isa_parser.py revision 6728:5037062422c8
1# Copyright (c) 2003-2005 The Regents of The University of Michigan
2# All rights reserved.
3#
4# Redistribution and use in source and binary forms, with or without
5# modification, are permitted provided that the following conditions are
6# met: redistributions of source code must retain the above copyright
7# notice, this list of conditions and the following disclaimer;
8# redistributions in binary form must reproduce the above copyright
9# notice, this list of conditions and the following disclaimer in the
10# documentation and/or other materials provided with the distribution;
11# neither the name of the copyright holders nor the names of its
12# contributors may be used to endorse or promote products derived from
13# this software without specific prior written permission.
14#
15# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26#
27# Authors: Steve Reinhardt
28
29import os
30import sys
31import re
32import string
33import traceback
34# get type names
35from types import *
36
37from m5.util.grammar import Grammar
38
39class ISAParser(Grammar):
40    def __init__(self, *args, **kwargs):
41        super(ISAParser, self).__init__(*args, **kwargs)
42        self.templateMap = {}
43
44    #####################################################################
45    #
46    #                                Lexer
47    #
48    # The PLY lexer module takes two things as input:
49    # - A list of token names (the string list 'tokens')
50    # - A regular expression describing a match for each token.  The
51    #   regexp for token FOO can be provided in two ways:
52    #   - as a string variable named t_FOO
53    #   - as the doc string for a function named t_FOO.  In this case,
54    #     the function is also executed, allowing an action to be
55    #     associated with each token match.
56    #
57    #####################################################################
58
59    # Reserved words.  These are listed separately as they are matched
60    # using the same regexp as generic IDs, but distinguished in the
61    # t_ID() function.  The PLY documentation suggests this approach.
62    reserved = (
63        'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
64        'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
65        'OUTPUT', 'SIGNED', 'TEMPLATE'
66        )
67
68    # List of tokens.  The lex module requires this.
69    tokens = reserved + (
70        # identifier
71        'ID',
72
73        # integer literal
74        'INTLIT',
75
76        # string literal
77        'STRLIT',
78
79        # code literal
80        'CODELIT',
81
82        # ( ) [ ] { } < > , ; . : :: *
83        'LPAREN', 'RPAREN',
84        'LBRACKET', 'RBRACKET',
85        'LBRACE', 'RBRACE',
86        'LESS', 'GREATER', 'EQUALS',
87        'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
88        'ASTERISK',
89
90        # C preprocessor directives
91        'CPPDIRECTIVE'
92
93    # The following are matched but never returned. commented out to
94    # suppress PLY warning
95        # newfile directive
96    #    'NEWFILE',
97
98        # endfile directive
99    #    'ENDFILE'
100    )
101
102    # Regular expressions for token matching
103    t_LPAREN           = r'\('
104    t_RPAREN           = r'\)'
105    t_LBRACKET         = r'\['
106    t_RBRACKET         = r'\]'
107    t_LBRACE           = r'\{'
108    t_RBRACE           = r'\}'
109    t_LESS             = r'\<'
110    t_GREATER          = r'\>'
111    t_EQUALS           = r'='
112    t_COMMA            = r','
113    t_SEMI             = r';'
114    t_DOT              = r'\.'
115    t_COLON            = r':'
116    t_DBLCOLON         = r'::'
117    t_ASTERISK         = r'\*'
118
119    # Identifiers and reserved words
120    reserved_map = { }
121    for r in reserved:
122        reserved_map[r.lower()] = r
123
124    def t_ID(self, t):
125        r'[A-Za-z_]\w*'
126        t.type = self.reserved_map.get(t.value, 'ID')
127        return t
128
129    # Integer literal
130    def t_INTLIT(self, t):
131        r'(0x[\da-fA-F]+)|\d+'
132        try:
133            t.value = int(t.value,0)
134        except ValueError:
135            error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
136            t.value = 0
137        return t
138
139    # String literal.  Note that these use only single quotes, and
140    # can span multiple lines.
141    def t_STRLIT(self, t):
142        r"(?m)'([^'])+'"
143        # strip off quotes
144        t.value = t.value[1:-1]
145        t.lexer.lineno += t.value.count('\n')
146        return t
147
148
149    # "Code literal"... like a string literal, but delimiters are
150    # '{{' and '}}' so they get formatted nicely under emacs c-mode
151    def t_CODELIT(self, t):
152        r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
153        # strip off {{ & }}
154        t.value = t.value[2:-2]
155        t.lexer.lineno += t.value.count('\n')
156        return t
157
158    def t_CPPDIRECTIVE(self, t):
159        r'^\#[^\#].*\n'
160        t.lexer.lineno += t.value.count('\n')
161        return t
162
163    def t_NEWFILE(self, t):
164        r'^\#\#newfile\s+"[\w/.-]*"'
165        fileNameStack.push((t.value[11:-1], t.lexer.lineno))
166        t.lexer.lineno = 0
167
168    def t_ENDFILE(self, t):
169        r'^\#\#endfile'
170        (old_filename, t.lexer.lineno) = fileNameStack.pop()
171
172    #
173    # The functions t_NEWLINE, t_ignore, and t_error are
174    # special for the lex module.
175    #
176
177    # Newlines
178    def t_NEWLINE(self, t):
179        r'\n+'
180        t.lexer.lineno += t.value.count('\n')
181
182    # Comments
183    def t_comment(self, t):
184        r'//.*'
185
186    # Completely ignored characters
187    t_ignore = ' \t\x0c'
188
189    # Error handler
190    def t_error(self, t):
191        error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
192        t.skip(1)
193
194    #####################################################################
195    #
196    #                                Parser
197    #
198    # Every function whose name starts with 'p_' defines a grammar
199    # rule.  The rule is encoded in the function's doc string, while
200    # the function body provides the action taken when the rule is
201    # matched.  The argument to each function is a list of the values
202    # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
203    # symbols on the RHS.  For tokens, the value is copied from the
204    # t.value attribute provided by the lexer.  For non-terminals, the
205    # value is assigned by the producing rule; i.e., the job of the
206    # grammar rule function is to set the value for the non-terminal
207    # on the LHS (by assigning to t[0]).
208    #####################################################################
209
210    # The LHS of the first grammar rule is used as the start symbol
211    # (in this case, 'specification').  Note that this rule enforces
212    # that there will be exactly one namespace declaration, with 0 or
213    # more global defs/decls before and after it.  The defs & decls
214    # before the namespace decl will be outside the namespace; those
215    # after will be inside.  The decoder function is always inside the
216    # namespace.
217    def p_specification(self, t):
218        'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
219        global_code = t[1]
220        isa_name = t[2]
221        namespace = isa_name + "Inst"
222        # wrap the decode block as a function definition
223        t[4].wrap_decode_block('''
224StaticInstPtr
225%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
226{
227    using namespace %(namespace)s;
228''' % vars(), '}')
229        # both the latter output blocks and the decode block are in
230        # the namespace
231        namespace_code = t[3] + t[4]
232        # pass it all back to the caller of yacc.parse()
233        t[0] = (isa_name, namespace, global_code, namespace_code)
234
235    # ISA name declaration looks like "namespace <foo>;"
236    def p_name_decl(self, t):
237        'name_decl : NAMESPACE ID SEMI'
238        t[0] = t[2]
239
240    # 'opt_defs_and_outputs' is a possibly empty sequence of
241    # def and/or output statements.
242    def p_opt_defs_and_outputs_0(self, t):
243        'opt_defs_and_outputs : empty'
244        t[0] = GenCode()
245
246    def p_opt_defs_and_outputs_1(self, t):
247        'opt_defs_and_outputs : defs_and_outputs'
248        t[0] = t[1]
249
250    def p_defs_and_outputs_0(self, t):
251        'defs_and_outputs : def_or_output'
252        t[0] = t[1]
253
254    def p_defs_and_outputs_1(self, t):
255        'defs_and_outputs : defs_and_outputs def_or_output'
256        t[0] = t[1] + t[2]
257
258    # The list of possible definition/output statements.
259    def p_def_or_output(self, t):
260        '''def_or_output : def_format
261                         | def_bitfield
262                         | def_bitfield_struct
263                         | def_template
264                         | def_operand_types
265                         | def_operands
266                         | output_header
267                         | output_decoder
268                         | output_exec
269                         | global_let'''
270        t[0] = t[1]
271
272    # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
273    # directly to the appropriate output section.
274
275    # Massage output block by substituting in template definitions and
276    # bit operators.  We handle '%'s embedded in the string that don't
277    # indicate template substitutions (or CPU-specific symbols, which
278    # get handled in GenCode) by doubling them first so that the
279    # format operation will reduce them back to single '%'s.
280    def process_output(self, s):
281        s = protect_non_subst_percents(s)
282        # protects cpu-specific symbols too
283        s = protect_cpu_symbols(s)
284        return substBitOps(s % self.templateMap)
285
286    def p_output_header(self, t):
287        'output_header : OUTPUT HEADER CODELIT SEMI'
288        t[0] = GenCode(header_output = self.process_output(t[3]))
289
290    def p_output_decoder(self, t):
291        'output_decoder : OUTPUT DECODER CODELIT SEMI'
292        t[0] = GenCode(decoder_output = self.process_output(t[3]))
293
294    def p_output_exec(self, t):
295        'output_exec : OUTPUT EXEC CODELIT SEMI'
296        t[0] = GenCode(exec_output = self.process_output(t[3]))
297
298    # global let blocks 'let {{...}}' (Python code blocks) are
299    # executed directly when seen.  Note that these execute in a
300    # special variable context 'exportContext' to prevent the code
301    # from polluting this script's namespace.
302    def p_global_let(self, t):
303        'global_let : LET CODELIT SEMI'
304        updateExportContext()
305        exportContext["header_output"] = ''
306        exportContext["decoder_output"] = ''
307        exportContext["exec_output"] = ''
308        exportContext["decode_block"] = ''
309        try:
310            exec fixPythonIndentation(t[2]) in exportContext
311        except Exception, exc:
312            error(t.lexer.lineno,
313                  'error: %s in global let block "%s".' % (exc, t[2]))
314        t[0] = GenCode(header_output = exportContext["header_output"],
315                       decoder_output = exportContext["decoder_output"],
316                       exec_output = exportContext["exec_output"],
317                       decode_block = exportContext["decode_block"])
318
319    # Define the mapping from operand type extensions to C++ types and
320    # bit widths (stored in operandTypeMap).
321    def p_def_operand_types(self, t):
322        'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
323        try:
324            userDict = eval('{' + t[3] + '}')
325        except Exception, exc:
326            error(t.lexer.lineno,
327                  'error: %s in def operand_types block "%s".' % (exc, t[3]))
328        buildOperandTypeMap(userDict, t.lexer.lineno)
329        t[0] = GenCode() # contributes nothing to the output C++ file
330
331    # Define the mapping from operand names to operand classes and
332    # other traits.  Stored in operandNameMap.
333    def p_def_operands(self, t):
334        'def_operands : DEF OPERANDS CODELIT SEMI'
335        if not globals().has_key('operandTypeMap'):
336            error(t.lexer.lineno,
337                  'error: operand types must be defined before operands')
338        try:
339            userDict = eval('{' + t[3] + '}', exportContext)
340        except Exception, exc:
341            error(t.lexer.lineno,
342                  'error: %s in def operands block "%s".' % (exc, t[3]))
343        buildOperandNameMap(userDict, t.lexer.lineno)
344        t[0] = GenCode() # contributes nothing to the output C++ file
345
346    # A bitfield definition looks like:
347    # 'def [signed] bitfield <ID> [<first>:<last>]'
348    # This generates a preprocessor macro in the output file.
349    def p_def_bitfield_0(self, t):
350        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
351        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
352        if (t[2] == 'signed'):
353            expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
354        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
355        t[0] = GenCode(header_output = hash_define)
356
357    # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
358    def p_def_bitfield_1(self, t):
359        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
360        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
361        if (t[2] == 'signed'):
362            expr = 'sext<%d>(%s)' % (1, expr)
363        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
364        t[0] = GenCode(header_output = hash_define)
365
366    # alternate form for structure member: 'def bitfield <ID> <ID>'
367    def p_def_bitfield_struct(self, t):
368        'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
369        if (t[2] != ''):
370            error(t.lexer.lineno,
371                  'error: structure bitfields are always unsigned.')
372        expr = 'machInst.%s' % t[5]
373        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
374        t[0] = GenCode(header_output = hash_define)
375
376    def p_id_with_dot_0(self, t):
377        'id_with_dot : ID'
378        t[0] = t[1]
379
380    def p_id_with_dot_1(self, t):
381        'id_with_dot : ID DOT id_with_dot'
382        t[0] = t[1] + t[2] + t[3]
383
384    def p_opt_signed_0(self, t):
385        'opt_signed : SIGNED'
386        t[0] = t[1]
387
388    def p_opt_signed_1(self, t):
389        'opt_signed : empty'
390        t[0] = ''
391
392    def p_def_template(self, t):
393        'def_template : DEF TEMPLATE ID CODELIT SEMI'
394        self.templateMap[t[3]] = Template(t[4])
395        t[0] = GenCode()
396
397    # An instruction format definition looks like
398    # "def format <fmt>(<params>) {{...}};"
399    def p_def_format(self, t):
400        'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
401        (id, params, code) = (t[3], t[5], t[7])
402        defFormat(id, params, code, t.lexer.lineno)
403        t[0] = GenCode()
404
405    # The formal parameter list for an instruction format is a
406    # possibly empty list of comma-separated parameters.  Positional
407    # (standard, non-keyword) parameters must come first, followed by
408    # keyword parameters, followed by a '*foo' parameter that gets
409    # excess positional arguments (as in Python).  Each of these three
410    # parameter categories is optional.
411    #
412    # Note that we do not support the '**foo' parameter for collecting
413    # otherwise undefined keyword args.  Otherwise the parameter list
414    # is (I believe) identical to what is supported in Python.
415    #
416    # The param list generates a tuple, where the first element is a
417    # list of the positional params and the second element is a dict
418    # containing the keyword params.
419    def p_param_list_0(self, t):
420        'param_list : positional_param_list COMMA nonpositional_param_list'
421        t[0] = t[1] + t[3]
422
423    def p_param_list_1(self, t):
424        '''param_list : positional_param_list
425                      | nonpositional_param_list'''
426        t[0] = t[1]
427
428    def p_positional_param_list_0(self, t):
429        'positional_param_list : empty'
430        t[0] = []
431
432    def p_positional_param_list_1(self, t):
433        'positional_param_list : ID'
434        t[0] = [t[1]]
435
436    def p_positional_param_list_2(self, t):
437        'positional_param_list : positional_param_list COMMA ID'
438        t[0] = t[1] + [t[3]]
439
440    def p_nonpositional_param_list_0(self, t):
441        'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
442        t[0] = t[1] + t[3]
443
444    def p_nonpositional_param_list_1(self, t):
445        '''nonpositional_param_list : keyword_param_list
446                                    | excess_args_param'''
447        t[0] = t[1]
448
449    def p_keyword_param_list_0(self, t):
450        'keyword_param_list : keyword_param'
451        t[0] = [t[1]]
452
453    def p_keyword_param_list_1(self, t):
454        'keyword_param_list : keyword_param_list COMMA keyword_param'
455        t[0] = t[1] + [t[3]]
456
457    def p_keyword_param(self, t):
458        'keyword_param : ID EQUALS expr'
459        t[0] = t[1] + ' = ' + t[3].__repr__()
460
461    def p_excess_args_param(self, t):
462        'excess_args_param : ASTERISK ID'
463        # Just concatenate them: '*ID'.  Wrap in list to be consistent
464        # with positional_param_list and keyword_param_list.
465        t[0] = [t[1] + t[2]]
466
467    # End of format definition-related rules.
468    ##############
469
470    #
471    # A decode block looks like:
472    #       decode <field1> [, <field2>]* [default <inst>] { ... }
473    #
474    def p_decode_block(self, t):
475        'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
476        default_defaults = defaultStack.pop()
477        codeObj = t[5]
478        # use the "default defaults" only if there was no explicit
479        # default statement in decode_stmt_list
480        if not codeObj.has_decode_default:
481            codeObj += default_defaults
482        codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
483        t[0] = codeObj
484
485    # The opt_default statement serves only to push the "default
486    # defaults" onto defaultStack.  This value will be used by nested
487    # decode blocks, and used and popped off when the current
488    # decode_block is processed (in p_decode_block() above).
489    def p_opt_default_0(self, t):
490        'opt_default : empty'
491        # no default specified: reuse the one currently at the top of
492        # the stack
493        defaultStack.push(defaultStack.top())
494        # no meaningful value returned
495        t[0] = None
496
497    def p_opt_default_1(self, t):
498        'opt_default : DEFAULT inst'
499        # push the new default
500        codeObj = t[2]
501        codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
502        defaultStack.push(codeObj)
503        # no meaningful value returned
504        t[0] = None
505
506    def p_decode_stmt_list_0(self, t):
507        'decode_stmt_list : decode_stmt'
508        t[0] = t[1]
509
510    def p_decode_stmt_list_1(self, t):
511        'decode_stmt_list : decode_stmt decode_stmt_list'
512        if (t[1].has_decode_default and t[2].has_decode_default):
513            error(t.lexer.lineno, 'Two default cases in decode block')
514        t[0] = t[1] + t[2]
515
516    #
517    # Decode statement rules
518    #
519    # There are four types of statements allowed in a decode block:
520    # 1. Format blocks 'format <foo> { ... }'
521    # 2. Nested decode blocks
522    # 3. Instruction definitions.
523    # 4. C preprocessor directives.
524
525
526    # Preprocessor directives found in a decode statement list are
527    # passed through to the output, replicated to all of the output
528    # code streams.  This works well for ifdefs, so we can ifdef out
529    # both the declarations and the decode cases generated by an
530    # instruction definition.  Handling them as part of the grammar
531    # makes it easy to keep them in the right place with respect to
532    # the code generated by the other statements.
533    def p_decode_stmt_cpp(self, t):
534        'decode_stmt : CPPDIRECTIVE'
535        t[0] = GenCode(t[1], t[1], t[1], t[1])
536
537    # A format block 'format <foo> { ... }' sets the default
538    # instruction format used to handle instruction definitions inside
539    # the block.  This format can be overridden by using an explicit
540    # format on the instruction definition or with a nested format
541    # block.
542    def p_decode_stmt_format(self, t):
543        'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
544        # The format will be pushed on the stack when 'push_format_id'
545        # is processed (see below).  Once the parser has recognized
546        # the full production (though the right brace), we're done
547        # with the format, so now we can pop it.
548        formatStack.pop()
549        t[0] = t[4]
550
551    # This rule exists so we can set the current format (& push the
552    # stack) when we recognize the format name part of the format
553    # block.
554    def p_push_format_id(self, t):
555        'push_format_id : ID'
556        try:
557            formatStack.push(formatMap[t[1]])
558            t[0] = ('', '// format %s' % t[1])
559        except KeyError:
560            error(t.lexer.lineno,
561                  'instruction format "%s" not defined.' % t[1])
562
563    # Nested decode block: if the value of the current field matches
564    # the specified constant, do a nested decode on some other field.
565    def p_decode_stmt_decode(self, t):
566        'decode_stmt : case_label COLON decode_block'
567        label = t[1]
568        codeObj = t[3]
569        # just wrap the decoding code from the block as a case in the
570        # outer switch statement.
571        codeObj.wrap_decode_block('\n%s:\n' % label)
572        codeObj.has_decode_default = (label == 'default')
573        t[0] = codeObj
574
575    # Instruction definition (finally!).
576    def p_decode_stmt_inst(self, t):
577        'decode_stmt : case_label COLON inst SEMI'
578        label = t[1]
579        codeObj = t[3]
580        codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
581        codeObj.has_decode_default = (label == 'default')
582        t[0] = codeObj
583
584    # The case label is either a list of one or more constants or
585    # 'default'
586    def p_case_label_0(self, t):
587        'case_label : intlit_list'
588        def make_case(intlit):
589            if intlit >= 2**32:
590                return 'case ULL(%#x)' % intlit
591            else:
592                return 'case %#x' % intlit
593        t[0] = ': '.join(map(make_case, t[1]))
594
595    def p_case_label_1(self, t):
596        'case_label : DEFAULT'
597        t[0] = 'default'
598
599    #
600    # The constant list for a decode case label must be non-empty, but
601    # may have one or more comma-separated integer literals in it.
602    #
603    def p_intlit_list_0(self, t):
604        'intlit_list : INTLIT'
605        t[0] = [t[1]]
606
607    def p_intlit_list_1(self, t):
608        'intlit_list : intlit_list COMMA INTLIT'
609        t[0] = t[1]
610        t[0].append(t[3])
611
612    # Define an instruction using the current instruction format
613    # (specified by an enclosing format block).
614    # "<mnemonic>(<args>)"
615    def p_inst_0(self, t):
616        'inst : ID LPAREN arg_list RPAREN'
617        # Pass the ID and arg list to the current format class to deal with.
618        currentFormat = formatStack.top()
619        codeObj = currentFormat.defineInst(t[1], t[3], t.lexer.lineno)
620        args = ','.join(map(str, t[3]))
621        args = re.sub('(?m)^', '//', args)
622        args = re.sub('^//', '', args)
623        comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
624        codeObj.prepend_all(comment)
625        t[0] = codeObj
626
627    # Define an instruction using an explicitly specified format:
628    # "<fmt>::<mnemonic>(<args>)"
629    def p_inst_1(self, t):
630        'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
631        try:
632            format = formatMap[t[1]]
633        except KeyError:
634            error(t.lexer.lineno,
635                  'instruction format "%s" not defined.' % t[1])
636        codeObj = format.defineInst(t[3], t[5], t.lexer.lineno)
637        comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
638        codeObj.prepend_all(comment)
639        t[0] = codeObj
640
641    # The arg list generates a tuple, where the first element is a
642    # list of the positional args and the second element is a dict
643    # containing the keyword args.
644    def p_arg_list_0(self, t):
645        'arg_list : positional_arg_list COMMA keyword_arg_list'
646        t[0] = ( t[1], t[3] )
647
648    def p_arg_list_1(self, t):
649        'arg_list : positional_arg_list'
650        t[0] = ( t[1], {} )
651
652    def p_arg_list_2(self, t):
653        'arg_list : keyword_arg_list'
654        t[0] = ( [], t[1] )
655
656    def p_positional_arg_list_0(self, t):
657        'positional_arg_list : empty'
658        t[0] = []
659
660    def p_positional_arg_list_1(self, t):
661        'positional_arg_list : expr'
662        t[0] = [t[1]]
663
664    def p_positional_arg_list_2(self, t):
665        'positional_arg_list : positional_arg_list COMMA expr'
666        t[0] = t[1] + [t[3]]
667
668    def p_keyword_arg_list_0(self, t):
669        'keyword_arg_list : keyword_arg'
670        t[0] = t[1]
671
672    def p_keyword_arg_list_1(self, t):
673        'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
674        t[0] = t[1]
675        t[0].update(t[3])
676
677    def p_keyword_arg(self, t):
678        'keyword_arg : ID EQUALS expr'
679        t[0] = { t[1] : t[3] }
680
681    #
682    # Basic expressions.  These constitute the argument values of
683    # "function calls" (i.e. instruction definitions in the decode
684    # block) and default values for formal parameters of format
685    # functions.
686    #
687    # Right now, these are either strings, integers, or (recursively)
688    # lists of exprs (using Python square-bracket list syntax).  Note
689    # that bare identifiers are trated as string constants here (since
690    # there isn't really a variable namespace to refer to).
691    #
692    def p_expr_0(self, t):
693        '''expr : ID
694                | INTLIT
695                | STRLIT
696                | CODELIT'''
697        t[0] = t[1]
698
699    def p_expr_1(self, t):
700        '''expr : LBRACKET list_expr RBRACKET'''
701        t[0] = t[2]
702
703    def p_list_expr_0(self, t):
704        'list_expr : expr'
705        t[0] = [t[1]]
706
707    def p_list_expr_1(self, t):
708        'list_expr : list_expr COMMA expr'
709        t[0] = t[1] + [t[3]]
710
711    def p_list_expr_2(self, t):
712        'list_expr : empty'
713        t[0] = []
714
715    #
716    # Empty production... use in other rules for readability.
717    #
718    def p_empty(self, t):
719        'empty :'
720        pass
721
722    # Parse error handler.  Note that the argument here is the
723    # offending *token*, not a grammar symbol (hence the need to use
724    # t.value)
725    def p_error(self, t):
726        if t:
727            error(t.lexer.lineno, "syntax error at '%s'" % t.value)
728        else:
729            error(0, "unknown syntax error", True)
730
731    # END OF GRAMMAR RULES
732
733# Now build the parser.
734parser = ISAParser()
735
736#####################################################################
737#
738#                           Support Classes
739#
740#####################################################################
741
742# Expand template with CPU-specific references into a dictionary with
743# an entry for each CPU model name.  The entry key is the model name
744# and the corresponding value is the template with the CPU-specific
745# refs substituted for that model.
746def expand_cpu_symbols_to_dict(template):
747    # Protect '%'s that don't go with CPU-specific terms
748    t = re.sub(r'%(?!\(CPU_)', '%%', template)
749    result = {}
750    for cpu in cpu_models:
751        result[cpu.name] = t % cpu.strings
752    return result
753
754# *If* the template has CPU-specific references, return a single
755# string containing a copy of the template for each CPU model with the
756# corresponding values substituted in.  If the template has no
757# CPU-specific references, it is returned unmodified.
758def expand_cpu_symbols_to_string(template):
759    if template.find('%(CPU_') != -1:
760        return reduce(lambda x,y: x+y,
761                      expand_cpu_symbols_to_dict(template).values())
762    else:
763        return template
764
765# Protect CPU-specific references by doubling the corresponding '%'s
766# (in preparation for substituting a different set of references into
767# the template).
768def protect_cpu_symbols(template):
769    return re.sub(r'%(?=\(CPU_)', '%%', template)
770
771# Protect any non-dict-substitution '%'s in a format string
772# (i.e. those not followed by '(')
773def protect_non_subst_percents(s):
774    return re.sub(r'%(?!\()', '%%', s)
775
776###############
777# GenCode class
778#
779# The GenCode class encapsulates generated code destined for various
780# output files.  The header_output and decoder_output attributes are
781# strings containing code destined for decoder.hh and decoder.cc
782# respectively.  The decode_block attribute contains code to be
783# incorporated in the decode function itself (that will also end up in
784# decoder.cc).  The exec_output attribute is a dictionary with a key
785# for each CPU model name; the value associated with a particular key
786# is the string of code for that CPU model's exec.cc file.  The
787# has_decode_default attribute is used in the decode block to allow
788# explicit default clauses to override default default clauses.
789
790class GenCode:
791    # Constructor.  At this point we substitute out all CPU-specific
792    # symbols.  For the exec output, these go into the per-model
793    # dictionary.  For all other output types they get collapsed into
794    # a single string.
795    def __init__(self,
796                 header_output = '', decoder_output = '', exec_output = '',
797                 decode_block = '', has_decode_default = False):
798        self.header_output = expand_cpu_symbols_to_string(header_output)
799        self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
800        if isinstance(exec_output, dict):
801            self.exec_output = exec_output
802        elif isinstance(exec_output, str):
803            # If the exec_output arg is a single string, we replicate
804            # it for each of the CPU models, substituting and
805            # %(CPU_foo)s params appropriately.
806            self.exec_output = expand_cpu_symbols_to_dict(exec_output)
807        self.decode_block = expand_cpu_symbols_to_string(decode_block)
808        self.has_decode_default = has_decode_default
809
810    # Override '+' operator: generate a new GenCode object that
811    # concatenates all the individual strings in the operands.
812    def __add__(self, other):
813        exec_output = {}
814        for cpu in cpu_models:
815            n = cpu.name
816            exec_output[n] = self.exec_output[n] + other.exec_output[n]
817        return GenCode(self.header_output + other.header_output,
818                       self.decoder_output + other.decoder_output,
819                       exec_output,
820                       self.decode_block + other.decode_block,
821                       self.has_decode_default or other.has_decode_default)
822
823    # Prepend a string (typically a comment) to all the strings.
824    def prepend_all(self, pre):
825        self.header_output = pre + self.header_output
826        self.decoder_output  = pre + self.decoder_output
827        self.decode_block = pre + self.decode_block
828        for cpu in cpu_models:
829            self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
830
831    # Wrap the decode block in a pair of strings (e.g., 'case foo:'
832    # and 'break;').  Used to build the big nested switch statement.
833    def wrap_decode_block(self, pre, post = ''):
834        self.decode_block = pre + indent(self.decode_block) + post
835
836################
837# Format object.
838#
839# A format object encapsulates an instruction format.  It must provide
840# a defineInst() method that generates the code for an instruction
841# definition.
842
843exportContextSymbols = ('InstObjParams', 'makeList', 're', 'string')
844
845exportContext = {}
846
847def updateExportContext():
848    exportContext.update(exportDict(*exportContextSymbols))
849    exportContext.update(parser.templateMap)
850
851def exportDict(*symNames):
852    return dict([(s, eval(s)) for s in symNames])
853
854
855class Format:
856    def __init__(self, id, params, code):
857        # constructor: just save away arguments
858        self.id = id
859        self.params = params
860        label = 'def format ' + id
861        self.user_code = compile(fixPythonIndentation(code), label, 'exec')
862        param_list = string.join(params, ", ")
863        f = '''def defInst(_code, _context, %s):
864                my_locals = vars().copy()
865                exec _code in _context, my_locals
866                return my_locals\n''' % param_list
867        c = compile(f, label + ' wrapper', 'exec')
868        exec c
869        self.func = defInst
870
871    def defineInst(self, name, args, lineno):
872        context = {}
873        updateExportContext()
874        context.update(exportContext)
875        if len(name):
876            Name = name[0].upper()
877            if len(name) > 1:
878                Name += name[1:]
879        context.update({ 'name': name, 'Name': Name })
880        try:
881            vars = self.func(self.user_code, context, *args[0], **args[1])
882        except Exception, exc:
883            error(lineno, 'error defining "%s": %s.' % (name, exc))
884        for k in vars.keys():
885            if k not in ('header_output', 'decoder_output',
886                         'exec_output', 'decode_block'):
887                del vars[k]
888        return GenCode(**vars)
889
890# Special null format to catch an implicit-format instruction
891# definition outside of any format block.
892class NoFormat:
893    def __init__(self):
894        self.defaultInst = ''
895
896    def defineInst(self, name, args, lineno):
897        error(lineno,
898              'instruction definition "%s" with no active format!' % name)
899
900# This dictionary maps format name strings to Format objects.
901formatMap = {}
902
903# Define a new format
904def defFormat(id, params, code, lineno):
905    # make sure we haven't already defined this one
906    if formatMap.get(id, None) != None:
907        error(lineno, 'format %s redefined.' % id)
908    # create new object and store in global map
909    formatMap[id] = Format(id, params, code)
910
911
912##############
913# Stack: a simple stack object.  Used for both formats (formatStack)
914# and default cases (defaultStack).  Simply wraps a list to give more
915# stack-like syntax and enable initialization with an argument list
916# (as opposed to an argument that's a list).
917
918class Stack(list):
919    def __init__(self, *items):
920        list.__init__(self, items)
921
922    def push(self, item):
923        self.append(item);
924
925    def top(self):
926        return self[-1]
927
928# The global format stack.
929formatStack = Stack(NoFormat())
930
931# The global default case stack.
932defaultStack = Stack( None )
933
934# Global stack that tracks current file and line number.
935# Each element is a tuple (filename, lineno) that records the
936# *current* filename and the line number in the *previous* file where
937# it was included.
938fileNameStack = Stack()
939
940###################
941# Utility functions
942
943#
944# Indent every line in string 's' by two spaces
945# (except preprocessor directives).
946# Used to make nested code blocks look pretty.
947#
948def indent(s):
949    return re.sub(r'(?m)^(?!#)', '  ', s)
950
951#
952# Munge a somewhat arbitrarily formatted piece of Python code
953# (e.g. from a format 'let' block) into something whose indentation
954# will get by the Python parser.
955#
956# The two keys here are that Python will give a syntax error if
957# there's any whitespace at the beginning of the first line, and that
958# all lines at the same lexical nesting level must have identical
959# indentation.  Unfortunately the way code literals work, an entire
960# let block tends to have some initial indentation.  Rather than
961# trying to figure out what that is and strip it off, we prepend 'if
962# 1:' to make the let code the nested block inside the if (and have
963# the parser automatically deal with the indentation for us).
964#
965# We don't want to do this if (1) the code block is empty or (2) the
966# first line of the block doesn't have any whitespace at the front.
967
968def fixPythonIndentation(s):
969    # get rid of blank lines first
970    s = re.sub(r'(?m)^\s*\n', '', s);
971    if (s != '' and re.match(r'[ \t]', s[0])):
972        s = 'if 1:\n' + s
973    return s
974
975# Error handler.  Just call exit.  Output formatted to work under
976# Emacs compile-mode.  Optional 'print_traceback' arg, if set to True,
977# prints a Python stack backtrace too (can be handy when trying to
978# debug the parser itself).
979def error(lineno, string, print_traceback = False):
980    spaces = ""
981    for (filename, line) in fileNameStack[0:-1]:
982        print spaces + "In file included from " + filename + ":"
983        spaces += "  "
984    # Print a Python stack backtrace if requested.
985    if (print_traceback):
986        traceback.print_exc()
987    if lineno != 0:
988        line_str = "%d:" % lineno
989    else:
990        line_str = ""
991    sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
992
993
994#####################################################################
995#
996#                      Bitfield Operator Support
997#
998#####################################################################
999
1000bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
1001
1002bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
1003bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
1004
1005def substBitOps(code):
1006    # first convert single-bit selectors to two-index form
1007    # i.e., <n> --> <n:n>
1008    code = bitOp1ArgRE.sub(r'<\1:\1>', code)
1009    # simple case: selector applied to ID (name)
1010    # i.e., foo<a:b> --> bits(foo, a, b)
1011    code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
1012    # if selector is applied to expression (ending in ')'),
1013    # we need to search backward for matching '('
1014    match = bitOpExprRE.search(code)
1015    while match:
1016        exprEnd = match.start()
1017        here = exprEnd - 1
1018        nestLevel = 1
1019        while nestLevel > 0:
1020            if code[here] == '(':
1021                nestLevel -= 1
1022            elif code[here] == ')':
1023                nestLevel += 1
1024            here -= 1
1025            if here < 0:
1026                sys.exit("Didn't find '('!")
1027        exprStart = here+1
1028        newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
1029                                         match.group(1), match.group(2))
1030        code = code[:exprStart] + newExpr + code[match.end():]
1031        match = bitOpExprRE.search(code)
1032    return code
1033
1034
1035####################
1036# Template objects.
1037#
1038# Template objects are format strings that allow substitution from
1039# the attribute spaces of other objects (e.g. InstObjParams instances).
1040
1041labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
1042
1043class Template:
1044    def __init__(self, t):
1045        self.template = t
1046
1047    def subst(self, d):
1048        myDict = None
1049
1050        # Protect non-Python-dict substitutions (e.g. if there's a printf
1051        # in the templated C++ code)
1052        template = protect_non_subst_percents(self.template)
1053        # CPU-model-specific substitutions are handled later (in GenCode).
1054        template = protect_cpu_symbols(template)
1055
1056        # Build a dict ('myDict') to use for the template substitution.
1057        # Start with the template namespace.  Make a copy since we're
1058        # going to modify it.
1059        myDict = parser.templateMap.copy()
1060
1061        if isinstance(d, InstObjParams):
1062            # If we're dealing with an InstObjParams object, we need
1063            # to be a little more sophisticated.  The instruction-wide
1064            # parameters are already formed, but the parameters which
1065            # are only function wide still need to be generated.
1066            compositeCode = ''
1067
1068            myDict.update(d.__dict__)
1069            # The "operands" and "snippets" attributes of the InstObjParams
1070            # objects are for internal use and not substitution.
1071            del myDict['operands']
1072            del myDict['snippets']
1073
1074            snippetLabels = [l for l in labelRE.findall(template)
1075                             if d.snippets.has_key(l)]
1076
1077            snippets = dict([(s, mungeSnippet(d.snippets[s]))
1078                             for s in snippetLabels])
1079
1080            myDict.update(snippets)
1081
1082            compositeCode = ' '.join(map(str, snippets.values()))
1083
1084            # Add in template itself in case it references any
1085            # operands explicitly (like Mem)
1086            compositeCode += ' ' + template
1087
1088            operands = SubOperandList(compositeCode, d.operands)
1089
1090            myDict['op_decl'] = operands.concatAttrStrings('op_decl')
1091
1092            is_src = lambda op: op.is_src
1093            is_dest = lambda op: op.is_dest
1094
1095            myDict['op_src_decl'] = \
1096                      operands.concatSomeAttrStrings(is_src, 'op_src_decl')
1097            myDict['op_dest_decl'] = \
1098                      operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
1099
1100            myDict['op_rd'] = operands.concatAttrStrings('op_rd')
1101            myDict['op_wb'] = operands.concatAttrStrings('op_wb')
1102
1103            if d.operands.memOperand:
1104                myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size
1105                myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type
1106
1107        elif isinstance(d, dict):
1108            # if the argument is a dictionary, we just use it.
1109            myDict.update(d)
1110        elif hasattr(d, '__dict__'):
1111            # if the argument is an object, we use its attribute map.
1112            myDict.update(d.__dict__)
1113        else:
1114            raise TypeError, "Template.subst() arg must be or have dictionary"
1115        return template % myDict
1116
1117    # Convert to string.  This handles the case when a template with a
1118    # CPU-specific term gets interpolated into another template or into
1119    # an output block.
1120    def __str__(self):
1121        return expand_cpu_symbols_to_string(self.template)
1122
1123#####################################################################
1124#
1125#                             Code Parser
1126#
1127# The remaining code is the support for automatically extracting
1128# instruction characteristics from pseudocode.
1129#
1130#####################################################################
1131
1132# Force the argument to be a list.  Useful for flags, where a caller
1133# can specify a singleton flag or a list of flags.  Also usful for
1134# converting tuples to lists so they can be modified.
1135def makeList(arg):
1136    if isinstance(arg, list):
1137        return arg
1138    elif isinstance(arg, tuple):
1139        return list(arg)
1140    elif not arg:
1141        return []
1142    else:
1143        return [ arg ]
1144
1145# Generate operandTypeMap from the user's 'def operand_types'
1146# statement.
1147def buildOperandTypeMap(userDict, lineno):
1148    global operandTypeMap
1149    operandTypeMap = {}
1150    for (ext, (desc, size)) in userDict.iteritems():
1151        if desc == 'signed int':
1152            ctype = 'int%d_t' % size
1153            is_signed = 1
1154        elif desc == 'unsigned int':
1155            ctype = 'uint%d_t' % size
1156            is_signed = 0
1157        elif desc == 'float':
1158            is_signed = 1       # shouldn't really matter
1159            if size == 32:
1160                ctype = 'float'
1161            elif size == 64:
1162                ctype = 'double'
1163        elif desc == 'twin64 int':
1164            is_signed = 0
1165            ctype = 'Twin64_t'
1166        elif desc == 'twin32 int':
1167            is_signed = 0
1168            ctype = 'Twin32_t'
1169        if ctype == '':
1170            error(lineno, 'Unrecognized type description "%s" in userDict')
1171        operandTypeMap[ext] = (size, ctype, is_signed)
1172
1173#
1174#
1175#
1176# Base class for operand descriptors.  An instance of this class (or
1177# actually a class derived from this one) represents a specific
1178# operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
1179# derived classes encapsulates the traits of a particular operand type
1180# (e.g., "32-bit integer register").
1181#
1182class Operand(object):
1183    def buildReadCode(self, func = None):
1184        code = self.read_code % {"name": self.base_name,
1185                                 "func": func,
1186                                 "op_idx": self.src_reg_idx,
1187                                 "reg_idx": self.reg_spec,
1188                                 "size": self.size,
1189                                 "ctype": self.ctype}
1190        if self.size != self.dflt_size:
1191            return '%s = bits(%s, %d, 0);\n' % \
1192                   (self.base_name, code, self.size-1)
1193        else:
1194            return '%s = %s;\n' % \
1195                   (self.base_name, code)
1196
1197    def buildWriteCode(self, func = None):
1198        if (self.size != self.dflt_size and self.is_signed):
1199            final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1200        else:
1201            final_val = self.base_name
1202        code = self.write_code % {"name": self.base_name,
1203                                  "func": func,
1204                                  "op_idx": self.dest_reg_idx,
1205                                  "reg_idx": self.reg_spec,
1206                                  "size": self.size,
1207                                  "ctype": self.ctype,
1208                                  "final_val": final_val}
1209        return '''
1210        {
1211            %s final_val = %s;
1212            %s;
1213            if (traceData) { traceData->setData(final_val); }
1214        }''' % (self.dflt_ctype, final_val, code)
1215
1216    def __init__(self, full_name, ext, is_src, is_dest):
1217        self.full_name = full_name
1218        self.ext = ext
1219        self.is_src = is_src
1220        self.is_dest = is_dest
1221        # The 'effective extension' (eff_ext) is either the actual
1222        # extension, if one was explicitly provided, or the default.
1223        if ext:
1224            self.eff_ext = ext
1225        else:
1226            self.eff_ext = self.dflt_ext
1227
1228        (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
1229
1230        # note that mem_acc_size is undefined for non-mem operands...
1231        # template must be careful not to use it if it doesn't apply.
1232        if self.isMem():
1233            self.mem_acc_size = self.makeAccSize()
1234            if self.ctype in ['Twin32_t', 'Twin64_t']:
1235                self.mem_acc_type = 'Twin'
1236            else:
1237                self.mem_acc_type = 'uint'
1238
1239    # Finalize additional fields (primarily code fields).  This step
1240    # is done separately since some of these fields may depend on the
1241    # register index enumeration that hasn't been performed yet at the
1242    # time of __init__().
1243    def finalize(self):
1244        self.flags = self.getFlags()
1245        self.constructor = self.makeConstructor()
1246        self.op_decl = self.makeDecl()
1247
1248        if self.is_src:
1249            self.op_rd = self.makeRead()
1250            self.op_src_decl = self.makeDecl()
1251        else:
1252            self.op_rd = ''
1253            self.op_src_decl = ''
1254
1255        if self.is_dest:
1256            self.op_wb = self.makeWrite()
1257            self.op_dest_decl = self.makeDecl()
1258        else:
1259            self.op_wb = ''
1260            self.op_dest_decl = ''
1261
1262    def isMem(self):
1263        return 0
1264
1265    def isReg(self):
1266        return 0
1267
1268    def isFloatReg(self):
1269        return 0
1270
1271    def isIntReg(self):
1272        return 0
1273
1274    def isControlReg(self):
1275        return 0
1276
1277    def getFlags(self):
1278        # note the empty slice '[:]' gives us a copy of self.flags[0]
1279        # instead of a reference to it
1280        my_flags = self.flags[0][:]
1281        if self.is_src:
1282            my_flags += self.flags[1]
1283        if self.is_dest:
1284            my_flags += self.flags[2]
1285        return my_flags
1286
1287    def makeDecl(self):
1288        # Note that initializations in the declarations are solely
1289        # to avoid 'uninitialized variable' errors from the compiler.
1290        return self.ctype + ' ' + self.base_name + ' = 0;\n';
1291
1292class IntRegOperand(Operand):
1293    def isReg(self):
1294        return 1
1295
1296    def isIntReg(self):
1297        return 1
1298
1299    def makeConstructor(self):
1300        c = ''
1301        if self.is_src:
1302            c += '\n\t_srcRegIdx[%d] = %s;' % \
1303                 (self.src_reg_idx, self.reg_spec)
1304        if self.is_dest:
1305            c += '\n\t_destRegIdx[%d] = %s;' % \
1306                 (self.dest_reg_idx, self.reg_spec)
1307        return c
1308
1309    def makeRead(self):
1310        if (self.ctype == 'float' or self.ctype == 'double'):
1311            error(0, 'Attempt to read integer register as FP')
1312        if self.read_code != None:
1313            return self.buildReadCode('readIntRegOperand')
1314        if (self.size == self.dflt_size):
1315            return '%s = xc->readIntRegOperand(this, %d);\n' % \
1316                   (self.base_name, self.src_reg_idx)
1317        elif (self.size > self.dflt_size):
1318            int_reg_val = 'xc->readIntRegOperand(this, %d)' % \
1319                          (self.src_reg_idx)
1320            if (self.is_signed):
1321                int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
1322            return '%s = %s;\n' % (self.base_name, int_reg_val)
1323        else:
1324            return '%s = bits(xc->readIntRegOperand(this, %d), %d, 0);\n' % \
1325                   (self.base_name, self.src_reg_idx, self.size-1)
1326
1327    def makeWrite(self):
1328        if (self.ctype == 'float' or self.ctype == 'double'):
1329            error(0, 'Attempt to write integer register as FP')
1330        if self.write_code != None:
1331            return self.buildWriteCode('setIntRegOperand')
1332        if (self.size != self.dflt_size and self.is_signed):
1333            final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1334        else:
1335            final_val = self.base_name
1336        wb = '''
1337        {
1338            %s final_val = %s;
1339            xc->setIntRegOperand(this, %d, final_val);\n
1340            if (traceData) { traceData->setData(final_val); }
1341        }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
1342        return wb
1343
1344class FloatRegOperand(Operand):
1345    def isReg(self):
1346        return 1
1347
1348    def isFloatReg(self):
1349        return 1
1350
1351    def makeConstructor(self):
1352        c = ''
1353        if self.is_src:
1354            c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1355                 (self.src_reg_idx, self.reg_spec)
1356        if self.is_dest:
1357            c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1358                 (self.dest_reg_idx, self.reg_spec)
1359        return c
1360
1361    def makeRead(self):
1362        bit_select = 0
1363        if (self.ctype == 'float' or self.ctype == 'double'):
1364            func = 'readFloatRegOperand'
1365        else:
1366            func = 'readFloatRegOperandBits'
1367            if (self.size != self.dflt_size):
1368                bit_select = 1
1369        base = 'xc->%s(this, %d)' % (func, self.src_reg_idx)
1370        if self.read_code != None:
1371            return self.buildReadCode(func)
1372        if bit_select:
1373            return '%s = bits(%s, %d, 0);\n' % \
1374                   (self.base_name, base, self.size-1)
1375        else:
1376            return '%s = %s;\n' % (self.base_name, base)
1377
1378    def makeWrite(self):
1379        final_val = self.base_name
1380        final_ctype = self.ctype
1381        if (self.ctype == 'float' or self.ctype == 'double'):
1382            func = 'setFloatRegOperand'
1383        elif (self.ctype == 'uint32_t' or self.ctype == 'uint64_t'):
1384            func = 'setFloatRegOperandBits'
1385        else:
1386            func = 'setFloatRegOperandBits'
1387            final_ctype = 'uint%d_t' % self.dflt_size
1388            if (self.size != self.dflt_size and self.is_signed):
1389                final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1390        if self.write_code != None:
1391            return self.buildWriteCode(func)
1392        wb = '''
1393        {
1394            %s final_val = %s;
1395            xc->%s(this, %d, final_val);\n
1396            if (traceData) { traceData->setData(final_val); }
1397        }''' % (final_ctype, final_val, func, self.dest_reg_idx)
1398        return wb
1399
1400class ControlRegOperand(Operand):
1401    def isReg(self):
1402        return 1
1403
1404    def isControlReg(self):
1405        return 1
1406
1407    def makeConstructor(self):
1408        c = ''
1409        if self.is_src:
1410            c += '\n\t_srcRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1411                 (self.src_reg_idx, self.reg_spec)
1412        if self.is_dest:
1413            c += '\n\t_destRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
1414                 (self.dest_reg_idx, self.reg_spec)
1415        return c
1416
1417    def makeRead(self):
1418        bit_select = 0
1419        if (self.ctype == 'float' or self.ctype == 'double'):
1420            error(0, 'Attempt to read control register as FP')
1421        if self.read_code != None:
1422            return self.buildReadCode('readMiscRegOperand')
1423        base = 'xc->readMiscRegOperand(this, %s)' % self.src_reg_idx
1424        if self.size == self.dflt_size:
1425            return '%s = %s;\n' % (self.base_name, base)
1426        else:
1427            return '%s = bits(%s, %d, 0);\n' % \
1428                   (self.base_name, base, self.size-1)
1429
1430    def makeWrite(self):
1431        if (self.ctype == 'float' or self.ctype == 'double'):
1432            error(0, 'Attempt to write control register as FP')
1433        if self.write_code != None:
1434            return self.buildWriteCode('setMiscRegOperand')
1435        wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
1436             (self.dest_reg_idx, self.base_name)
1437        wb += 'if (traceData) { traceData->setData(%s); }' % \
1438              self.base_name
1439        return wb
1440
1441class MemOperand(Operand):
1442    def isMem(self):
1443        return 1
1444
1445    def makeConstructor(self):
1446        return ''
1447
1448    def makeDecl(self):
1449        # Note that initializations in the declarations are solely
1450        # to avoid 'uninitialized variable' errors from the compiler.
1451        # Declare memory data variable.
1452        if self.ctype in ['Twin32_t','Twin64_t']:
1453            return "%s %s; %s.a = 0; %s.b = 0;\n" % (self.ctype, self.base_name,
1454                    self.base_name, self.base_name)
1455        c = '%s %s = 0;\n' % (self.ctype, self.base_name)
1456        return c
1457
1458    def makeRead(self):
1459        if self.read_code != None:
1460            return self.buildReadCode()
1461        return ''
1462
1463    def makeWrite(self):
1464        if self.write_code != None:
1465            return self.buildWriteCode()
1466        return ''
1467
1468    # Return the memory access size *in bits*, suitable for
1469    # forming a type via "uint%d_t".  Divide by 8 if you want bytes.
1470    def makeAccSize(self):
1471        return self.size
1472
1473class PCOperand(Operand):
1474    def makeConstructor(self):
1475        return ''
1476
1477    def makeRead(self):
1478        return '%s = xc->readPC();\n' % self.base_name
1479
1480    def makeWrite(self):
1481        return 'xc->setPC(%s);\n' % self.base_name
1482
1483class UPCOperand(Operand):
1484    def makeConstructor(self):
1485        return ''
1486
1487    def makeRead(self):
1488        if self.read_code != None:
1489            return self.buildReadCode('readMicroPC')
1490        return '%s = xc->readMicroPC();\n' % self.base_name
1491
1492    def makeWrite(self):
1493        if self.write_code != None:
1494            return self.buildWriteCode('setMicroPC')
1495        return 'xc->setMicroPC(%s);\n' % self.base_name
1496
1497class NUPCOperand(Operand):
1498    def makeConstructor(self):
1499        return ''
1500
1501    def makeRead(self):
1502        if self.read_code != None:
1503            return self.buildReadCode('readNextMicroPC')
1504        return '%s = xc->readNextMicroPC();\n' % self.base_name
1505
1506    def makeWrite(self):
1507        if self.write_code != None:
1508            return self.buildWriteCode('setNextMicroPC')
1509        return 'xc->setNextMicroPC(%s);\n' % self.base_name
1510
1511class NPCOperand(Operand):
1512    def makeConstructor(self):
1513        return ''
1514
1515    def makeRead(self):
1516        if self.read_code != None:
1517            return self.buildReadCode('readNextPC')
1518        return '%s = xc->readNextPC();\n' % self.base_name
1519
1520    def makeWrite(self):
1521        if self.write_code != None:
1522            return self.buildWriteCode('setNextPC')
1523        return 'xc->setNextPC(%s);\n' % self.base_name
1524
1525class NNPCOperand(Operand):
1526    def makeConstructor(self):
1527        return ''
1528
1529    def makeRead(self):
1530        if self.read_code != None:
1531            return self.buildReadCode('readNextNPC')
1532        return '%s = xc->readNextNPC();\n' % self.base_name
1533
1534    def makeWrite(self):
1535        if self.write_code != None:
1536            return self.buildWriteCode('setNextNPC')
1537        return 'xc->setNextNPC(%s);\n' % self.base_name
1538
1539def buildOperandNameMap(userDict, lineno):
1540    global operandNameMap
1541    operandNameMap = {}
1542    for (op_name, val) in userDict.iteritems():
1543        (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val[:5]
1544        if len(val) > 5:
1545            read_code = val[5]
1546        else:
1547            read_code = None
1548        if len(val) > 6:
1549            write_code = val[6]
1550        else:
1551            write_code = None
1552        if len(val) > 7:
1553            error(lineno,
1554                  'error: too many attributes for operand "%s"' %
1555                  base_cls_name)
1556
1557        (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
1558        # Canonical flag structure is a triple of lists, where each list
1559        # indicates the set of flags implied by this operand always, when
1560        # used as a source, and when used as a dest, respectively.
1561        # For simplicity this can be initialized using a variety of fairly
1562        # obvious shortcuts; we convert these to canonical form here.
1563        if not flags:
1564            # no flags specified (e.g., 'None')
1565            flags = ( [], [], [] )
1566        elif isinstance(flags, str):
1567            # a single flag: assumed to be unconditional
1568            flags = ( [ flags ], [], [] )
1569        elif isinstance(flags, list):
1570            # a list of flags: also assumed to be unconditional
1571            flags = ( flags, [], [] )
1572        elif isinstance(flags, tuple):
1573            # it's a tuple: it should be a triple,
1574            # but each item could be a single string or a list
1575            (uncond_flags, src_flags, dest_flags) = flags
1576            flags = (makeList(uncond_flags),
1577                     makeList(src_flags), makeList(dest_flags))
1578        # Accumulate attributes of new operand class in tmp_dict
1579        tmp_dict = {}
1580        for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
1581                     'dflt_size', 'dflt_ctype', 'dflt_is_signed',
1582                     'read_code', 'write_code'):
1583            tmp_dict[attr] = eval(attr)
1584        tmp_dict['base_name'] = op_name
1585        # New class name will be e.g. "IntReg_Ra"
1586        cls_name = base_cls_name + '_' + op_name
1587        # Evaluate string arg to get class object.  Note that the
1588        # actual base class for "IntReg" is "IntRegOperand", i.e. we
1589        # have to append "Operand".
1590        try:
1591            base_cls = eval(base_cls_name + 'Operand')
1592        except NameError:
1593            error(lineno,
1594                  'error: unknown operand base class "%s"' % base_cls_name)
1595        # The following statement creates a new class called
1596        # <cls_name> as a subclass of <base_cls> with the attributes
1597        # in tmp_dict, just as if we evaluated a class declaration.
1598        operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
1599
1600    # Define operand variables.
1601    operands = userDict.keys()
1602
1603    operandsREString = (r'''
1604    (?<![\w\.])      # neg. lookbehind assertion: prevent partial matches
1605    ((%s)(?:\.(\w+))?)   # match: operand with optional '.' then suffix
1606    (?![\w\.])       # neg. lookahead assertion: prevent partial matches
1607    '''
1608                        % string.join(operands, '|'))
1609
1610    global operandsRE
1611    operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1612
1613    # Same as operandsREString, but extension is mandatory, and only two
1614    # groups are returned (base and ext, not full name as above).
1615    # Used for subtituting '_' for '.' to make C++ identifiers.
1616    operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1617                               % string.join(operands, '|'))
1618
1619    global operandsWithExtRE
1620    operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1621
1622maxInstSrcRegs = 0
1623maxInstDestRegs = 0
1624
1625class OperandList:
1626
1627    # Find all the operands in the given code block.  Returns an operand
1628    # descriptor list (instance of class OperandList).
1629    def __init__(self, code):
1630        self.items = []
1631        self.bases = {}
1632        # delete comments so we don't match on reg specifiers inside
1633        code = commentRE.sub('', code)
1634        # search for operands
1635        next_pos = 0
1636        while 1:
1637            match = operandsRE.search(code, next_pos)
1638            if not match:
1639                # no more matches: we're done
1640                break
1641            op = match.groups()
1642            # regexp groups are operand full name, base, and extension
1643            (op_full, op_base, op_ext) = op
1644            # if the token following the operand is an assignment, this is
1645            # a destination (LHS), else it's a source (RHS)
1646            is_dest = (assignRE.match(code, match.end()) != None)
1647            is_src = not is_dest
1648            # see if we've already seen this one
1649            op_desc = self.find_base(op_base)
1650            if op_desc:
1651                if op_desc.ext != op_ext:
1652                    error(0, 'Inconsistent extensions for operand %s' % \
1653                          op_base)
1654                op_desc.is_src = op_desc.is_src or is_src
1655                op_desc.is_dest = op_desc.is_dest or is_dest
1656            else:
1657                # new operand: create new descriptor
1658                op_desc = operandNameMap[op_base](op_full, op_ext,
1659                                                  is_src, is_dest)
1660                self.append(op_desc)
1661            # start next search after end of current match
1662            next_pos = match.end()
1663        self.sort()
1664        # enumerate source & dest register operands... used in building
1665        # constructor later
1666        self.numSrcRegs = 0
1667        self.numDestRegs = 0
1668        self.numFPDestRegs = 0
1669        self.numIntDestRegs = 0
1670        self.memOperand = None
1671        for op_desc in self.items:
1672            if op_desc.isReg():
1673                if op_desc.is_src:
1674                    op_desc.src_reg_idx = self.numSrcRegs
1675                    self.numSrcRegs += 1
1676                if op_desc.is_dest:
1677                    op_desc.dest_reg_idx = self.numDestRegs
1678                    self.numDestRegs += 1
1679                    if op_desc.isFloatReg():
1680                        self.numFPDestRegs += 1
1681                    elif op_desc.isIntReg():
1682                        self.numIntDestRegs += 1
1683            elif op_desc.isMem():
1684                if self.memOperand:
1685                    error(0, "Code block has more than one memory operand.")
1686                self.memOperand = op_desc
1687        global maxInstSrcRegs
1688        global maxInstDestRegs
1689        if maxInstSrcRegs < self.numSrcRegs:
1690            maxInstSrcRegs = self.numSrcRegs
1691        if maxInstDestRegs < self.numDestRegs:
1692            maxInstDestRegs = self.numDestRegs
1693        # now make a final pass to finalize op_desc fields that may depend
1694        # on the register enumeration
1695        for op_desc in self.items:
1696            op_desc.finalize()
1697
1698    def __len__(self):
1699        return len(self.items)
1700
1701    def __getitem__(self, index):
1702        return self.items[index]
1703
1704    def append(self, op_desc):
1705        self.items.append(op_desc)
1706        self.bases[op_desc.base_name] = op_desc
1707
1708    def find_base(self, base_name):
1709        # like self.bases[base_name], but returns None if not found
1710        # (rather than raising exception)
1711        return self.bases.get(base_name)
1712
1713    # internal helper function for concat[Some]Attr{Strings|Lists}
1714    def __internalConcatAttrs(self, attr_name, filter, result):
1715        for op_desc in self.items:
1716            if filter(op_desc):
1717                result += getattr(op_desc, attr_name)
1718        return result
1719
1720    # return a single string that is the concatenation of the (string)
1721    # values of the specified attribute for all operands
1722    def concatAttrStrings(self, attr_name):
1723        return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1724
1725    # like concatAttrStrings, but only include the values for the operands
1726    # for which the provided filter function returns true
1727    def concatSomeAttrStrings(self, filter, attr_name):
1728        return self.__internalConcatAttrs(attr_name, filter, '')
1729
1730    # return a single list that is the concatenation of the (list)
1731    # values of the specified attribute for all operands
1732    def concatAttrLists(self, attr_name):
1733        return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1734
1735    # like concatAttrLists, but only include the values for the operands
1736    # for which the provided filter function returns true
1737    def concatSomeAttrLists(self, filter, attr_name):
1738        return self.__internalConcatAttrs(attr_name, filter, [])
1739
1740    def sort(self):
1741        self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1742
1743class SubOperandList(OperandList):
1744
1745    # Find all the operands in the given code block.  Returns an operand
1746    # descriptor list (instance of class OperandList).
1747    def __init__(self, code, master_list):
1748        self.items = []
1749        self.bases = {}
1750        # delete comments so we don't match on reg specifiers inside
1751        code = commentRE.sub('', code)
1752        # search for operands
1753        next_pos = 0
1754        while 1:
1755            match = operandsRE.search(code, next_pos)
1756            if not match:
1757                # no more matches: we're done
1758                break
1759            op = match.groups()
1760            # regexp groups are operand full name, base, and extension
1761            (op_full, op_base, op_ext) = op
1762            # find this op in the master list
1763            op_desc = master_list.find_base(op_base)
1764            if not op_desc:
1765                error(0, 'Found operand %s which is not in the master list!' \
1766                        ' This is an internal error' % \
1767                          op_base)
1768            else:
1769                # See if we've already found this operand
1770                op_desc = self.find_base(op_base)
1771                if not op_desc:
1772                    # if not, add a reference to it to this sub list
1773                    self.append(master_list.bases[op_base])
1774
1775            # start next search after end of current match
1776            next_pos = match.end()
1777        self.sort()
1778        self.memOperand = None
1779        for op_desc in self.items:
1780            if op_desc.isMem():
1781                if self.memOperand:
1782                    error(0, "Code block has more than one memory operand.")
1783                self.memOperand = op_desc
1784
1785# Regular expression object to match C++ comments
1786# (used in findOperands())
1787commentRE = re.compile(r'//.*\n')
1788
1789# Regular expression object to match assignment statements
1790# (used in findOperands())
1791assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1792
1793# Munge operand names in code string to make legal C++ variable names.
1794# This means getting rid of the type extension if any.
1795# (Will match base_name attribute of Operand object.)
1796def substMungedOpNames(code):
1797    return operandsWithExtRE.sub(r'\1', code)
1798
1799# Fix up code snippets for final substitution in templates.
1800def mungeSnippet(s):
1801    if isinstance(s, str):
1802        return substMungedOpNames(substBitOps(s))
1803    else:
1804        return s
1805
1806def makeFlagConstructor(flag_list):
1807    if len(flag_list) == 0:
1808        return ''
1809    # filter out repeated flags
1810    flag_list.sort()
1811    i = 1
1812    while i < len(flag_list):
1813        if flag_list[i] == flag_list[i-1]:
1814            del flag_list[i]
1815        else:
1816            i += 1
1817    pre = '\n\tflags['
1818    post = '] = true;'
1819    code = pre + string.join(flag_list, post + pre) + post
1820    return code
1821
1822# Assume all instruction flags are of the form 'IsFoo'
1823instFlagRE = re.compile(r'Is.*')
1824
1825# OpClass constants end in 'Op' except No_OpClass
1826opClassRE = re.compile(r'.*Op|No_OpClass')
1827
1828class InstObjParams:
1829    def __init__(self, mnem, class_name, base_class = '',
1830                 snippets = {}, opt_args = []):
1831        self.mnemonic = mnem
1832        self.class_name = class_name
1833        self.base_class = base_class
1834        if not isinstance(snippets, dict):
1835            snippets = {'code' : snippets}
1836        compositeCode = ' '.join(map(str, snippets.values()))
1837        self.snippets = snippets
1838
1839        self.operands = OperandList(compositeCode)
1840        self.constructor = self.operands.concatAttrStrings('constructor')
1841        self.constructor += \
1842                 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1843        self.constructor += \
1844                 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1845        self.constructor += \
1846                 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1847        self.constructor += \
1848                 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1849        self.flags = self.operands.concatAttrLists('flags')
1850
1851        # Make a basic guess on the operand class (function unit type).
1852        # These are good enough for most cases, and can be overridden
1853        # later otherwise.
1854        if 'IsStore' in self.flags:
1855            self.op_class = 'MemWriteOp'
1856        elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1857            self.op_class = 'MemReadOp'
1858        elif 'IsFloating' in self.flags:
1859            self.op_class = 'FloatAddOp'
1860        else:
1861            self.op_class = 'IntAluOp'
1862
1863        # Optional arguments are assumed to be either StaticInst flags
1864        # or an OpClass value.  To avoid having to import a complete
1865        # list of these values to match against, we do it ad-hoc
1866        # with regexps.
1867        for oa in opt_args:
1868            if instFlagRE.match(oa):
1869                self.flags.append(oa)
1870            elif opClassRE.match(oa):
1871                self.op_class = oa
1872            else:
1873                error(0, 'InstObjParams: optional arg "%s" not recognized '
1874                      'as StaticInst::Flag or OpClass.' % oa)
1875
1876        # add flag initialization to contructor here to include
1877        # any flags added via opt_args
1878        self.constructor += makeFlagConstructor(self.flags)
1879
1880        # if 'IsFloating' is set, add call to the FP enable check
1881        # function (which should be provided by isa_desc via a declare)
1882        if 'IsFloating' in self.flags:
1883            self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1884        else:
1885            self.fp_enable_check = ''
1886
1887#######################
1888#
1889# Output file template
1890#
1891
1892file_template = '''
1893/*
1894 * DO NOT EDIT THIS FILE!!!
1895 *
1896 * It was automatically generated from the ISA description in %(filename)s
1897 */
1898
1899%(includes)s
1900
1901%(global_output)s
1902
1903namespace %(namespace)s {
1904
1905%(namespace_output)s
1906
1907} // namespace %(namespace)s
1908
1909%(decode_function)s
1910'''
1911
1912max_inst_regs_template = '''
1913/*
1914 * DO NOT EDIT THIS FILE!!!
1915 *
1916 * It was automatically generated from the ISA description in %(filename)s
1917 */
1918
1919namespace %(namespace)s {
1920
1921    const int MaxInstSrcRegs = %(MaxInstSrcRegs)d;
1922    const int MaxInstDestRegs = %(MaxInstDestRegs)d;
1923
1924} // namespace %(namespace)s
1925
1926'''
1927
1928
1929# Update the output file only if the new contents are different from
1930# the current contents.  Minimizes the files that need to be rebuilt
1931# after minor changes.
1932def update_if_needed(file, contents):
1933    update = False
1934    if os.access(file, os.R_OK):
1935        f = open(file, 'r')
1936        old_contents = f.read()
1937        f.close()
1938        if contents != old_contents:
1939            print 'Updating', file
1940            os.remove(file) # in case it's write-protected
1941            update = True
1942        else:
1943            print 'File', file, 'is unchanged'
1944    else:
1945        print 'Generating', file
1946        update = True
1947    if update:
1948        f = open(file, 'w')
1949        f.write(contents)
1950        f.close()
1951
1952# This regular expression matches '##include' directives
1953includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
1954                       re.MULTILINE)
1955
1956# Function to replace a matched '##include' directive with the
1957# contents of the specified file (with nested ##includes replaced
1958# recursively).  'matchobj' is an re match object (from a match of
1959# includeRE) and 'dirname' is the directory relative to which the file
1960# path should be resolved.
1961def replace_include(matchobj, dirname):
1962    fname = matchobj.group('filename')
1963    full_fname = os.path.normpath(os.path.join(dirname, fname))
1964    contents = '##newfile "%s"\n%s\n##endfile\n' % \
1965               (full_fname, read_and_flatten(full_fname))
1966    return contents
1967
1968# Read a file and recursively flatten nested '##include' files.
1969def read_and_flatten(filename):
1970    current_dir = os.path.dirname(filename)
1971    try:
1972        contents = open(filename).read()
1973    except IOError:
1974        error(0, 'Error including file "%s"' % filename)
1975    fileNameStack.push((filename, 0))
1976    # Find any includes and include them
1977    contents = includeRE.sub(lambda m: replace_include(m, current_dir),
1978                             contents)
1979    fileNameStack.pop()
1980    return contents
1981
1982#
1983# Read in and parse the ISA description.
1984#
1985def parse_isa_desc(isa_desc_file, output_dir):
1986    # Read file and (recursively) all included files into a string.
1987    # PLY requires that the input be in a single string so we have to
1988    # do this up front.
1989    isa_desc = read_and_flatten(isa_desc_file)
1990
1991    # Initialize filename stack with outer file.
1992    fileNameStack.push((isa_desc_file, 0))
1993
1994    # Parse it.
1995    (isa_name, namespace, global_code, namespace_code) = parser.parse(isa_desc)
1996
1997    # grab the last three path components of isa_desc_file to put in
1998    # the output
1999    filename = '/'.join(isa_desc_file.split('/')[-3:])
2000
2001    # generate decoder.hh
2002    includes = '#include "base/bitfield.hh" // for bitfield support'
2003    global_output = global_code.header_output
2004    namespace_output = namespace_code.header_output
2005    decode_function = ''
2006    update_if_needed(output_dir + '/decoder.hh', file_template % vars())
2007
2008    # generate decoder.cc
2009    includes = '#include "decoder.hh"'
2010    global_output = global_code.decoder_output
2011    namespace_output = namespace_code.decoder_output
2012    # namespace_output += namespace_code.decode_block
2013    decode_function = namespace_code.decode_block
2014    update_if_needed(output_dir + '/decoder.cc', file_template % vars())
2015
2016    # generate per-cpu exec files
2017    for cpu in cpu_models:
2018        includes = '#include "decoder.hh"\n'
2019        includes += cpu.includes
2020        global_output = global_code.exec_output[cpu.name]
2021        namespace_output = namespace_code.exec_output[cpu.name]
2022        decode_function = ''
2023        update_if_needed(output_dir + '/' + cpu.filename,
2024                          file_template % vars())
2025
2026    # The variable names here are hacky, but this will creat local variables
2027    # which will be referenced in vars() which have the value of the globals.
2028    global maxInstSrcRegs
2029    MaxInstSrcRegs = maxInstSrcRegs
2030    global maxInstDestRegs
2031    MaxInstDestRegs = maxInstDestRegs
2032    # max_inst_regs.hh
2033    update_if_needed(output_dir + '/max_inst_regs.hh', \
2034            max_inst_regs_template % vars())
2035
2036# global list of CpuModel objects (see cpu_models.py)
2037cpu_models = []
2038
2039# Called as script: get args from command line.
2040# Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
2041if __name__ == '__main__':
2042    execfile(sys.argv[1])  # read in CpuModel definitions
2043    cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
2044    parse_isa_desc(sys.argv[2], sys.argv[3])
2045