isa_parser.py revision 3823:1c8f87aa103e
12623SN/A# Copyright (c) 2003-2005 The Regents of The University of Michigan
22623SN/A# All rights reserved.
32623SN/A#
42623SN/A# Redistribution and use in source and binary forms, with or without
52623SN/A# modification, are permitted provided that the following conditions are
62623SN/A# met: redistributions of source code must retain the above copyright
72623SN/A# notice, this list of conditions and the following disclaimer;
82623SN/A# redistributions in binary form must reproduce the above copyright
92623SN/A# notice, this list of conditions and the following disclaimer in the
102623SN/A# documentation and/or other materials provided with the distribution;
112623SN/A# neither the name of the copyright holders nor the names of its
122623SN/A# contributors may be used to endorse or promote products derived from
132623SN/A# this software without specific prior written permission.
142623SN/A#
152623SN/A# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
162623SN/A# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
172623SN/A# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
182623SN/A# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
192623SN/A# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
202623SN/A# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
212623SN/A# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
222623SN/A# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
232623SN/A# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
242623SN/A# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
252623SN/A# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
262623SN/A#
272665Ssaidi@eecs.umich.edu# Authors: Steve Reinhardt
282665Ssaidi@eecs.umich.edu#          Korey Sewell
292623SN/A
302623SN/Aimport os
313170Sstever@eecs.umich.eduimport sys
322623SN/Aimport re
334040Ssaidi@eecs.umich.eduimport string
342623SN/Aimport traceback
352623SN/A# get type names
363348Sbinkertn@umich.edufrom types import *
373348Sbinkertn@umich.edu
384762Snate@binkert.org# Prepend the directory where the PLY lex & yacc modules are found
392901Ssaidi@eecs.umich.edu# to the search path.  Assumes we're compiling in a subdirectory
402623SN/A# of 'build' in the current tree.
412623SN/Asys.path[0:0] = [os.environ['M5_PLY']]
422623SN/A
432623SN/Aimport lex
442856Srdreslin@umich.eduimport yacc
452856Srdreslin@umich.edu
462856Srdreslin@umich.edu#####################################################################
472856Srdreslin@umich.edu#
482856Srdreslin@umich.edu#                                Lexer
492856Srdreslin@umich.edu#
502856Srdreslin@umich.edu# The PLY lexer module takes two things as input:
512856Srdreslin@umich.edu# - A list of token names (the string list 'tokens')
522856Srdreslin@umich.edu# - A regular expression describing a match for each token.  The
532856Srdreslin@umich.edu#   regexp for token FOO can be provided in two ways:
542623SN/A#   - as a string variable named t_FOO
552623SN/A#   - as the doc string for a function named t_FOO.  In this case,
562623SN/A#     the function is also executed, allowing an action to be
572623SN/A#     associated with each token match.
582623SN/A#
592623SN/A#####################################################################
602680Sktlim@umich.edu
612680Sktlim@umich.edu# Reserved words.  These are listed separately as they are matched
622623SN/A# using the same regexp as generic IDs, but distinguished in the
632623SN/A# t_ID() function.  The PLY documentation suggests this approach.
642680Sktlim@umich.edureserved = (
652623SN/A    'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
662623SN/A    'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
672623SN/A    'OUTPUT', 'SIGNED', 'TEMPLATE'
682623SN/A    )
692623SN/A
703349Sbinkertn@umich.edu# List of tokens.  The lex module requires this.
712623SN/Atokens = reserved + (
722623SN/A    # identifier
732623SN/A    'ID',
742623SN/A
752623SN/A    # integer literal
762623SN/A    'INTLIT',
773349Sbinkertn@umich.edu
782623SN/A    # string literal
793184Srdreslin@umich.edu    'STRLIT',
803184Srdreslin@umich.edu
812623SN/A    # code literal
822623SN/A    'CODELIT',
832623SN/A
842623SN/A    # ( ) [ ] { } < > , ; : :: *
852623SN/A    'LPAREN', 'RPAREN',
863647Srdreslin@umich.edu    'LBRACKET', 'RBRACKET',
873647Srdreslin@umich.edu    'LBRACE', 'RBRACE',
883647Srdreslin@umich.edu    'LESS', 'GREATER', 'EQUALS',
893647Srdreslin@umich.edu    'COMMA', 'SEMI', 'COLON', 'DBLCOLON',
903647Srdreslin@umich.edu    'ASTERISK',
912631SN/A
923647Srdreslin@umich.edu    # C preprocessor directives
932631SN/A    'CPPDIRECTIVE'
942623SN/A
952623SN/A# The following are matched but never returned. commented out to
962623SN/A# suppress PLY warning
972948Ssaidi@eecs.umich.edu    # newfile directive
982948Ssaidi@eecs.umich.edu#    'NEWFILE',
993349Sbinkertn@umich.edu
1002948Ssaidi@eecs.umich.edu    # endfile directive
1012948Ssaidi@eecs.umich.edu#    'ENDFILE'
1022948Ssaidi@eecs.umich.edu)
1032948Ssaidi@eecs.umich.edu
1042948Ssaidi@eecs.umich.edu# Regular expressions for token matching
1052623SN/At_LPAREN           = r'\('
1063170Sstever@eecs.umich.edut_RPAREN           = r'\)'
1073170Sstever@eecs.umich.edut_LBRACKET         = r'\['
1082623SN/At_RBRACKET         = r'\]'
1092623SN/At_LBRACE           = r'\{'
1103647Srdreslin@umich.edut_RBRACE           = r'\}'
1113647Srdreslin@umich.edut_LESS             = r'\<'
1123647Srdreslin@umich.edut_GREATER          = r'\>'
1133647Srdreslin@umich.edut_EQUALS           = r'='
1142623SN/At_COMMA            = r','
1152839Sktlim@umich.edut_SEMI             = r';'
1162867Sktlim@umich.edut_COLON            = r':'
1173222Sktlim@umich.edut_DBLCOLON         = r'::'
1182901Ssaidi@eecs.umich.edut_ASTERISK	   = r'\*'
1192623SN/A
1202623SN/A# Identifiers and reserved words
1212623SN/Areserved_map = { }
1222623SN/Afor r in reserved:
1232623SN/A    reserved_map[r.lower()] = r
1242623SN/A
1252623SN/Adef t_ID(t):
1262623SN/A    r'[A-Za-z_]\w*'
1272623SN/A    t.type = reserved_map.get(t.value,'ID')
1282623SN/A    return t
1292915Sktlim@umich.edu
1302915Sktlim@umich.edu# Integer literal
1312623SN/Adef t_INTLIT(t):
1322623SN/A    r'(0x[\da-fA-F]+)|\d+'
1332623SN/A    try:
1342623SN/A        t.value = int(t.value,0)
1352623SN/A    except ValueError:
1362623SN/A        error(t.lineno, 'Integer value "%s" too large' % t.value)
1372915Sktlim@umich.edu        t.value = 0
1382915Sktlim@umich.edu    return t
1392623SN/A
1402798Sktlim@umich.edu# String literal.  Note that these use only single quotes, and
1412798Sktlim@umich.edu# can span multiple lines.
1422901Ssaidi@eecs.umich.edudef t_STRLIT(t):
1432839Sktlim@umich.edu    r"(?m)'([^'])+'"
1442798Sktlim@umich.edu    # strip off quotes
1452839Sktlim@umich.edu    t.value = t.value[1:-1]
1462798Sktlim@umich.edu    t.lineno += t.value.count('\n')
1472798Sktlim@umich.edu    return t
1482901Ssaidi@eecs.umich.edu
1492901Ssaidi@eecs.umich.edu
1502798Sktlim@umich.edu# "Code literal"... like a string literal, but delimiters are
1512839Sktlim@umich.edu# '{{' and '}}' so they get formatted nicely under emacs c-mode
1522839Sktlim@umich.edudef t_CODELIT(t):
1532901Ssaidi@eecs.umich.edu    r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1542798Sktlim@umich.edu    # strip off {{ & }}
1552623SN/A    t.value = t.value[2:-2]
1562623SN/A    t.lineno += t.value.count('\n')
1572623SN/A    return t
1582798Sktlim@umich.edu
1592623SN/Adef t_CPPDIRECTIVE(t):
1602798Sktlim@umich.edu    r'^\#[^\#].*\n'
1614762Snate@binkert.org    t.lineno += t.value.count('\n')
1623201Shsul@eecs.umich.edu    return t
1632867Sktlim@umich.edu
1642867Sktlim@umich.edudef t_NEWFILE(t):
1652915Sktlim@umich.edu    r'^\#\#newfile\s+"[\w/.-]*"'
1662915Sktlim@umich.edu    fileNameStack.push((t.value[11:-1], t.lineno))
1672915Sktlim@umich.edu    t.lineno = 0
1682867Sktlim@umich.edu
1692867Sktlim@umich.edudef t_ENDFILE(t):
1702867Sktlim@umich.edu    r'^\#\#endfile'
1714471Sstever@eecs.umich.edu    (old_filename, t.lineno) = fileNameStack.pop()
1722623SN/A
1732798Sktlim@umich.edu#
1742901Ssaidi@eecs.umich.edu# The functions t_NEWLINE, t_ignore, and t_error are
1753222Sktlim@umich.edu# special for the lex module.
1762798Sktlim@umich.edu#
1772798Sktlim@umich.edu
1782798Sktlim@umich.edu# Newlines
1792798Sktlim@umich.edudef t_NEWLINE(t):
1802798Sktlim@umich.edu    r'\n+'
1812798Sktlim@umich.edu    t.lineno += t.value.count('\n')
1822798Sktlim@umich.edu
1833222Sktlim@umich.edu# Comments
1842867Sktlim@umich.edudef t_comment(t):
1852867Sktlim@umich.edu    r'//.*'
1862867Sktlim@umich.edu
1872867Sktlim@umich.edu# Completely ignored characters
1882867Sktlim@umich.edut_ignore           = ' \t\x0c'
1892623SN/A
1902623SN/A# Error handler
1912623SN/Adef t_error(t):
1922623SN/A    error(t.lineno, "illegal character '%s'" % t.value[0])
1932623SN/A    t.skip(1)
1942623SN/A
1954192Sktlim@umich.edu# Build the lexer
1962623SN/Alex.lex()
1972680Sktlim@umich.edu
1982623SN/A#####################################################################
1992680Sktlim@umich.edu#
2002680Sktlim@umich.edu#                                Parser
2012680Sktlim@umich.edu#
2022623SN/A# Every function whose name starts with 'p_' defines a grammar rule.
2032623SN/A# The rule is encoded in the function's doc string, while the
2042623SN/A# function body provides the action taken when the rule is matched.
2052623SN/A# The argument to each function is a list of the values of the
2063201Shsul@eecs.umich.edu# rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
2073201Shsul@eecs.umich.edu# on the RHS.  For tokens, the value is copied from the t.value
2083201Shsul@eecs.umich.edu# attribute provided by the lexer.  For non-terminals, the value
2093201Shsul@eecs.umich.edu# is assigned by the producing rule; i.e., the job of the grammar
2102623SN/A# rule function is to set the value for the non-terminal on the LHS
2112623SN/A# (by assigning to t[0]).
2122623SN/A#####################################################################
2132623SN/A
2142623SN/A# The LHS of the first grammar rule is used as the start symbol
2152623SN/A# (in this case, 'specification').  Note that this rule enforces
2162623SN/A# that there will be exactly one namespace declaration, with 0 or more
2172683Sktlim@umich.edu# global defs/decls before and after it.  The defs & decls before
2182623SN/A# the namespace decl will be outside the namespace; those after
2192623SN/A# will be inside.  The decoder function is always inside the namespace.
2202623SN/Adef p_specification(t):
2212623SN/A    'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
2222623SN/A    global_code = t[1]
2233686Sktlim@umich.edu    isa_name = t[2]
2242623SN/A    namespace = isa_name + "Inst"
2254471Sstever@eecs.umich.edu    # wrap the decode block as a function definition
2262623SN/A    t[4].wrap_decode_block('''
2272623SN/AStaticInstPtr
2282623SN/A%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
2292623SN/A{
2302623SN/A    using namespace %(namespace)s;
2312623SN/A''' % vars(), '}')
2322623SN/A    # both the latter output blocks and the decode block are in the namespace
2332683Sktlim@umich.edu    namespace_code = t[3] + t[4]
2342623SN/A    # pass it all back to the caller of yacc.parse()
2352644Sstever@eecs.umich.edu    t[0] = (isa_name, namespace, global_code, namespace_code)
2362623SN/A
2372644Sstever@eecs.umich.edu# ISA name declaration looks like "namespace <foo>;"
2382644Sstever@eecs.umich.edudef p_name_decl(t):
2392623SN/A    'name_decl : NAMESPACE ID SEMI'
2402623SN/A    t[0] = t[2]
2412623SN/A
2422623SN/A# 'opt_defs_and_outputs' is a possibly empty sequence of
2432623SN/A# def and/or output statements.
2442623SN/Adef p_opt_defs_and_outputs_0(t):
2452623SN/A    'opt_defs_and_outputs : empty'
2462623SN/A    t[0] = GenCode()
2472623SN/A
2482623SN/Adef p_opt_defs_and_outputs_1(t):
2493169Sstever@eecs.umich.edu    'opt_defs_and_outputs : defs_and_outputs'
2503169Sstever@eecs.umich.edu    t[0] = t[1]
2513170Sstever@eecs.umich.edu
2522623SN/Adef p_defs_and_outputs_0(t):
2532623SN/A    'defs_and_outputs : def_or_output'
2543169Sstever@eecs.umich.edu    t[0] = t[1]
2552623SN/A
2562623SN/Adef p_defs_and_outputs_1(t):
2572623SN/A    'defs_and_outputs : defs_and_outputs def_or_output'
2583169Sstever@eecs.umich.edu    t[0] = t[1] + t[2]
2592623SN/A
2602623SN/A# The list of possible definition/output statements.
2612623SN/Adef p_def_or_output(t):
2623349Sbinkertn@umich.edu    '''def_or_output : def_format
2634022Sstever@eecs.umich.edu                     | def_bitfield
2643169Sstever@eecs.umich.edu                     | def_template
2652623SN/A                     | def_operand_types
2663169Sstever@eecs.umich.edu                     | def_operands
2672623SN/A                     | output_header
2683169Sstever@eecs.umich.edu                     | output_decoder
2692623SN/A                     | output_exec
2702623SN/A                     | global_let'''
2713169Sstever@eecs.umich.edu    t[0] = t[1]
2722623SN/A
2732623SN/A# Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
2744200Ssaidi@eecs.umich.edu# directly to the appropriate output section.
2754200Ssaidi@eecs.umich.edu
2764200Ssaidi@eecs.umich.edu
2774200Ssaidi@eecs.umich.edu# Protect any non-dict-substitution '%'s in a format string
2783658Sktlim@umich.edu# (i.e. those not followed by '(')
2793658Sktlim@umich.edudef protect_non_subst_percents(s):
2802623SN/A    return re.sub(r'%(?!\()', '%%', s)
2812623SN/A
2822623SN/A# Massage output block by substituting in template definitions and bit
2832623SN/A# operators.  We handle '%'s embedded in the string that don't
2842623SN/A# indicate template substitutions (or CPU-specific symbols, which get
2852623SN/A# handled in GenCode) by doubling them first so that the format
2862623SN/A# operation will reduce them back to single '%'s.
2872623SN/Adef process_output(s):
2882623SN/A    s = protect_non_subst_percents(s)
2894040Ssaidi@eecs.umich.edu    # protects cpu-specific symbols too
2904040Ssaidi@eecs.umich.edu    s = protect_cpu_symbols(s)
2914040Ssaidi@eecs.umich.edu    return substBitOps(s % templateMap)
2924040Ssaidi@eecs.umich.edu
2934115Ssaidi@eecs.umich.edudef p_output_header(t):
2944115Ssaidi@eecs.umich.edu    'output_header : OUTPUT HEADER CODELIT SEMI'
2954115Ssaidi@eecs.umich.edu    t[0] = GenCode(header_output = process_output(t[3]))
2964115Ssaidi@eecs.umich.edu
2972623SN/Adef p_output_decoder(t):
2982623SN/A    'output_decoder : OUTPUT DECODER CODELIT SEMI'
2992623SN/A    t[0] = GenCode(decoder_output = process_output(t[3]))
3002623SN/A
3012623SN/Adef p_output_exec(t):
3022623SN/A    'output_exec : OUTPUT EXEC CODELIT SEMI'
3032623SN/A    t[0] = GenCode(exec_output = process_output(t[3]))
3042623SN/A
3052623SN/A# global let blocks 'let {{...}}' (Python code blocks) are executed
3062623SN/A# directly when seen.  Note that these execute in a special variable
3072623SN/A# context 'exportContext' to prevent the code from polluting this
3082623SN/A# script's namespace.
3092623SN/Adef p_global_let(t):
3102623SN/A    'global_let : LET CODELIT SEMI'
3112623SN/A    updateExportContext()
3122623SN/A    try:
3132623SN/A        exec fixPythonIndentation(t[2]) in exportContext
3142623SN/A    except Exception, exc:
3152623SN/A        error(t.lineno(1),
3162623SN/A              'error: %s in global let block "%s".' % (exc, t[2]))
3172623SN/A    t[0] = GenCode() # contributes nothing to the output C++ file
3182623SN/A
3192623SN/A# Define the mapping from operand type extensions to C++ types and bit
3202623SN/A# widths (stored in operandTypeMap).
3212623SN/Adef p_def_operand_types(t):
3222623SN/A    'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
3232623SN/A    try:
3242623SN/A        userDict = eval('{' + t[3] + '}')
3252623SN/A    except Exception, exc:
3262623SN/A        error(t.lineno(1),
3272623SN/A              'error: %s in def operand_types block "%s".' % (exc, t[3]))
3282623SN/A    buildOperandTypeMap(userDict, t.lineno(1))
3292623SN/A    t[0] = GenCode() # contributes nothing to the output C++ file
3302623SN/A
3312623SN/A# Define the mapping from operand names to operand classes and other
3322623SN/A# traits.  Stored in operandNameMap.
3332623SN/Adef p_def_operands(t):
3342623SN/A    'def_operands : DEF OPERANDS CODELIT SEMI'
3352623SN/A    if not globals().has_key('operandTypeMap'):
3362623SN/A        error(t.lineno(1),
3372623SN/A              'error: operand types must be defined before operands')
3382623SN/A    try:
3392623SN/A        userDict = eval('{' + t[3] + '}')
3403169Sstever@eecs.umich.edu    except Exception, exc:
3413169Sstever@eecs.umich.edu        error(t.lineno(1),
3423170Sstever@eecs.umich.edu              'error: %s in def operands block "%s".' % (exc, t[3]))
3432623SN/A    buildOperandNameMap(userDict, t.lineno(1))
3444040Ssaidi@eecs.umich.edu    t[0] = GenCode() # contributes nothing to the output C++ file
3454040Ssaidi@eecs.umich.edu
3464040Ssaidi@eecs.umich.edu# A bitfield definition looks like:
3474040Ssaidi@eecs.umich.edu# 'def [signed] bitfield <ID> [<first>:<last>]'
3482623SN/A# This generates a preprocessor macro in the output file.
3493169Sstever@eecs.umich.edudef p_def_bitfield_0(t):
3503169Sstever@eecs.umich.edu    'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
3512623SN/A    expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
3522623SN/A    if (t[2] == 'signed'):
3533169Sstever@eecs.umich.edu        expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
3544040Ssaidi@eecs.umich.edu    hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
3554040Ssaidi@eecs.umich.edu    t[0] = GenCode(header_output = hash_define)
3564040Ssaidi@eecs.umich.edu
3574040Ssaidi@eecs.umich.edu# alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
3583169Sstever@eecs.umich.edudef p_def_bitfield_1(t):
3593169Sstever@eecs.umich.edu    'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
3602623SN/A    expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
3613170Sstever@eecs.umich.edu    if (t[2] == 'signed'):
3623170Sstever@eecs.umich.edu        expr = 'sext<%d>(%s)' % (1, expr)
3633170Sstever@eecs.umich.edu    hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
3643170Sstever@eecs.umich.edu    t[0] = GenCode(header_output = hash_define)
3653170Sstever@eecs.umich.edu
3664040Ssaidi@eecs.umich.edudef p_opt_signed_0(t):
3674040Ssaidi@eecs.umich.edu    'opt_signed : SIGNED'
3684040Ssaidi@eecs.umich.edu    t[0] = t[1]
3694040Ssaidi@eecs.umich.edu
3703170Sstever@eecs.umich.edudef p_opt_signed_1(t):
3713170Sstever@eecs.umich.edu    'opt_signed : empty'
3723170Sstever@eecs.umich.edu    t[0] = ''
3733170Sstever@eecs.umich.edu
3743170Sstever@eecs.umich.edu# Global map variable to hold templates
3753170Sstever@eecs.umich.edutemplateMap = {}
3763170Sstever@eecs.umich.edu
3773170Sstever@eecs.umich.edudef p_def_template(t):
3783170Sstever@eecs.umich.edu    'def_template : DEF TEMPLATE ID CODELIT SEMI'
3792623SN/A    templateMap[t[3]] = Template(t[4])
3804200Ssaidi@eecs.umich.edu    t[0] = GenCode()
3814200Ssaidi@eecs.umich.edu
3824200Ssaidi@eecs.umich.edu# An instruction format definition looks like
3833658Sktlim@umich.edu# "def format <fmt>(<params>) {{...}};"
3843658Sktlim@umich.edudef p_def_format(t):
3852623SN/A    'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
3862623SN/A    (id, params, code) = (t[3], t[5], t[7])
3872623SN/A    defFormat(id, params, code, t.lineno(1))
3882623SN/A    t[0] = GenCode()
3892623SN/A
3902623SN/A# The formal parameter list for an instruction format is a possibly
3912623SN/A# empty list of comma-separated parameters.  Positional (standard,
3922623SN/A# non-keyword) parameters must come first, followed by keyword
3932623SN/A# parameters, followed by a '*foo' parameter that gets excess
3942623SN/A# positional arguments (as in Python).  Each of these three parameter
3952623SN/A# categories is optional.
3962623SN/A#
3974224Sgblack@eecs.umich.edu# Note that we do not support the '**foo' parameter for collecting
3984224Sgblack@eecs.umich.edu# otherwise undefined keyword args.  Otherwise the parameter list is
3994224Sgblack@eecs.umich.edu# (I believe) identical to what is supported in Python.
4004224Sgblack@eecs.umich.edu#
4014224Sgblack@eecs.umich.edu# The param list generates a tuple, where the first element is a list of
4024224Sgblack@eecs.umich.edu# the positional params and the second element is a dict containing the
4034224Sgblack@eecs.umich.edu# keyword params.
4044224Sgblack@eecs.umich.edudef p_param_list_0(t):
4054224Sgblack@eecs.umich.edu    'param_list : positional_param_list COMMA nonpositional_param_list'
4064224Sgblack@eecs.umich.edu    t[0] = t[1] + t[3]
4072623SN/A
4082623SN/Adef p_param_list_1(t):
4092623SN/A    '''param_list : positional_param_list
4102623SN/A                  | nonpositional_param_list'''
4112623SN/A    t[0] = t[1]
4122623SN/A
4132623SN/Adef p_positional_param_list_0(t):
4142623SN/A    'positional_param_list : empty'
4152623SN/A    t[0] = []
4162623SN/A
4172623SN/Adef p_positional_param_list_1(t):
4182623SN/A    'positional_param_list : ID'
4192623SN/A    t[0] = [t[1]]
4202623SN/A
4212623SN/Adef p_positional_param_list_2(t):
4222623SN/A    'positional_param_list : positional_param_list COMMA ID'
4232623SN/A    t[0] = t[1] + [t[3]]
4242623SN/A
4252623SN/Adef p_nonpositional_param_list_0(t):
4262623SN/A    'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
4272623SN/A    t[0] = t[1] + t[3]
4282623SN/A
4292623SN/Adef p_nonpositional_param_list_1(t):
4302623SN/A    '''nonpositional_param_list : keyword_param_list
4312623SN/A                                | excess_args_param'''
4322623SN/A    t[0] = t[1]
4332623SN/A
4342623SN/Adef p_keyword_param_list_0(t):
4352623SN/A    'keyword_param_list : keyword_param'
4362623SN/A    t[0] = [t[1]]
4372623SN/A
4382623SN/Adef p_keyword_param_list_1(t):
4392623SN/A    'keyword_param_list : keyword_param_list COMMA keyword_param'
4402623SN/A    t[0] = t[1] + [t[3]]
4412623SN/A
4422623SN/Adef p_keyword_param(t):
4432623SN/A    'keyword_param : ID EQUALS expr'
4442623SN/A    t[0] = t[1] + ' = ' + t[3].__repr__()
4452623SN/A
4462623SN/Adef p_excess_args_param(t):
4472623SN/A    'excess_args_param : ASTERISK ID'
4482623SN/A    # Just concatenate them: '*ID'.  Wrap in list to be consistent
4492623SN/A    # with positional_param_list and keyword_param_list.
4502623SN/A    t[0] = [t[1] + t[2]]
4512623SN/A
4522623SN/A# End of format definition-related rules.
4533387Sgblack@eecs.umich.edu##############
4543387Sgblack@eecs.umich.edu
4552631SN/A#
4562663Sstever@eecs.umich.edu# A decode block looks like:
4573170Sstever@eecs.umich.edu#	decode <field1> [, <field2>]* [default <inst>] { ... }
4582662Sstever@eecs.umich.edu#
4592623SN/Adef p_decode_block(t):
4604022Sstever@eecs.umich.edu    'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
4612623SN/A    default_defaults = defaultStack.pop()
4622623SN/A    codeObj = t[5]
4632623SN/A    # use the "default defaults" only if there was no explicit
4642630SN/A    # default statement in decode_stmt_list
4652623SN/A    if not codeObj.has_decode_default:
4662623SN/A        codeObj += default_defaults
4672623SN/A    codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
4682623SN/A    t[0] = codeObj
4692623SN/A
4702623SN/A# The opt_default statement serves only to push the "default defaults"
4712623SN/A# onto defaultStack.  This value will be used by nested decode blocks,
4722623SN/A# and used and popped off when the current decode_block is processed
4732623SN/A# (in p_decode_block() above).
4743658Sktlim@umich.edudef p_opt_default_0(t):
4753658Sktlim@umich.edu    'opt_default : empty'
4762644Sstever@eecs.umich.edu    # no default specified: reuse the one currently at the top of the stack
4772644Sstever@eecs.umich.edu    defaultStack.push(defaultStack.top())
4782623SN/A    # no meaningful value returned
4793222Sktlim@umich.edu    t[0] = None
4803222Sktlim@umich.edu
4813222Sktlim@umich.edudef p_opt_default_1(t):
4822623SN/A    'opt_default : DEFAULT inst'
4832623SN/A    # push the new default
4842623SN/A    codeObj = t[2]
4852623SN/A    codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
4862644Sstever@eecs.umich.edu    defaultStack.push(codeObj)
4872623SN/A    # no meaningful value returned
4882623SN/A    t[0] = None
4892623SN/A
4902631SN/Adef p_decode_stmt_list_0(t):
4912631SN/A    'decode_stmt_list : decode_stmt'
4922631SN/A    t[0] = t[1]
4932631SN/A
4942631SN/Adef p_decode_stmt_list_1(t):
4952631SN/A    'decode_stmt_list : decode_stmt decode_stmt_list'
4962623SN/A    if (t[1].has_decode_default and t[2].has_decode_default):
4972623SN/A        error(t.lineno(1), 'Two default cases in decode block')
4982623SN/A    t[0] = t[1] + t[2]
4992623SN/A
5003349Sbinkertn@umich.edu#
5012623SN/A# Decode statement rules
5022623SN/A#
5032623SN/A# There are four types of statements allowed in a decode block:
5042644Sstever@eecs.umich.edu# 1. Format blocks 'format <foo> { ... }'
5052623SN/A# 2. Nested decode blocks
5062798Sktlim@umich.edu# 3. Instruction definitions.
5072623SN/A# 4. C preprocessor directives.
5082644Sstever@eecs.umich.edu
5093222Sktlim@umich.edu
5103222Sktlim@umich.edu# Preprocessor directives found in a decode statement list are passed
5113222Sktlim@umich.edu# through to the output, replicated to all of the output code
5122839Sktlim@umich.edu# streams.  This works well for ifdefs, so we can ifdef out both the
5133658Sktlim@umich.edu# declarations and the decode cases generated by an instruction
5143658Sktlim@umich.edu# definition.  Handling them as part of the grammar makes it easy to
5153658Sktlim@umich.edu# keep them in the right place with respect to the code generated by
5162839Sktlim@umich.edu# the other statements.
5172798Sktlim@umich.edudef p_decode_stmt_cpp(t):
5182798Sktlim@umich.edu    'decode_stmt : CPPDIRECTIVE'
5192798Sktlim@umich.edu    t[0] = GenCode(t[1], t[1], t[1], t[1])
5202623SN/A
5212644Sstever@eecs.umich.edu# A format block 'format <foo> { ... }' sets the default instruction
5222623SN/A# format used to handle instruction definitions inside the block.
5232623SN/A# This format can be overridden by using an explicit format on the
5243170Sstever@eecs.umich.edu# instruction definition or with a nested format block.
5253170Sstever@eecs.umich.edudef p_decode_stmt_format(t):
5263170Sstever@eecs.umich.edu    'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
5273170Sstever@eecs.umich.edu    # The format will be pushed on the stack when 'push_format_id' is
5282644Sstever@eecs.umich.edu    # processed (see below).  Once the parser has recognized the full
5293170Sstever@eecs.umich.edu    # production (though the right brace), we're done with the format,
5303170Sstever@eecs.umich.edu    # so now we can pop it.
5313170Sstever@eecs.umich.edu    formatStack.pop()
5323170Sstever@eecs.umich.edu    t[0] = t[4]
5333170Sstever@eecs.umich.edu
5343170Sstever@eecs.umich.edu# This rule exists so we can set the current format (& push the stack)
5353170Sstever@eecs.umich.edu# when we recognize the format name part of the format block.
5363170Sstever@eecs.umich.edudef p_push_format_id(t):
5373170Sstever@eecs.umich.edu    'push_format_id : ID'
5382644Sstever@eecs.umich.edu    try:
5392644Sstever@eecs.umich.edu        formatStack.push(formatMap[t[1]])
5402644Sstever@eecs.umich.edu        t[0] = ('', '// format %s' % t[1])
5412623SN/A    except KeyError:
5422623SN/A        error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
5432623SN/A
5442644Sstever@eecs.umich.edu# Nested decode block: if the value of the current field matches the
5452644Sstever@eecs.umich.edu# specified constant, do a nested decode on some other field.
5462623SN/Adef p_decode_stmt_decode(t):
5473658Sktlim@umich.edu    'decode_stmt : case_label COLON decode_block'
5483658Sktlim@umich.edu    label = t[1]
5493658Sktlim@umich.edu    codeObj = t[3]
5502623SN/A    # just wrap the decoding code from the block as a case in the
5512623SN/A    # outer switch statement.
5522948Ssaidi@eecs.umich.edu    codeObj.wrap_decode_block('\n%s:\n' % label)
5532948Ssaidi@eecs.umich.edu    codeObj.has_decode_default = (label == 'default')
5542948Ssaidi@eecs.umich.edu    t[0] = codeObj
5552948Ssaidi@eecs.umich.edu
5562948Ssaidi@eecs.umich.edu# Instruction definition (finally!).
5572623SN/Adef p_decode_stmt_inst(t):
5582623SN/A    'decode_stmt : case_label COLON inst SEMI'
5593349Sbinkertn@umich.edu    label = t[1]
5602623SN/A    codeObj = t[3]
5613310Srdreslin@umich.edu    codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
5623310Srdreslin@umich.edu    codeObj.has_decode_default = (label == 'default')
5634584Ssaidi@eecs.umich.edu    t[0] = codeObj
5642948Ssaidi@eecs.umich.edu
5653495Sktlim@umich.edu# The case label is either a list of one or more constants or 'default'
5663310Srdreslin@umich.edudef p_case_label_0(t):
5673310Srdreslin@umich.edu    'case_label : intlit_list'
5683495Sktlim@umich.edu    t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
5692948Ssaidi@eecs.umich.edu
5703310Srdreslin@umich.edudef p_case_label_1(t):
5713310Srdreslin@umich.edu    'case_label : DEFAULT'
5724433Ssaidi@eecs.umich.edu    t[0] = 'default'
5734433Ssaidi@eecs.umich.edu
5744433Ssaidi@eecs.umich.edu#
5754433Ssaidi@eecs.umich.edu# The constant list for a decode case label must be non-empty, but may have
5764433Ssaidi@eecs.umich.edu# one or more comma-separated integer literals in it.
5774433Ssaidi@eecs.umich.edu#
5784433Ssaidi@eecs.umich.edudef p_intlit_list_0(t):
5793310Srdreslin@umich.edu    'intlit_list : INTLIT'
5804433Ssaidi@eecs.umich.edu    t[0] = [t[1]]
5814433Ssaidi@eecs.umich.edu
5822623SN/Adef p_intlit_list_1(t):
5832623SN/A    'intlit_list : intlit_list COMMA INTLIT'
5842657Ssaidi@eecs.umich.edu    t[0] = t[1]
5852623SN/A    t[0].append(t[3])
5862623SN/A
5872623SN/A# Define an instruction using the current instruction format (specified
5882623SN/A# by an enclosing format block).
5892623SN/A# "<mnemonic>(<args>)"
5902623SN/Adef p_inst_0(t):
5913349Sbinkertn@umich.edu    'inst : ID LPAREN arg_list RPAREN'
5922657Ssaidi@eecs.umich.edu    # Pass the ID and arg list to the current format class to deal with.
5932657Ssaidi@eecs.umich.edu    currentFormat = formatStack.top()
5942657Ssaidi@eecs.umich.edu    codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
5952657Ssaidi@eecs.umich.edu    args = ','.join(map(str, t[3]))
5962623SN/A    args = re.sub('(?m)^', '//', args)
5972623SN/A    args = re.sub('^//', '', args)
5982623SN/A    comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
5993349Sbinkertn@umich.edu    codeObj.prepend_all(comment)
6002623SN/A    t[0] = codeObj
6012623SN/A
6022623SN/A# Define an instruction using an explicitly specified format:
6032641Sstever@eecs.umich.edu# "<fmt>::<mnemonic>(<args>)"
6042623SN/Adef p_inst_1(t):
6052623SN/A    'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
6062623SN/A    try:
6073222Sktlim@umich.edu        format = formatMap[t[1]]
6083222Sktlim@umich.edu    except KeyError:
6093184Srdreslin@umich.edu        error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
6102623SN/A    codeObj = format.defineInst(t[3], t[5], t.lineno(1))
6112623SN/A    comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
6123170Sstever@eecs.umich.edu    codeObj.prepend_all(comment)
6133170Sstever@eecs.umich.edu    t[0] = codeObj
6143170Sstever@eecs.umich.edu
6153170Sstever@eecs.umich.edu# The arg list generates a tuple, where the first element is a list of
6162644Sstever@eecs.umich.edu# the positional args and the second element is a dict containing the
6172644Sstever@eecs.umich.edu# keyword args.
6182644Sstever@eecs.umich.edudef p_arg_list_0(t):
6193184Srdreslin@umich.edu    'arg_list : positional_arg_list COMMA keyword_arg_list'
6203227Sktlim@umich.edu    t[0] = ( t[1], t[3] )
6213201Shsul@eecs.umich.edu
6223201Shsul@eecs.umich.edudef p_arg_list_1(t):
6233201Shsul@eecs.umich.edu    'arg_list : positional_arg_list'
6243201Shsul@eecs.umich.edu    t[0] = ( t[1], {} )
6253201Shsul@eecs.umich.edu
6263201Shsul@eecs.umich.edudef p_arg_list_2(t):
6273201Shsul@eecs.umich.edu    'arg_list : keyword_arg_list'
6282644Sstever@eecs.umich.edu    t[0] = ( [], t[1] )
6292623SN/A
6302623SN/Adef p_positional_arg_list_0(t):
6312623SN/A    'positional_arg_list : empty'
6322798Sktlim@umich.edu    t[0] = []
6332839Sktlim@umich.edu
6342798Sktlim@umich.edudef p_positional_arg_list_1(t):
6352839Sktlim@umich.edu    'positional_arg_list : expr'
6362901Ssaidi@eecs.umich.edu    t[0] = [t[1]]
6372839Sktlim@umich.edu
6382798Sktlim@umich.edudef p_positional_arg_list_2(t):
6392623SN/A    'positional_arg_list : positional_arg_list COMMA expr'
6404192Sktlim@umich.edu    t[0] = t[1] + [t[3]]
6414192Sktlim@umich.edu
6424192Sktlim@umich.edudef p_keyword_arg_list_0(t):
6434192Sktlim@umich.edu    'keyword_arg_list : keyword_arg'
6444192Sktlim@umich.edu    t[0] = t[1]
6454192Sktlim@umich.edu
6464192Sktlim@umich.edudef p_keyword_arg_list_1(t):
6474192Sktlim@umich.edu    'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
6484192Sktlim@umich.edu    t[0] = t[1]
6494192Sktlim@umich.edu    t[0].update(t[3])
6504192Sktlim@umich.edu
6514192Sktlim@umich.edudef p_keyword_arg(t):
6522623SN/A    'keyword_arg : ID EQUALS expr'
6533349Sbinkertn@umich.edu    t[0] = { t[1] : t[3] }
6542623SN/A
6553310Srdreslin@umich.edu#
6563310Srdreslin@umich.edu# Basic expressions.  These constitute the argument values of
6574584Ssaidi@eecs.umich.edu# "function calls" (i.e. instruction definitions in the decode block)
6582948Ssaidi@eecs.umich.edu# and default values for formal parameters of format functions.
6593495Sktlim@umich.edu#
6603310Srdreslin@umich.edu# Right now, these are either strings, integers, or (recursively)
6613310Srdreslin@umich.edu# lists of exprs (using Python square-bracket list syntax).  Note that
6623495Sktlim@umich.edu# bare identifiers are trated as string constants here (since there
6632948Ssaidi@eecs.umich.edu# isn't really a variable namespace to refer to).
6643310Srdreslin@umich.edu#
6653310Srdreslin@umich.edudef p_expr_0(t):
6664433Ssaidi@eecs.umich.edu    '''expr : ID
6674433Ssaidi@eecs.umich.edu            | INTLIT
6684433Ssaidi@eecs.umich.edu            | STRLIT
6694433Ssaidi@eecs.umich.edu            | CODELIT'''
6704433Ssaidi@eecs.umich.edu    t[0] = t[1]
6714433Ssaidi@eecs.umich.edu
6724433Ssaidi@eecs.umich.edudef p_expr_1(t):
6733310Srdreslin@umich.edu    '''expr : LBRACKET list_expr RBRACKET'''
6744433Ssaidi@eecs.umich.edu    t[0] = t[2]
6754433Ssaidi@eecs.umich.edu
6762948Ssaidi@eecs.umich.edudef p_list_expr_0(t):
6772948Ssaidi@eecs.umich.edu    'list_expr : expr'
6782948Ssaidi@eecs.umich.edu    t[0] = [t[1]]
6792948Ssaidi@eecs.umich.edu
6802948Ssaidi@eecs.umich.edudef p_list_expr_1(t):
6812630SN/A    'list_expr : list_expr COMMA expr'
6822623SN/A    t[0] = t[1] + [t[3]]
6832623SN/A
6842657Ssaidi@eecs.umich.edudef p_list_expr_2(t):
6852623SN/A    'list_expr : empty'
6862623SN/A    t[0] = []
6872623SN/A
6882623SN/A#
6892623SN/A# Empty production... use in other rules for readability.
6902623SN/A#
6913349Sbinkertn@umich.edudef p_empty(t):
6922657Ssaidi@eecs.umich.edu    'empty :'
6932657Ssaidi@eecs.umich.edu    pass
6943170Sstever@eecs.umich.edu
6952657Ssaidi@eecs.umich.edu# Parse error handler.  Note that the argument here is the offending
6962657Ssaidi@eecs.umich.edu# *token*, not a grammar symbol (hence the need to use t.value)
6972623SN/Adef p_error(t):
6982623SN/A    if t:
6992623SN/A        error(t.lineno, "syntax error at '%s'" % t.value)
7002623SN/A    else:
7012623SN/A        error(0, "unknown syntax error", True)
7022623SN/A
7032623SN/A# END OF GRAMMAR RULES
7044762Snate@binkert.org#
7054762Snate@binkert.org# Now build the parser.
7062623SN/Ayacc.yacc()
7072623SN/A
7084762Snate@binkert.org
7092623SN/A#####################################################################
7102623SN/A#
7112623SN/A#                           Support Classes
7122623SN/A#
7132623SN/A#####################################################################
7143119Sktlim@umich.edu
7152623SN/A# Expand template with CPU-specific references into a dictionary with
7162623SN/A# an entry for each CPU model name.  The entry key is the model name
7173661Srdreslin@umich.edu# and the corresponding value is the template with the CPU-specific
7182623SN/A# refs substituted for that model.
7192623SN/Adef expand_cpu_symbols_to_dict(template):
7202901Ssaidi@eecs.umich.edu    # Protect '%'s that don't go with CPU-specific terms
7213170Sstever@eecs.umich.edu    t = re.sub(r'%(?!\(CPU_)', '%%', template)
7222623SN/A    result = {}
7232623SN/A    for cpu in cpu_models:
7242623SN/A        result[cpu.name] = t % cpu.strings
7252623SN/A    return result
7262623SN/A
7273617Sbinkertn@umich.edu# *If* the template has CPU-specific references, return a single
7283617Sbinkertn@umich.edu# string containing a copy of the template for each CPU model with the
7293617Sbinkertn@umich.edu# corresponding values substituted in.  If the template has no
7302623SN/A# CPU-specific references, it is returned unmodified.
7314762Snate@binkert.orgdef expand_cpu_symbols_to_string(template):
7324762Snate@binkert.org    if template.find('%(CPU_') != -1:
7334762Snate@binkert.org        return reduce(lambda x,y: x+y,
7342623SN/A                      expand_cpu_symbols_to_dict(template).values())
7352623SN/A    else:
7362623SN/A        return template
7372623SN/A
7382623SN/A# Protect CPU-specific references by doubling the corresponding '%'s
739# (in preparation for substituting a different set of references into
740# the template).
741def protect_cpu_symbols(template):
742    return re.sub(r'%(?=\(CPU_)', '%%', template)
743
744###############
745# GenCode class
746#
747# The GenCode class encapsulates generated code destined for various
748# output files.  The header_output and decoder_output attributes are
749# strings containing code destined for decoder.hh and decoder.cc
750# respectively.  The decode_block attribute contains code to be
751# incorporated in the decode function itself (that will also end up in
752# decoder.cc).  The exec_output attribute is a dictionary with a key
753# for each CPU model name; the value associated with a particular key
754# is the string of code for that CPU model's exec.cc file.  The
755# has_decode_default attribute is used in the decode block to allow
756# explicit default clauses to override default default clauses.
757
758class GenCode:
759    # Constructor.  At this point we substitute out all CPU-specific
760    # symbols.  For the exec output, these go into the per-model
761    # dictionary.  For all other output types they get collapsed into
762    # a single string.
763    def __init__(self,
764                 header_output = '', decoder_output = '', exec_output = '',
765                 decode_block = '', has_decode_default = False):
766        self.header_output = expand_cpu_symbols_to_string(header_output)
767        self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
768        if isinstance(exec_output, dict):
769            self.exec_output = exec_output
770        elif isinstance(exec_output, str):
771            # If the exec_output arg is a single string, we replicate
772            # it for each of the CPU models, substituting and
773            # %(CPU_foo)s params appropriately.
774            self.exec_output = expand_cpu_symbols_to_dict(exec_output)
775        self.decode_block = expand_cpu_symbols_to_string(decode_block)
776        self.has_decode_default = has_decode_default
777
778    # Override '+' operator: generate a new GenCode object that
779    # concatenates all the individual strings in the operands.
780    def __add__(self, other):
781        exec_output = {}
782        for cpu in cpu_models:
783            n = cpu.name
784            exec_output[n] = self.exec_output[n] + other.exec_output[n]
785        return GenCode(self.header_output + other.header_output,
786                       self.decoder_output + other.decoder_output,
787                       exec_output,
788                       self.decode_block + other.decode_block,
789                       self.has_decode_default or other.has_decode_default)
790
791    # Prepend a string (typically a comment) to all the strings.
792    def prepend_all(self, pre):
793        self.header_output = pre + self.header_output
794        self.decoder_output  = pre + self.decoder_output
795        self.decode_block = pre + self.decode_block
796        for cpu in cpu_models:
797            self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
798
799    # Wrap the decode block in a pair of strings (e.g., 'case foo:'
800    # and 'break;').  Used to build the big nested switch statement.
801    def wrap_decode_block(self, pre, post = ''):
802        self.decode_block = pre + indent(self.decode_block) + post
803
804################
805# Format object.
806#
807# A format object encapsulates an instruction format.  It must provide
808# a defineInst() method that generates the code for an instruction
809# definition.
810
811exportContextSymbols = ('InstObjParams', 'CodeBlock',
812                        'makeList', 're', 'string')
813
814exportContext = {}
815
816def updateExportContext():
817    exportContext.update(exportDict(*exportContextSymbols))
818    exportContext.update(templateMap)
819
820def exportDict(*symNames):
821    return dict([(s, eval(s)) for s in symNames])
822
823
824class Format:
825    def __init__(self, id, params, code):
826        # constructor: just save away arguments
827        self.id = id
828        self.params = params
829        label = 'def format ' + id
830        self.user_code = compile(fixPythonIndentation(code), label, 'exec')
831        param_list = string.join(params, ", ")
832        f = '''def defInst(_code, _context, %s):
833                my_locals = vars().copy()
834                exec _code in _context, my_locals
835                return my_locals\n''' % param_list
836        c = compile(f, label + ' wrapper', 'exec')
837        exec c
838        self.func = defInst
839
840    def defineInst(self, name, args, lineno):
841        context = {}
842        updateExportContext()
843        context.update(exportContext)
844        context.update({ 'name': name, 'Name': string.capitalize(name) })
845        try:
846            vars = self.func(self.user_code, context, *args[0], **args[1])
847        except Exception, exc:
848            error(lineno, 'error defining "%s": %s.' % (name, exc))
849        for k in vars.keys():
850            if k not in ('header_output', 'decoder_output',
851                         'exec_output', 'decode_block'):
852                del vars[k]
853        return GenCode(**vars)
854
855# Special null format to catch an implicit-format instruction
856# definition outside of any format block.
857class NoFormat:
858    def __init__(self):
859        self.defaultInst = ''
860
861    def defineInst(self, name, args, lineno):
862        error(lineno,
863              'instruction definition "%s" with no active format!' % name)
864
865# This dictionary maps format name strings to Format objects.
866formatMap = {}
867
868# Define a new format
869def defFormat(id, params, code, lineno):
870    # make sure we haven't already defined this one
871    if formatMap.get(id, None) != None:
872        error(lineno, 'format %s redefined.' % id)
873    # create new object and store in global map
874    formatMap[id] = Format(id, params, code)
875
876
877##############
878# Stack: a simple stack object.  Used for both formats (formatStack)
879# and default cases (defaultStack).  Simply wraps a list to give more
880# stack-like syntax and enable initialization with an argument list
881# (as opposed to an argument that's a list).
882
883class Stack(list):
884    def __init__(self, *items):
885        list.__init__(self, items)
886
887    def push(self, item):
888        self.append(item);
889
890    def top(self):
891        return self[-1]
892
893# The global format stack.
894formatStack = Stack(NoFormat())
895
896# The global default case stack.
897defaultStack = Stack( None )
898
899# Global stack that tracks current file and line number.
900# Each element is a tuple (filename, lineno) that records the
901# *current* filename and the line number in the *previous* file where
902# it was included.
903fileNameStack = Stack()
904
905###################
906# Utility functions
907
908#
909# Indent every line in string 's' by two spaces
910# (except preprocessor directives).
911# Used to make nested code blocks look pretty.
912#
913def indent(s):
914    return re.sub(r'(?m)^(?!#)', '  ', s)
915
916#
917# Munge a somewhat arbitrarily formatted piece of Python code
918# (e.g. from a format 'let' block) into something whose indentation
919# will get by the Python parser.
920#
921# The two keys here are that Python will give a syntax error if
922# there's any whitespace at the beginning of the first line, and that
923# all lines at the same lexical nesting level must have identical
924# indentation.  Unfortunately the way code literals work, an entire
925# let block tends to have some initial indentation.  Rather than
926# trying to figure out what that is and strip it off, we prepend 'if
927# 1:' to make the let code the nested block inside the if (and have
928# the parser automatically deal with the indentation for us).
929#
930# We don't want to do this if (1) the code block is empty or (2) the
931# first line of the block doesn't have any whitespace at the front.
932
933def fixPythonIndentation(s):
934    # get rid of blank lines first
935    s = re.sub(r'(?m)^\s*\n', '', s);
936    if (s != '' and re.match(r'[ \t]', s[0])):
937        s = 'if 1:\n' + s
938    return s
939
940# Error handler.  Just call exit.  Output formatted to work under
941# Emacs compile-mode.  Optional 'print_traceback' arg, if set to True,
942# prints a Python stack backtrace too (can be handy when trying to
943# debug the parser itself).
944def error(lineno, string, print_traceback = False):
945    spaces = ""
946    for (filename, line) in fileNameStack[0:-1]:
947        print spaces + "In file included from " + filename + ":"
948        spaces += "  "
949    # Print a Python stack backtrace if requested.
950    if (print_traceback):
951        traceback.print_exc()
952    if lineno != 0:
953        line_str = "%d:" % lineno
954    else:
955        line_str = ""
956    sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
957
958
959#####################################################################
960#
961#                      Bitfield Operator Support
962#
963#####################################################################
964
965bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
966
967bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
968bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
969
970def substBitOps(code):
971    # first convert single-bit selectors to two-index form
972    # i.e., <n> --> <n:n>
973    code = bitOp1ArgRE.sub(r'<\1:\1>', code)
974    # simple case: selector applied to ID (name)
975    # i.e., foo<a:b> --> bits(foo, a, b)
976    code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
977    # if selector is applied to expression (ending in ')'),
978    # we need to search backward for matching '('
979    match = bitOpExprRE.search(code)
980    while match:
981        exprEnd = match.start()
982        here = exprEnd - 1
983        nestLevel = 1
984        while nestLevel > 0:
985            if code[here] == '(':
986                nestLevel -= 1
987            elif code[here] == ')':
988                nestLevel += 1
989            here -= 1
990            if here < 0:
991                sys.exit("Didn't find '('!")
992        exprStart = here+1
993        newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
994                                         match.group(1), match.group(2))
995        code = code[:exprStart] + newExpr + code[match.end():]
996        match = bitOpExprRE.search(code)
997    return code
998
999
1000####################
1001# Template objects.
1002#
1003# Template objects are format strings that allow substitution from
1004# the attribute spaces of other objects (e.g. InstObjParams instances).
1005
1006class Template:
1007    def __init__(self, t):
1008        self.template = t
1009
1010    def subst(self, d):
1011        # Start with the template namespace.  Make a copy since we're
1012        # going to modify it.
1013        myDict = templateMap.copy()
1014        # if the argument is a dictionary, we just use it.
1015        if isinstance(d, dict):
1016            myDict.update(d)
1017        # if the argument is an object, we use its attribute map.
1018        elif hasattr(d, '__dict__'):
1019            myDict.update(d.__dict__)
1020        else:
1021            raise TypeError, "Template.subst() arg must be or have dictionary"
1022        # Protect non-Python-dict substitutions (e.g. if there's a printf
1023        # in the templated C++ code)
1024        template = protect_non_subst_percents(self.template)
1025        # CPU-model-specific substitutions are handled later (in GenCode).
1026        template = protect_cpu_symbols(template)
1027        return template % myDict
1028
1029    # Convert to string.  This handles the case when a template with a
1030    # CPU-specific term gets interpolated into another template or into
1031    # an output block.
1032    def __str__(self):
1033        return expand_cpu_symbols_to_string(self.template)
1034
1035#####################################################################
1036#
1037#                             Code Parser
1038#
1039# The remaining code is the support for automatically extracting
1040# instruction characteristics from pseudocode.
1041#
1042#####################################################################
1043
1044# Force the argument to be a list.  Useful for flags, where a caller
1045# can specify a singleton flag or a list of flags.  Also usful for
1046# converting tuples to lists so they can be modified.
1047def makeList(arg):
1048    if isinstance(arg, list):
1049        return arg
1050    elif isinstance(arg, tuple):
1051        return list(arg)
1052    elif not arg:
1053        return []
1054    else:
1055        return [ arg ]
1056
1057# Generate operandTypeMap from the user's 'def operand_types'
1058# statement.
1059def buildOperandTypeMap(userDict, lineno):
1060    global operandTypeMap
1061    operandTypeMap = {}
1062    for (ext, (desc, size)) in userDict.iteritems():
1063        if desc == 'signed int':
1064            ctype = 'int%d_t' % size
1065            is_signed = 1
1066        elif desc == 'unsigned int':
1067            ctype = 'uint%d_t' % size
1068            is_signed = 0
1069        elif desc == 'float':
1070            is_signed = 1	# shouldn't really matter
1071            if size == 32:
1072                ctype = 'float'
1073            elif size == 64:
1074                ctype = 'double'
1075        if ctype == '':
1076            error(lineno, 'Unrecognized type description "%s" in userDict')
1077        operandTypeMap[ext] = (size, ctype, is_signed)
1078
1079#
1080#
1081#
1082# Base class for operand descriptors.  An instance of this class (or
1083# actually a class derived from this one) represents a specific
1084# operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
1085# derived classes encapsulates the traits of a particular operand type
1086# (e.g., "32-bit integer register").
1087#
1088class Operand(object):
1089    def __init__(self, full_name, ext, is_src, is_dest):
1090        self.full_name = full_name
1091        self.ext = ext
1092        self.is_src = is_src
1093        self.is_dest = is_dest
1094        # The 'effective extension' (eff_ext) is either the actual
1095        # extension, if one was explicitly provided, or the default.
1096        if ext:
1097            self.eff_ext = ext
1098        else:
1099            self.eff_ext = self.dflt_ext
1100
1101        (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
1102
1103        # note that mem_acc_size is undefined for non-mem operands...
1104        # template must be careful not to use it if it doesn't apply.
1105        if self.isMem():
1106            self.mem_acc_size = self.makeAccSize()
1107            self.mem_acc_type = self.ctype
1108
1109    # Finalize additional fields (primarily code fields).  This step
1110    # is done separately since some of these fields may depend on the
1111    # register index enumeration that hasn't been performed yet at the
1112    # time of __init__().
1113    def finalize(self):
1114        self.flags = self.getFlags()
1115        self.constructor = self.makeConstructor()
1116        self.op_decl = self.makeDecl()
1117
1118        if self.is_src:
1119            self.op_rd = self.makeRead()
1120            self.op_src_decl = self.makeDecl()
1121        else:
1122            self.op_rd = ''
1123            self.op_src_decl = ''
1124
1125        if self.is_dest:
1126            self.op_wb = self.makeWrite()
1127            self.op_dest_decl = self.makeDecl()
1128        else:
1129            self.op_wb = ''
1130            self.op_dest_decl = ''
1131
1132    def isMem(self):
1133        return 0
1134
1135    def isReg(self):
1136        return 0
1137
1138    def isFloatReg(self):
1139        return 0
1140
1141    def isIntReg(self):
1142        return 0
1143
1144    def isControlReg(self):
1145        return 0
1146
1147    def getFlags(self):
1148        # note the empty slice '[:]' gives us a copy of self.flags[0]
1149        # instead of a reference to it
1150        my_flags = self.flags[0][:]
1151        if self.is_src:
1152            my_flags += self.flags[1]
1153        if self.is_dest:
1154            my_flags += self.flags[2]
1155        return my_flags
1156
1157    def makeDecl(self):
1158        # Note that initializations in the declarations are solely
1159        # to avoid 'uninitialized variable' errors from the compiler.
1160        return self.ctype + ' ' + self.base_name + ' = 0;\n';
1161
1162class IntRegOperand(Operand):
1163    def isReg(self):
1164        return 1
1165
1166    def isIntReg(self):
1167        return 1
1168
1169    def makeConstructor(self):
1170        c = ''
1171        if self.is_src:
1172            c += '\n\t_srcRegIdx[%d] = %s;' % \
1173                 (self.src_reg_idx, self.reg_spec)
1174        if self.is_dest:
1175            c += '\n\t_destRegIdx[%d] = %s;' % \
1176                 (self.dest_reg_idx, self.reg_spec)
1177        return c
1178
1179    def makeRead(self):
1180        if (self.ctype == 'float' or self.ctype == 'double'):
1181            error(0, 'Attempt to read integer register as FP')
1182        if (self.size == self.dflt_size):
1183            return '%s = xc->readIntReg(this, %d);\n' % \
1184                   (self.base_name, self.src_reg_idx)
1185        elif (self.size > self.dflt_size):
1186            int_reg_val = 'xc->readIntReg(this, %d)' % (self.src_reg_idx)
1187            if (self.is_signed):
1188                int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
1189            return '%s = %s;\n' % (self.base_name, int_reg_val)
1190        else:
1191            return '%s = bits(xc->readIntReg(this, %d), %d, 0);\n' % \
1192                   (self.base_name, self.src_reg_idx, self.size-1)
1193
1194    def makeWrite(self):
1195        if (self.ctype == 'float' or self.ctype == 'double'):
1196            error(0, 'Attempt to write integer register as FP')
1197        if (self.size != self.dflt_size and self.is_signed):
1198            final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1199        else:
1200            final_val = self.base_name
1201        wb = '''
1202        {
1203            %s final_val = %s;
1204            xc->setIntReg(this, %d, final_val);\n
1205            if (traceData) { traceData->setData(final_val); }
1206        }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
1207        return wb
1208
1209class FloatRegOperand(Operand):
1210    def isReg(self):
1211        return 1
1212
1213    def isFloatReg(self):
1214        return 1
1215
1216    def makeConstructor(self):
1217        c = ''
1218        if self.is_src:
1219            c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1220                 (self.src_reg_idx, self.reg_spec)
1221        if self.is_dest:
1222            c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1223                 (self.dest_reg_idx, self.reg_spec)
1224        return c
1225
1226    def makeRead(self):
1227        bit_select = 0
1228        width = 0;
1229        if (self.ctype == 'float'):
1230            func = 'readFloatReg'
1231            width = 32;
1232        elif (self.ctype == 'double'):
1233            func = 'readFloatReg'
1234            width = 64;
1235        else:
1236            func = 'readFloatRegBits'
1237            if (self.ctype == 'uint32_t'):
1238                width = 32;
1239            elif (self.ctype == 'uint64_t'):
1240                width = 64;
1241            if (self.size != self.dflt_size):
1242                bit_select = 1
1243        if width:
1244            base = 'xc->%s(this, %d, %d)' % \
1245                   (func, self.src_reg_idx, width)
1246        else:
1247            base = 'xc->%s(this, %d)' % \
1248                   (func, self.src_reg_idx)
1249        if bit_select:
1250            return '%s = bits(%s, %d, 0);\n' % \
1251                   (self.base_name, base, self.size-1)
1252        else:
1253            return '%s = %s;\n' % (self.base_name, base)
1254
1255    def makeWrite(self):
1256        final_val = self.base_name
1257        final_ctype = self.ctype
1258        widthSpecifier = ''
1259        width = 0
1260        if (self.ctype == 'float'):
1261            width = 32
1262            func = 'setFloatReg'
1263        elif (self.ctype == 'double'):
1264            width = 64
1265            func = 'setFloatReg'
1266        elif (self.ctype == 'uint32_t'):
1267            func = 'setFloatRegBits'
1268            width = 32
1269        elif (self.ctype == 'uint64_t'):
1270            func = 'setFloatRegBits'
1271            width = 64
1272        else:
1273            func = 'setFloatRegBits'
1274            final_ctype = 'uint%d_t' % self.dflt_size
1275            if (self.size != self.dflt_size and self.is_signed):
1276                final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1277        if width:
1278            widthSpecifier = ', %d' % width
1279        wb = '''
1280        {
1281            %s final_val = %s;
1282            xc->%s(this, %d, final_val%s);\n
1283            if (traceData) { traceData->setData(final_val); }
1284        }''' % (final_ctype, final_val, func, self.dest_reg_idx,
1285                widthSpecifier)
1286        return wb
1287
1288class ControlRegOperand(Operand):
1289    def isReg(self):
1290        return 1
1291
1292    def isControlReg(self):
1293        return 1
1294
1295    def makeConstructor(self):
1296        c = ''
1297        if self.is_src:
1298            c += '\n\t_srcRegIdx[%d] = %s;' % \
1299                 (self.src_reg_idx, self.reg_spec)
1300        if self.is_dest:
1301            c += '\n\t_destRegIdx[%d] = %s;' % \
1302                 (self.dest_reg_idx, self.reg_spec)
1303        return c
1304
1305    def makeRead(self):
1306        bit_select = 0
1307        if (self.ctype == 'float' or self.ctype == 'double'):
1308            error(0, 'Attempt to read control register as FP')
1309        base = 'xc->readMiscRegWithEffect(%s)' % self.reg_spec
1310        if self.size == self.dflt_size:
1311            return '%s = %s;\n' % (self.base_name, base)
1312        else:
1313            return '%s = bits(%s, %d, 0);\n' % \
1314                   (self.base_name, base, self.size-1)
1315
1316    def makeWrite(self):
1317        if (self.ctype == 'float' or self.ctype == 'double'):
1318            error(0, 'Attempt to write control register as FP')
1319        wb = 'xc->setMiscRegWithEffect(%s, %s);\n' % (self.reg_spec, self.base_name)
1320        wb += 'if (traceData) { traceData->setData(%s); }' % \
1321              self.base_name
1322        return wb
1323
1324class MemOperand(Operand):
1325    def isMem(self):
1326        return 1
1327
1328    def makeConstructor(self):
1329        return ''
1330
1331    def makeDecl(self):
1332        # Note that initializations in the declarations are solely
1333        # to avoid 'uninitialized variable' errors from the compiler.
1334        # Declare memory data variable.
1335        c = '%s %s = 0;\n' % (self.ctype, self.base_name)
1336        return c
1337
1338    def makeRead(self):
1339        return ''
1340
1341    def makeWrite(self):
1342        return ''
1343
1344    # Return the memory access size *in bits*, suitable for
1345    # forming a type via "uint%d_t".  Divide by 8 if you want bytes.
1346    def makeAccSize(self):
1347        return self.size
1348
1349
1350class NPCOperand(Operand):
1351    def makeConstructor(self):
1352        return ''
1353
1354    def makeRead(self):
1355        return '%s = xc->readNextPC();\n' % self.base_name
1356
1357    def makeWrite(self):
1358        return 'xc->setNextPC(%s);\n' % self.base_name
1359
1360class NNPCOperand(Operand):
1361    def makeConstructor(self):
1362        return ''
1363
1364    def makeRead(self):
1365        return '%s = xc->readNextNPC();\n' % self.base_name
1366
1367    def makeWrite(self):
1368        return 'xc->setNextNPC(%s);\n' % self.base_name
1369
1370def buildOperandNameMap(userDict, lineno):
1371    global operandNameMap
1372    operandNameMap = {}
1373    for (op_name, val) in userDict.iteritems():
1374        (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
1375        (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
1376        # Canonical flag structure is a triple of lists, where each list
1377        # indicates the set of flags implied by this operand always, when
1378        # used as a source, and when used as a dest, respectively.
1379        # For simplicity this can be initialized using a variety of fairly
1380        # obvious shortcuts; we convert these to canonical form here.
1381        if not flags:
1382            # no flags specified (e.g., 'None')
1383            flags = ( [], [], [] )
1384        elif isinstance(flags, str):
1385            # a single flag: assumed to be unconditional
1386            flags = ( [ flags ], [], [] )
1387        elif isinstance(flags, list):
1388            # a list of flags: also assumed to be unconditional
1389            flags = ( flags, [], [] )
1390        elif isinstance(flags, tuple):
1391            # it's a tuple: it should be a triple,
1392            # but each item could be a single string or a list
1393            (uncond_flags, src_flags, dest_flags) = flags
1394            flags = (makeList(uncond_flags),
1395                     makeList(src_flags), makeList(dest_flags))
1396        # Accumulate attributes of new operand class in tmp_dict
1397        tmp_dict = {}
1398        for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
1399                     'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
1400            tmp_dict[attr] = eval(attr)
1401        tmp_dict['base_name'] = op_name
1402        # New class name will be e.g. "IntReg_Ra"
1403        cls_name = base_cls_name + '_' + op_name
1404        # Evaluate string arg to get class object.  Note that the
1405        # actual base class for "IntReg" is "IntRegOperand", i.e. we
1406        # have to append "Operand".
1407        try:
1408            base_cls = eval(base_cls_name + 'Operand')
1409        except NameError:
1410            error(lineno,
1411                  'error: unknown operand base class "%s"' % base_cls_name)
1412        # The following statement creates a new class called
1413        # <cls_name> as a subclass of <base_cls> with the attributes
1414        # in tmp_dict, just as if we evaluated a class declaration.
1415        operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
1416
1417    # Define operand variables.
1418    operands = userDict.keys()
1419
1420    operandsREString = (r'''
1421    (?<![\w\.])	     # neg. lookbehind assertion: prevent partial matches
1422    ((%s)(?:\.(\w+))?)   # match: operand with optional '.' then suffix
1423    (?![\w\.])	     # neg. lookahead assertion: prevent partial matches
1424    '''
1425                        % string.join(operands, '|'))
1426
1427    global operandsRE
1428    operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1429
1430    # Same as operandsREString, but extension is mandatory, and only two
1431    # groups are returned (base and ext, not full name as above).
1432    # Used for subtituting '_' for '.' to make C++ identifiers.
1433    operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1434                               % string.join(operands, '|'))
1435
1436    global operandsWithExtRE
1437    operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1438
1439
1440class OperandList:
1441
1442    # Find all the operands in the given code block.  Returns an operand
1443    # descriptor list (instance of class OperandList).
1444    def __init__(self, code):
1445        self.items = []
1446        self.bases = {}
1447        # delete comments so we don't match on reg specifiers inside
1448        code = commentRE.sub('', code)
1449        # search for operands
1450        next_pos = 0
1451        while 1:
1452            match = operandsRE.search(code, next_pos)
1453            if not match:
1454                # no more matches: we're done
1455                break
1456            op = match.groups()
1457            # regexp groups are operand full name, base, and extension
1458            (op_full, op_base, op_ext) = op
1459            # if the token following the operand is an assignment, this is
1460            # a destination (LHS), else it's a source (RHS)
1461            is_dest = (assignRE.match(code, match.end()) != None)
1462            is_src = not is_dest
1463            # see if we've already seen this one
1464            op_desc = self.find_base(op_base)
1465            if op_desc:
1466                if op_desc.ext != op_ext:
1467                    error(0, 'Inconsistent extensions for operand %s' % \
1468                          op_base)
1469                op_desc.is_src = op_desc.is_src or is_src
1470                op_desc.is_dest = op_desc.is_dest or is_dest
1471            else:
1472                # new operand: create new descriptor
1473                op_desc = operandNameMap[op_base](op_full, op_ext,
1474                                                  is_src, is_dest)
1475                self.append(op_desc)
1476            # start next search after end of current match
1477            next_pos = match.end()
1478        self.sort()
1479        # enumerate source & dest register operands... used in building
1480        # constructor later
1481        self.numSrcRegs = 0
1482        self.numDestRegs = 0
1483        self.numFPDestRegs = 0
1484        self.numIntDestRegs = 0
1485        self.memOperand = None
1486        for op_desc in self.items:
1487            if op_desc.isReg():
1488                if op_desc.is_src:
1489                    op_desc.src_reg_idx = self.numSrcRegs
1490                    self.numSrcRegs += 1
1491                if op_desc.is_dest:
1492                    op_desc.dest_reg_idx = self.numDestRegs
1493                    self.numDestRegs += 1
1494                    if op_desc.isFloatReg():
1495                        self.numFPDestRegs += 1
1496                    elif op_desc.isIntReg():
1497                        self.numIntDestRegs += 1
1498            elif op_desc.isMem():
1499                if self.memOperand:
1500                    error(0, "Code block has more than one memory operand.")
1501                self.memOperand = op_desc
1502        # now make a final pass to finalize op_desc fields that may depend
1503        # on the register enumeration
1504        for op_desc in self.items:
1505            op_desc.finalize()
1506
1507    def __len__(self):
1508        return len(self.items)
1509
1510    def __getitem__(self, index):
1511        return self.items[index]
1512
1513    def append(self, op_desc):
1514        self.items.append(op_desc)
1515        self.bases[op_desc.base_name] = op_desc
1516
1517    def find_base(self, base_name):
1518        # like self.bases[base_name], but returns None if not found
1519        # (rather than raising exception)
1520        return self.bases.get(base_name)
1521
1522    # internal helper function for concat[Some]Attr{Strings|Lists}
1523    def __internalConcatAttrs(self, attr_name, filter, result):
1524        for op_desc in self.items:
1525            if filter(op_desc):
1526                result += getattr(op_desc, attr_name)
1527        return result
1528
1529    # return a single string that is the concatenation of the (string)
1530    # values of the specified attribute for all operands
1531    def concatAttrStrings(self, attr_name):
1532        return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1533
1534    # like concatAttrStrings, but only include the values for the operands
1535    # for which the provided filter function returns true
1536    def concatSomeAttrStrings(self, filter, attr_name):
1537        return self.__internalConcatAttrs(attr_name, filter, '')
1538
1539    # return a single list that is the concatenation of the (list)
1540    # values of the specified attribute for all operands
1541    def concatAttrLists(self, attr_name):
1542        return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1543
1544    # like concatAttrLists, but only include the values for the operands
1545    # for which the provided filter function returns true
1546    def concatSomeAttrLists(self, filter, attr_name):
1547        return self.__internalConcatAttrs(attr_name, filter, [])
1548
1549    def sort(self):
1550        self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1551
1552# Regular expression object to match C++ comments
1553# (used in findOperands())
1554commentRE = re.compile(r'//.*\n')
1555
1556# Regular expression object to match assignment statements
1557# (used in findOperands())
1558assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1559
1560# Munge operand names in code string to make legal C++ variable names.
1561# This means getting rid of the type extension if any.
1562# (Will match base_name attribute of Operand object.)
1563def substMungedOpNames(code):
1564    return operandsWithExtRE.sub(r'\1', code)
1565
1566def joinLists(t):
1567    return map(string.join, t)
1568
1569def makeFlagConstructor(flag_list):
1570    if len(flag_list) == 0:
1571        return ''
1572    # filter out repeated flags
1573    flag_list.sort()
1574    i = 1
1575    while i < len(flag_list):
1576        if flag_list[i] == flag_list[i-1]:
1577            del flag_list[i]
1578        else:
1579            i += 1
1580    pre = '\n\tflags['
1581    post = '] = true;'
1582    code = pre + string.join(flag_list, post + pre) + post
1583    return code
1584
1585class CodeBlock:
1586    def __init__(self, code):
1587        self.orig_code = code
1588        self.operands = OperandList(code)
1589        self.code = substMungedOpNames(substBitOps(code))
1590        self.constructor = self.operands.concatAttrStrings('constructor')
1591        self.constructor += \
1592                 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1593        self.constructor += \
1594                 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1595        self.constructor += \
1596                 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1597        self.constructor += \
1598                 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1599
1600        self.op_decl = self.operands.concatAttrStrings('op_decl')
1601
1602        is_src = lambda op: op.is_src
1603        is_dest = lambda op: op.is_dest
1604
1605        self.op_src_decl = \
1606                  self.operands.concatSomeAttrStrings(is_src, 'op_src_decl')
1607        self.op_dest_decl = \
1608                  self.operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
1609
1610        self.op_rd = self.operands.concatAttrStrings('op_rd')
1611        self.op_wb = self.operands.concatAttrStrings('op_wb')
1612
1613        self.flags = self.operands.concatAttrLists('flags')
1614
1615        if self.operands.memOperand:
1616            self.mem_acc_size = self.operands.memOperand.mem_acc_size
1617            self.mem_acc_type = self.operands.memOperand.mem_acc_type
1618
1619        # Make a basic guess on the operand class (function unit type).
1620        # These are good enough for most cases, and will be overridden
1621        # later otherwise.
1622        if 'IsStore' in self.flags:
1623            self.op_class = 'MemWriteOp'
1624        elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1625            self.op_class = 'MemReadOp'
1626        elif 'IsFloating' in self.flags:
1627            self.op_class = 'FloatAddOp'
1628        else:
1629            self.op_class = 'IntAluOp'
1630
1631# Assume all instruction flags are of the form 'IsFoo'
1632instFlagRE = re.compile(r'Is.*')
1633
1634# OpClass constants end in 'Op' except No_OpClass
1635opClassRE = re.compile(r'.*Op|No_OpClass')
1636
1637class InstObjParams:
1638    def __init__(self, mnem, class_name, base_class = '',
1639                 code = None, opt_args = [], extras = {}):
1640        self.mnemonic = mnem
1641        self.class_name = class_name
1642        self.base_class = base_class
1643        if code:
1644            #If the user already made a CodeBlock, pick the parts from it
1645            if isinstance(code, CodeBlock):
1646                origCode = code.orig_code
1647                codeBlock = code
1648            else:
1649                origCode = code
1650                codeBlock = CodeBlock(code)
1651            stringExtras = {}
1652            otherExtras = {}
1653            for (k, v) in extras.items():
1654                if type(v) == str:
1655                    stringExtras[k] = v
1656                else:
1657                    otherExtras[k] = v
1658            compositeCode = "\n".join([origCode] + stringExtras.values())
1659            # compositeCode = '\n'.join([origCode] +
1660            #	    [pair[1] for pair in extras])
1661            compositeBlock = CodeBlock(compositeCode)
1662            for code_attr in compositeBlock.__dict__.keys():
1663                setattr(self, code_attr, getattr(compositeBlock, code_attr))
1664            for (key, snippet) in stringExtras.items():
1665                setattr(self, key, CodeBlock(snippet).code)
1666            for (key, item) in otherExtras.items():
1667                setattr(self, key, item)
1668            self.code = codeBlock.code
1669            self.orig_code = origCode
1670        else:
1671            self.constructor = ''
1672            self.flags = []
1673        # Optional arguments are assumed to be either StaticInst flags
1674        # or an OpClass value.  To avoid having to import a complete
1675        # list of these values to match against, we do it ad-hoc
1676        # with regexps.
1677        for oa in opt_args:
1678            if instFlagRE.match(oa):
1679                self.flags.append(oa)
1680            elif opClassRE.match(oa):
1681                self.op_class = oa
1682            else:
1683                error(0, 'InstObjParams: optional arg "%s" not recognized '
1684                      'as StaticInst::Flag or OpClass.' % oa)
1685
1686        # add flag initialization to contructor here to include
1687        # any flags added via opt_args
1688        self.constructor += makeFlagConstructor(self.flags)
1689
1690        # if 'IsFloating' is set, add call to the FP enable check
1691        # function (which should be provided by isa_desc via a declare)
1692        if 'IsFloating' in self.flags:
1693            self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1694        else:
1695            self.fp_enable_check = ''
1696
1697#######################
1698#
1699# Output file template
1700#
1701
1702file_template = '''
1703/*
1704 * DO NOT EDIT THIS FILE!!!
1705 *
1706 * It was automatically generated from the ISA description in %(filename)s
1707 */
1708
1709%(includes)s
1710
1711%(global_output)s
1712
1713namespace %(namespace)s {
1714
1715%(namespace_output)s
1716
1717} // namespace %(namespace)s
1718
1719%(decode_function)s
1720'''
1721
1722
1723# Update the output file only if the new contents are different from
1724# the current contents.  Minimizes the files that need to be rebuilt
1725# after minor changes.
1726def update_if_needed(file, contents):
1727    update = False
1728    if os.access(file, os.R_OK):
1729        f = open(file, 'r')
1730        old_contents = f.read()
1731        f.close()
1732        if contents != old_contents:
1733            print 'Updating', file
1734            os.remove(file) # in case it's write-protected
1735            update = True
1736        else:
1737            print 'File', file, 'is unchanged'
1738    else:
1739        print 'Generating', file
1740        update = True
1741    if update:
1742        f = open(file, 'w')
1743        f.write(contents)
1744        f.close()
1745
1746# This regular expression matches '##include' directives
1747includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
1748                       re.MULTILINE)
1749
1750# Function to replace a matched '##include' directive with the
1751# contents of the specified file (with nested ##includes replaced
1752# recursively).  'matchobj' is an re match object (from a match of
1753# includeRE) and 'dirname' is the directory relative to which the file
1754# path should be resolved.
1755def replace_include(matchobj, dirname):
1756    fname = matchobj.group('filename')
1757    full_fname = os.path.normpath(os.path.join(dirname, fname))
1758    contents = '##newfile "%s"\n%s\n##endfile\n' % \
1759               (full_fname, read_and_flatten(full_fname))
1760    return contents
1761
1762# Read a file and recursively flatten nested '##include' files.
1763def read_and_flatten(filename):
1764    current_dir = os.path.dirname(filename)
1765    try:
1766        contents = open(filename).read()
1767    except IOError:
1768        error(0, 'Error including file "%s"' % filename)
1769    fileNameStack.push((filename, 0))
1770    # Find any includes and include them
1771    contents = includeRE.sub(lambda m: replace_include(m, current_dir),
1772                             contents)
1773    fileNameStack.pop()
1774    return contents
1775
1776#
1777# Read in and parse the ISA description.
1778#
1779def parse_isa_desc(isa_desc_file, output_dir):
1780    # Read file and (recursively) all included files into a string.
1781    # PLY requires that the input be in a single string so we have to
1782    # do this up front.
1783    isa_desc = read_and_flatten(isa_desc_file)
1784
1785    # Initialize filename stack with outer file.
1786    fileNameStack.push((isa_desc_file, 0))
1787
1788    # Parse it.
1789    (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
1790
1791    # grab the last three path components of isa_desc_file to put in
1792    # the output
1793    filename = '/'.join(isa_desc_file.split('/')[-3:])
1794
1795    # generate decoder.hh
1796    includes = '#include "base/bitfield.hh" // for bitfield support'
1797    global_output = global_code.header_output
1798    namespace_output = namespace_code.header_output
1799    decode_function = ''
1800    update_if_needed(output_dir + '/decoder.hh', file_template % vars())
1801
1802    # generate decoder.cc
1803    includes = '#include "decoder.hh"'
1804    global_output = global_code.decoder_output
1805    namespace_output = namespace_code.decoder_output
1806    # namespace_output += namespace_code.decode_block
1807    decode_function = namespace_code.decode_block
1808    update_if_needed(output_dir + '/decoder.cc', file_template % vars())
1809
1810    # generate per-cpu exec files
1811    for cpu in cpu_models:
1812        includes = '#include "decoder.hh"\n'
1813        includes += cpu.includes
1814        global_output = global_code.exec_output[cpu.name]
1815        namespace_output = namespace_code.exec_output[cpu.name]
1816        decode_function = ''
1817        update_if_needed(output_dir + '/' + cpu.filename,
1818                          file_template % vars())
1819
1820# global list of CpuModel objects (see cpu_models.py)
1821cpu_models = []
1822
1823# Called as script: get args from command line.
1824# Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
1825if __name__ == '__main__':
1826    execfile(sys.argv[1])  # read in CpuModel definitions
1827    cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
1828    parse_isa_desc(sys.argv[2], sys.argv[3])
1829