
286t_ANY_SEMI   = r';'
287t_ANY_DOT    = r'\.'
288
289t_ANY_ignore = ' \t\x0c'
290
291def t_ANY_error(t):
292    error(t.lineno, "illegal character '%s'" % t.value[0])
293    t.skip(1)
294
295##########################################################################
296#
297# Parser specification
298#
299##########################################################################
300
301# Start symbol for a file which may have more than one macroop or rom
302# specification.
303def p_file(t):
304    'file : opt_rom_or_macros'
305
306def p_opt_rom_or_macros_0(t):
307    'opt_rom_or_macros : '
308
309def p_opt_rom_or_macros_1(t):
310    'opt_rom_or_macros : rom_or_macros'
311
312def p_rom_or_macros_0(t):
313    'rom_or_macros : rom_or_macro'
314
315def p_rom_or_macros_1(t):
316    'rom_or_macros : rom_or_macros rom_or_macro'
317
318def p_rom_or_macro_0(t):
319    '''rom_or_macro : rom_block
320                    | macroop_def'''
321
322# Defines a section of microcode that should go in the current ROM
323def p_rom_block(t):
324    'rom_block : DEF ROM block SEMI'
325    if not t.parser.rom:
326        print_error("Rom block found, but no Rom object specified.")
327        raise TypeError, "Rom block found, but no Rom object was specified."
328    for statement in t[3].statements:
329        handle_statement(t.parser, t.parser.rom, statement)
330    t[0] = t.parser.rom
331
332# Defines a macroop that jumps to an external label in the ROM
333def p_macroop_def_0(t):
334    'macroop_def : DEF MACROOP ID LPAREN ID RPAREN SEMI'
335    if not t.parser.rom_macroop_type:
336        print_error("ROM based macroop found, but no ROM macroop class was specified.")
337        raise TypeError, "ROM based macroop found, but no ROM macroop class was specified."
338    macroop = t.parser.rom_macroop_type(t[3], t[5])
339    t.parser.macroops[t[3]] = macroop
340
341
342# Defines a macroop that is combinationally generated
343def p_macroop_def_1(t):
344    'macroop_def : DEF MACROOP ID block SEMI'
345    try:
346        curop = t.parser.macro_type(t[3])
347    except TypeError:
348        print_error("Error creating macroop object.")
349        raise
350    for statement in t[4].statements:
351        handle_statement(t.parser, curop, statement)
352    t.parser.macroops[t[3]] = curop
353
354# A block of statements
355def p_block(t):
356    'block : LBRACE statements RBRACE'
357    block = Block()
358    block.statements = t[2]
359    t[0] = block
360
361def p_statements_0(t):
362    'statements : statement'
363    if t[1]:
364        t[0] = [t[1]]
365    else:
366        t[0] = []
367
368def p_statements_1(t):
369    'statements : statements statement'
370    if t[2]:
371        t[1].append(t[2])
372    t[0] = t[1]
373
374def p_statement(t):
375    'statement : content_of_statement end_of_statement'
376    t[0] = t[1]
377
378# A statement can be a microop or an assembler directive
379def p_content_of_statement_0(t):
380    '''content_of_statement : microop
381                            | directive'''
382    t[0] = t[1]
383
384# Ignore empty statements
385def p_content_of_statement_1(t):
386    'content_of_statement : '
387    pass
388
389# Statements are ended by newlines or a semi colon
390def p_end_of_statement(t):
391    '''end_of_statement : NEWLINE
392                        | SEMI'''
393    pass
394
395# Different flavors of microop to avoid shift/reduce errors
396def p_microop_0(t):
397    'microop : labels ID'
398    microop = Microop()
399    microop.labels = t[1]
400    microop.mnemonic = t[2]
401    t[0] = microop
402
403def p_microop_1(t):
404    'microop : ID'
405    microop = Microop()
406    microop.mnemonic = t[1]
407    t[0] = microop
408
409def p_microop_2(t):
410    'microop : labels ID PARAMS'
411    microop = Microop()
412    microop.labels = t[1]
413    microop.mnemonic = t[2]
414    microop.params = t[3]
415    t[0] = microop
416
417def p_microop_3(t):
418    'microop : ID PARAMS'
419    microop = Microop()
420    microop.mnemonic = t[1]
421    microop.params = t[2]
422    t[0] = microop
423
424# Labels in the microcode
425def p_labels_0(t):
426    'labels : label'
427    t[0] = [t[1]]
428
429def p_labels_1(t):
430    'labels : labels label'
431    t[1].append(t[2])
432    t[0] = t[1]
433
434def p_label_0(t):
435    'label : ID COLON'
436    label = Label()
437    label.is_extern = False
438    label.text = t[1]
439    t[0] = label
440
441def p_label_1(t):
442    'label : EXTERN ID COLON'
443    label = Label()
444    label.is_extern = True
445    label.text = t[2]
446    t[0] = label
447
448# Directives for the macroop
449def p_directive_0(t):
450    'directive : DOT ID'
451    directive = Directive()
452    directive.name = t[2]
453    t[0] = directive
454
455def p_directive_1(t):
456    'directive : DOT ID PARAMS'
457    directive = Directive()
458    directive.name = t[2]
459    directive.params = t[3]
460    t[0] = directive
461
462# Parse error handler.  Note that the argument here is the offending
463# *token*, not a grammar symbol (hence the need to use t.value)
464def p_error(t):
465    if t:
466        error(t.lineno, "syntax error at '%s'" % t.value)
467    else:
468        error(0, "unknown syntax error", True)
469
470class MicroAssembler(object):
471
472    def __init__(self, macro_type, microops,
473            rom = None, rom_macroop_type = None):
474        self.lexer = lex.lex()
475        self.parser = yacc.yacc()
476        self.parser.macro_type = macro_type
477        self.parser.macroops = {}
478        self.parser.microops = microops
479        self.parser.rom = rom
480        self.parser.rom_macroop_type = rom_macroop_type
481
482    def assemble(self, asm):
483        self.parser.parse(asm, lexer=self.lexer)
484        # Begin debug printing
485        for macroop in self.parser.macroops.values():
486            print macroop
487        print self.parser.rom
488        # End debug printing
489        macroops = self.parser.macroops
490        self.parser.macroops = {}
491        return macroops
492