isa_parser.py revision 13602:73512cfcca53
1# Copyright (c) 2014, 2016, 2019 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder.  You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement, print_function
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64    return re.sub(r'(?m)^(?!#)', '  ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation.  Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation.  Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84    # get rid of blank lines first
85    s = re.sub(r'(?m)^\s*\n', '', s);
86    if (s != '' and re.match(r'[ \t]', s[0])):
87        s = 'if 1:\n' + s
88    return s
89
90class ISAParserError(Exception):
91    """Exception class for parser errors"""
92    def __init__(self, first, second=None):
93        if second is None:
94            self.lineno = 0
95            self.string = first
96        else:
97            self.lineno = first
98            self.string = second
99
100    def __str__(self):
101        return self.string
102
103def error(*args):
104    raise ISAParserError(*args)
105
106####################
107# Template objects.
108#
109# Template objects are format strings that allow substitution from
110# the attribute spaces of other objects (e.g. InstObjParams instances).
111
112labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
113
114class Template(object):
115    def __init__(self, parser, t):
116        self.parser = parser
117        self.template = t
118
119    def subst(self, d):
120        myDict = None
121
122        # Protect non-Python-dict substitutions (e.g. if there's a printf
123        # in the templated C++ code)
124        template = self.parser.protectNonSubstPercents(self.template)
125
126        # Build a dict ('myDict') to use for the template substitution.
127        # Start with the template namespace.  Make a copy since we're
128        # going to modify it.
129        myDict = self.parser.templateMap.copy()
130
131        if isinstance(d, InstObjParams):
132            # If we're dealing with an InstObjParams object, we need
133            # to be a little more sophisticated.  The instruction-wide
134            # parameters are already formed, but the parameters which
135            # are only function wide still need to be generated.
136            compositeCode = ''
137
138            myDict.update(d.__dict__)
139            # The "operands" and "snippets" attributes of the InstObjParams
140            # objects are for internal use and not substitution.
141            del myDict['operands']
142            del myDict['snippets']
143
144            snippetLabels = [l for l in labelRE.findall(template)
145                             if d.snippets.has_key(l)]
146
147            snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
148                             for s in snippetLabels])
149
150            myDict.update(snippets)
151
152            compositeCode = ' '.join(map(str, snippets.values()))
153
154            # Add in template itself in case it references any
155            # operands explicitly (like Mem)
156            compositeCode += ' ' + template
157
158            operands = SubOperandList(self.parser, compositeCode, d.operands)
159
160            myDict['op_decl'] = operands.concatAttrStrings('op_decl')
161            if operands.readPC or operands.setPC:
162                myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
163
164            # In case there are predicated register reads and write, declare
165            # the variables for register indicies. It is being assumed that
166            # all the operands in the OperandList are also in the
167            # SubOperandList and in the same order. Otherwise, it is
168            # expected that predication would not be used for the operands.
169            if operands.predRead:
170                myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
171            if operands.predWrite:
172                myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
173
174            is_src = lambda op: op.is_src
175            is_dest = lambda op: op.is_dest
176
177            myDict['op_src_decl'] = \
178                      operands.concatSomeAttrStrings(is_src, 'op_src_decl')
179            myDict['op_dest_decl'] = \
180                      operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
181            if operands.readPC:
182                myDict['op_src_decl'] += \
183                    'TheISA::PCState __parserAutoPCState;\n'
184            if operands.setPC:
185                myDict['op_dest_decl'] += \
186                    'TheISA::PCState __parserAutoPCState;\n'
187
188            myDict['op_rd'] = operands.concatAttrStrings('op_rd')
189            if operands.readPC:
190                myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
191                                  myDict['op_rd']
192
193            # Compose the op_wb string. If we're going to write back the
194            # PC state because we changed some of its elements, we'll need to
195            # do that as early as possible. That allows later uncoordinated
196            # modifications to the PC to layer appropriately.
197            reordered = list(operands.items)
198            reordered.reverse()
199            op_wb_str = ''
200            pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
201            for op_desc in reordered:
202                if op_desc.isPCPart() and op_desc.is_dest:
203                    op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
204                    pcWbStr = ''
205                else:
206                    op_wb_str = op_desc.op_wb + op_wb_str
207            myDict['op_wb'] = op_wb_str
208
209        elif isinstance(d, dict):
210            # if the argument is a dictionary, we just use it.
211            myDict.update(d)
212        elif hasattr(d, '__dict__'):
213            # if the argument is an object, we use its attribute map.
214            myDict.update(d.__dict__)
215        else:
216            raise TypeError, "Template.subst() arg must be or have dictionary"
217        return template % myDict
218
219    # Convert to string.
220    def __str__(self):
221        return self.template
222
223################
224# Format object.
225#
226# A format object encapsulates an instruction format.  It must provide
227# a defineInst() method that generates the code for an instruction
228# definition.
229
230class Format(object):
231    def __init__(self, id, params, code):
232        self.id = id
233        self.params = params
234        label = 'def format ' + id
235        self.user_code = compile(fixPythonIndentation(code), label, 'exec')
236        param_list = string.join(params, ", ")
237        f = '''def defInst(_code, _context, %s):
238                my_locals = vars().copy()
239                exec _code in _context, my_locals
240                return my_locals\n''' % param_list
241        c = compile(f, label + ' wrapper', 'exec')
242        exec c
243        self.func = defInst
244
245    def defineInst(self, parser, name, args, lineno):
246        parser.updateExportContext()
247        context = parser.exportContext.copy()
248        if len(name):
249            Name = name[0].upper()
250            if len(name) > 1:
251                Name += name[1:]
252        context.update({ 'name' : name, 'Name' : Name })
253        try:
254            vars = self.func(self.user_code, context, *args[0], **args[1])
255        except Exception, exc:
256            if debug:
257                raise
258            error(lineno, 'error defining "%s": %s.' % (name, exc))
259        for k in vars.keys():
260            if k not in ('header_output', 'decoder_output',
261                         'exec_output', 'decode_block'):
262                del vars[k]
263        return GenCode(parser, **vars)
264
265# Special null format to catch an implicit-format instruction
266# definition outside of any format block.
267class NoFormat(object):
268    def __init__(self):
269        self.defaultInst = ''
270
271    def defineInst(self, parser, name, args, lineno):
272        error(lineno,
273              'instruction definition "%s" with no active format!' % name)
274
275###############
276# GenCode class
277#
278# The GenCode class encapsulates generated code destined for various
279# output files.  The header_output and decoder_output attributes are
280# strings containing code destined for decoder.hh and decoder.cc
281# respectively.  The decode_block attribute contains code to be
282# incorporated in the decode function itself (that will also end up in
283# decoder.cc).  The exec_output attribute  is the string of code for the
284# exec.cc file.  The has_decode_default attribute is used in the decode block
285# to allow explicit default clauses to override default default clauses.
286
287class GenCode(object):
288    # Constructor.
289    def __init__(self, parser,
290                 header_output = '', decoder_output = '', exec_output = '',
291                 decode_block = '', has_decode_default = False):
292        self.parser = parser
293        self.header_output = header_output
294        self.decoder_output = decoder_output
295        self.exec_output = exec_output
296        self.decode_block = decode_block
297        self.has_decode_default = has_decode_default
298
299    # Write these code chunks out to the filesystem.  They will be properly
300    # interwoven by the write_top_level_files().
301    def emit(self):
302        if self.header_output:
303            self.parser.get_file('header').write(self.header_output)
304        if self.decoder_output:
305            self.parser.get_file('decoder').write(self.decoder_output)
306        if self.exec_output:
307            self.parser.get_file('exec').write(self.exec_output)
308        if self.decode_block:
309            self.parser.get_file('decode_block').write(self.decode_block)
310
311    # Override '+' operator: generate a new GenCode object that
312    # concatenates all the individual strings in the operands.
313    def __add__(self, other):
314        return GenCode(self.parser,
315                       self.header_output + other.header_output,
316                       self.decoder_output + other.decoder_output,
317                       self.exec_output + other.exec_output,
318                       self.decode_block + other.decode_block,
319                       self.has_decode_default or other.has_decode_default)
320
321    # Prepend a string (typically a comment) to all the strings.
322    def prepend_all(self, pre):
323        self.header_output = pre + self.header_output
324        self.decoder_output  = pre + self.decoder_output
325        self.decode_block = pre + self.decode_block
326        self.exec_output  = pre + self.exec_output
327
328    # Wrap the decode block in a pair of strings (e.g., 'case foo:'
329    # and 'break;').  Used to build the big nested switch statement.
330    def wrap_decode_block(self, pre, post = ''):
331        self.decode_block = pre + indent(self.decode_block) + post
332
333#####################################################################
334#
335#                      Bitfield Operator Support
336#
337#####################################################################
338
339bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
340
341bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
342bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
343
344def substBitOps(code):
345    # first convert single-bit selectors to two-index form
346    # i.e., <n> --> <n:n>
347    code = bitOp1ArgRE.sub(r'<\1:\1>', code)
348    # simple case: selector applied to ID (name)
349    # i.e., foo<a:b> --> bits(foo, a, b)
350    code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
351    # if selector is applied to expression (ending in ')'),
352    # we need to search backward for matching '('
353    match = bitOpExprRE.search(code)
354    while match:
355        exprEnd = match.start()
356        here = exprEnd - 1
357        nestLevel = 1
358        while nestLevel > 0:
359            if code[here] == '(':
360                nestLevel -= 1
361            elif code[here] == ')':
362                nestLevel += 1
363            here -= 1
364            if here < 0:
365                sys.exit("Didn't find '('!")
366        exprStart = here+1
367        newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
368                                         match.group(1), match.group(2))
369        code = code[:exprStart] + newExpr + code[match.end():]
370        match = bitOpExprRE.search(code)
371    return code
372
373
374#####################################################################
375#
376#                             Code Parser
377#
378# The remaining code is the support for automatically extracting
379# instruction characteristics from pseudocode.
380#
381#####################################################################
382
383# Force the argument to be a list.  Useful for flags, where a caller
384# can specify a singleton flag or a list of flags.  Also usful for
385# converting tuples to lists so they can be modified.
386def makeList(arg):
387    if isinstance(arg, list):
388        return arg
389    elif isinstance(arg, tuple):
390        return list(arg)
391    elif not arg:
392        return []
393    else:
394        return [ arg ]
395
396class Operand(object):
397    '''Base class for operand descriptors.  An instance of this class
398    (or actually a class derived from this one) represents a specific
399    operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
400    derived classes encapsulates the traits of a particular operand
401    type (e.g., "32-bit integer register").'''
402
403    def buildReadCode(self, func = None):
404        subst_dict = {"name": self.base_name,
405                      "func": func,
406                      "reg_idx": self.reg_spec,
407                      "ctype": self.ctype}
408        if hasattr(self, 'src_reg_idx'):
409            subst_dict['op_idx'] = self.src_reg_idx
410        code = self.read_code % subst_dict
411        return '%s = %s;\n' % (self.base_name, code)
412
413    def buildWriteCode(self, func = None):
414        subst_dict = {"name": self.base_name,
415                      "func": func,
416                      "reg_idx": self.reg_spec,
417                      "ctype": self.ctype,
418                      "final_val": self.base_name}
419        if hasattr(self, 'dest_reg_idx'):
420            subst_dict['op_idx'] = self.dest_reg_idx
421        code = self.write_code % subst_dict
422        return '''
423        {
424            %s final_val = %s;
425            %s;
426            if (traceData) { traceData->setData(final_val); }
427        }''' % (self.dflt_ctype, self.base_name, code)
428
429    def __init__(self, parser, full_name, ext, is_src, is_dest):
430        self.full_name = full_name
431        self.ext = ext
432        self.is_src = is_src
433        self.is_dest = is_dest
434        # The 'effective extension' (eff_ext) is either the actual
435        # extension, if one was explicitly provided, or the default.
436        if ext:
437            self.eff_ext = ext
438        elif hasattr(self, 'dflt_ext'):
439            self.eff_ext = self.dflt_ext
440
441        if hasattr(self, 'eff_ext'):
442            self.ctype = parser.operandTypeMap[self.eff_ext]
443
444    # Finalize additional fields (primarily code fields).  This step
445    # is done separately since some of these fields may depend on the
446    # register index enumeration that hasn't been performed yet at the
447    # time of __init__(). The register index enumeration is affected
448    # by predicated register reads/writes. Hence, we forward the flags
449    # that indicate whether or not predication is in use.
450    def finalize(self, predRead, predWrite):
451        self.flags = self.getFlags()
452        self.constructor = self.makeConstructor(predRead, predWrite)
453        self.op_decl = self.makeDecl()
454
455        if self.is_src:
456            self.op_rd = self.makeRead(predRead)
457            self.op_src_decl = self.makeDecl()
458        else:
459            self.op_rd = ''
460            self.op_src_decl = ''
461
462        if self.is_dest:
463            self.op_wb = self.makeWrite(predWrite)
464            self.op_dest_decl = self.makeDecl()
465        else:
466            self.op_wb = ''
467            self.op_dest_decl = ''
468
469    def isMem(self):
470        return 0
471
472    def isReg(self):
473        return 0
474
475    def isFloatReg(self):
476        return 0
477
478    def isIntReg(self):
479        return 0
480
481    def isCCReg(self):
482        return 0
483
484    def isControlReg(self):
485        return 0
486
487    def isVecReg(self):
488        return 0
489
490    def isVecElem(self):
491        return 0
492
493    def isPCState(self):
494        return 0
495
496    def isPCPart(self):
497        return self.isPCState() and self.reg_spec
498
499    def hasReadPred(self):
500        return self.read_predicate != None
501
502    def hasWritePred(self):
503        return self.write_predicate != None
504
505    def getFlags(self):
506        # note the empty slice '[:]' gives us a copy of self.flags[0]
507        # instead of a reference to it
508        my_flags = self.flags[0][:]
509        if self.is_src:
510            my_flags += self.flags[1]
511        if self.is_dest:
512            my_flags += self.flags[2]
513        return my_flags
514
515    def makeDecl(self):
516        # Note that initializations in the declarations are solely
517        # to avoid 'uninitialized variable' errors from the compiler.
518        return self.ctype + ' ' + self.base_name + ' = 0;\n';
519
520
521src_reg_constructor = '\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s);'
522dst_reg_constructor = '\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s);'
523
524
525class IntRegOperand(Operand):
526    reg_class = 'IntRegClass'
527
528    def isReg(self):
529        return 1
530
531    def isIntReg(self):
532        return 1
533
534    def makeConstructor(self, predRead, predWrite):
535        c_src = ''
536        c_dest = ''
537
538        if self.is_src:
539            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
540            if self.hasReadPred():
541                c_src = '\n\tif (%s) {%s\n\t}' % \
542                        (self.read_predicate, c_src)
543
544        if self.is_dest:
545            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
546            c_dest += '\n\t_numIntDestRegs++;'
547            if self.hasWritePred():
548                c_dest = '\n\tif (%s) {%s\n\t}' % \
549                         (self.write_predicate, c_dest)
550
551        return c_src + c_dest
552
553    def makeRead(self, predRead):
554        if (self.ctype == 'float' or self.ctype == 'double'):
555            error('Attempt to read integer register as FP')
556        if self.read_code != None:
557            return self.buildReadCode('readIntRegOperand')
558
559        int_reg_val = ''
560        if predRead:
561            int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
562            if self.hasReadPred():
563                int_reg_val = '(%s) ? %s : 0' % \
564                              (self.read_predicate, int_reg_val)
565        else:
566            int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
567
568        return '%s = %s;\n' % (self.base_name, int_reg_val)
569
570    def makeWrite(self, predWrite):
571        if (self.ctype == 'float' or self.ctype == 'double'):
572            error('Attempt to write integer register as FP')
573        if self.write_code != None:
574            return self.buildWriteCode('setIntRegOperand')
575
576        if predWrite:
577            wp = 'true'
578            if self.hasWritePred():
579                wp = self.write_predicate
580
581            wcond = 'if (%s)' % (wp)
582            windex = '_destIndex++'
583        else:
584            wcond = ''
585            windex = '%d' % self.dest_reg_idx
586
587        wb = '''
588        %s
589        {
590            %s final_val = %s;
591            xc->setIntRegOperand(this, %s, final_val);\n
592            if (traceData) { traceData->setData(final_val); }
593        }''' % (wcond, self.ctype, self.base_name, windex)
594
595        return wb
596
597class FloatRegOperand(Operand):
598    reg_class = 'FloatRegClass'
599
600    def isReg(self):
601        return 1
602
603    def isFloatReg(self):
604        return 1
605
606    def makeConstructor(self, predRead, predWrite):
607        c_src = ''
608        c_dest = ''
609
610        if self.is_src:
611            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
612
613        if self.is_dest:
614            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
615            c_dest += '\n\t_numFPDestRegs++;'
616
617        return c_src + c_dest
618
619    def makeRead(self, predRead):
620        if self.read_code != None:
621            return self.buildReadCode('readFloatRegOperandBits')
622
623        if predRead:
624            rindex = '_sourceIndex++'
625        else:
626            rindex = '%d' % self.src_reg_idx
627
628        code = 'xc->readFloatRegOperandBits(this, %s)' % rindex
629        if self.ctype == 'float':
630            code = 'bitsToFloat32(%s)' % code
631        elif self.ctype == 'double':
632            code = 'bitsToFloat64(%s)' % code
633        return '%s = %s;\n' % (self.base_name, code)
634
635    def makeWrite(self, predWrite):
636        if self.write_code != None:
637            return self.buildWriteCode('setFloatRegOperandBits')
638
639        if predWrite:
640            wp = '_destIndex++'
641        else:
642            wp = '%d' % self.dest_reg_idx
643
644        val = 'final_val'
645        if self.ctype == 'float':
646            val = 'floatToBits32(%s)' % val
647        elif self.ctype == 'double':
648            val = 'floatToBits64(%s)' % val
649
650        wp = 'xc->setFloatRegOperandBits(this, %s, %s);' % (wp, val)
651
652        wb = '''
653        {
654            %s final_val = %s;
655            %s\n
656            if (traceData) { traceData->setData(final_val); }
657        }''' % (self.ctype, self.base_name, wp)
658        return wb
659
660class VecRegOperand(Operand):
661    reg_class = 'VecRegClass'
662
663    def __init__(self, parser, full_name, ext, is_src, is_dest):
664        Operand.__init__(self, parser, full_name, ext, is_src, is_dest)
665        self.elemExt = None
666        self.parser = parser
667
668    def isReg(self):
669        return 1
670
671    def isVecReg(self):
672        return 1
673
674    def makeDeclElem(self, elem_op):
675        (elem_name, elem_ext) = elem_op
676        (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
677        if elem_ext:
678            ext = elem_ext
679        else:
680            ext = dflt_elem_ext
681        ctype = self.parser.operandTypeMap[ext]
682        return '\n\t%s %s = 0;' % (ctype, elem_name)
683
684    def makeDecl(self):
685        if not self.is_dest and self.is_src:
686            c_decl = '\t/* Vars for %s*/' % (self.base_name)
687            if hasattr(self, 'active_elems'):
688                if self.active_elems:
689                    for elem in self.active_elems:
690                        c_decl += self.makeDeclElem(elem)
691            return c_decl + '\t/* End vars for %s */\n' % (self.base_name)
692        else:
693            return ''
694
695    def makeConstructor(self, predRead, predWrite):
696        c_src = ''
697        c_dest = ''
698
699        numAccessNeeded = 1
700
701        if self.is_src:
702            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
703
704        if self.is_dest:
705            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
706            c_dest += '\n\t_numVecDestRegs++;'
707
708        return c_src + c_dest
709
710    # Read destination register to write
711    def makeReadWElem(self, elem_op):
712        (elem_name, elem_ext) = elem_op
713        (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
714        if elem_ext:
715            ext = elem_ext
716        else:
717            ext = dflt_elem_ext
718        ctype = self.parser.operandTypeMap[ext]
719        c_read = '\t\t%s& %s = %s[%s];\n' % \
720                  (ctype, elem_name, self.base_name, elem_spec)
721        return c_read
722
723    def makeReadW(self, predWrite):
724        func = 'getWritableVecRegOperand'
725        if self.read_code != None:
726            return self.buildReadCode(func)
727
728        if predWrite:
729            rindex = '_destIndex++'
730        else:
731            rindex = '%d' % self.dest_reg_idx
732
733        c_readw = '\t\t%s& tmp_d%s = xc->%s(this, %s);\n'\
734                % ('TheISA::VecRegContainer', rindex, func, rindex)
735        if self.elemExt:
736            c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
737                        rindex, self.parser.operandTypeMap[self.elemExt])
738        if self.ext:
739            c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
740                        rindex, self.parser.operandTypeMap[self.ext])
741        if hasattr(self, 'active_elems'):
742            if self.active_elems:
743                for elem in self.active_elems:
744                    c_readw += self.makeReadWElem(elem)
745        return c_readw
746
747    # Normal source operand read
748    def makeReadElem(self, elem_op, name):
749        (elem_name, elem_ext) = elem_op
750        (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
751
752        if elem_ext:
753            ext = elem_ext
754        else:
755            ext = dflt_elem_ext
756        ctype = self.parser.operandTypeMap[ext]
757        c_read = '\t\t%s = %s[%s];\n' % \
758                  (elem_name, name, elem_spec)
759        return c_read
760
761    def makeRead(self, predRead):
762        func = 'readVecRegOperand'
763        if self.read_code != None:
764            return self.buildReadCode(func)
765
766        if predRead:
767            rindex = '_sourceIndex++'
768        else:
769            rindex = '%d' % self.src_reg_idx
770
771        name = self.base_name
772        if self.is_dest and self.is_src:
773            name += '_merger'
774
775        c_read =  '\t\t%s& tmp_s%s = xc->%s(this, %s);\n' \
776                % ('const TheISA::VecRegContainer', rindex, func, rindex)
777        # If the parser has detected that elements are being access, create
778        # the appropriate view
779        if self.elemExt:
780            c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
781                 (name, rindex, self.parser.operandTypeMap[self.elemExt])
782        if self.ext:
783            c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
784                 (name, rindex, self.parser.operandTypeMap[self.ext])
785        if hasattr(self, 'active_elems'):
786            if self.active_elems:
787                for elem in self.active_elems:
788                    c_read += self.makeReadElem(elem, name)
789        return c_read
790
791    def makeWrite(self, predWrite):
792        func = 'setVecRegOperand'
793        if self.write_code != None:
794            return self.buildWriteCode(func)
795
796        wb = '''
797        if (traceData) {
798            warn_once("Vectors not supported yet in tracedata");
799            /*traceData->setData(final_val);*/
800        }
801        '''
802        return wb
803
804    def finalize(self, predRead, predWrite):
805        super(VecRegOperand, self).finalize(predRead, predWrite)
806        if self.is_dest:
807            self.op_rd = self.makeReadW(predWrite) + self.op_rd
808
809class VecElemOperand(Operand):
810    reg_class = 'VecElemClass'
811
812    def isReg(self):
813        return 1
814
815    def isVecElem(self):
816        return 1
817
818    def makeDecl(self):
819        if self.is_dest and not self.is_src:
820            return '\n\t%s %s;' % (self.ctype, self.base_name)
821        else:
822            return ''
823
824    def makeConstructor(self, predRead, predWrite):
825        c_src = ''
826        c_dest = ''
827
828        numAccessNeeded = 1
829
830        if self.is_src:
831            c_src = ('\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s, %s);' %
832                    (self.reg_class, self.reg_spec, self.elem_spec))
833
834        if self.is_dest:
835            c_dest = ('\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s, %s);' %
836                    (self.reg_class, self.reg_spec, self.elem_spec))
837            c_dest += '\n\t_numVecElemDestRegs++;'
838        return c_src + c_dest
839
840    def makeRead(self, predRead):
841        c_read = 'xc->readVecElemOperand(this, %d)' % self.src_reg_idx
842
843        if self.ctype == 'float':
844            c_read = 'bitsToFloat32(%s)' % c_read
845        elif self.ctype == 'double':
846            c_read = 'bitsToFloat64(%s)' % c_read
847
848        return '\n\t%s %s = %s;\n' % (self.ctype, self.base_name, c_read)
849
850    def makeWrite(self, predWrite):
851        if self.ctype == 'float':
852            c_write = 'floatToBits32(%s)' % self.base_name
853        elif self.ctype == 'double':
854            c_write = 'floatToBits64(%s)' % self.base_name
855        else:
856            c_write = self.base_name
857
858        c_write = ('\n\txc->setVecElemOperand(this, %d, %s);' %
859                  (self.dest_reg_idx, c_write))
860
861        return c_write
862
863class CCRegOperand(Operand):
864    reg_class = 'CCRegClass'
865
866    def isReg(self):
867        return 1
868
869    def isCCReg(self):
870        return 1
871
872    def makeConstructor(self, predRead, predWrite):
873        c_src = ''
874        c_dest = ''
875
876        if self.is_src:
877            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
878            if self.hasReadPred():
879                c_src = '\n\tif (%s) {%s\n\t}' % \
880                        (self.read_predicate, c_src)
881
882        if self.is_dest:
883            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
884            c_dest += '\n\t_numCCDestRegs++;'
885            if self.hasWritePred():
886                c_dest = '\n\tif (%s) {%s\n\t}' % \
887                         (self.write_predicate, c_dest)
888
889        return c_src + c_dest
890
891    def makeRead(self, predRead):
892        if (self.ctype == 'float' or self.ctype == 'double'):
893            error('Attempt to read condition-code register as FP')
894        if self.read_code != None:
895            return self.buildReadCode('readCCRegOperand')
896
897        int_reg_val = ''
898        if predRead:
899            int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
900            if self.hasReadPred():
901                int_reg_val = '(%s) ? %s : 0' % \
902                              (self.read_predicate, int_reg_val)
903        else:
904            int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
905
906        return '%s = %s;\n' % (self.base_name, int_reg_val)
907
908    def makeWrite(self, predWrite):
909        if (self.ctype == 'float' or self.ctype == 'double'):
910            error('Attempt to write condition-code register as FP')
911        if self.write_code != None:
912            return self.buildWriteCode('setCCRegOperand')
913
914        if predWrite:
915            wp = 'true'
916            if self.hasWritePred():
917                wp = self.write_predicate
918
919            wcond = 'if (%s)' % (wp)
920            windex = '_destIndex++'
921        else:
922            wcond = ''
923            windex = '%d' % self.dest_reg_idx
924
925        wb = '''
926        %s
927        {
928            %s final_val = %s;
929            xc->setCCRegOperand(this, %s, final_val);\n
930            if (traceData) { traceData->setData(final_val); }
931        }''' % (wcond, self.ctype, self.base_name, windex)
932
933        return wb
934
935class ControlRegOperand(Operand):
936    reg_class = 'MiscRegClass'
937
938    def isReg(self):
939        return 1
940
941    def isControlReg(self):
942        return 1
943
944    def makeConstructor(self, predRead, predWrite):
945        c_src = ''
946        c_dest = ''
947
948        if self.is_src:
949            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
950
951        if self.is_dest:
952            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
953
954        return c_src + c_dest
955
956    def makeRead(self, predRead):
957        bit_select = 0
958        if (self.ctype == 'float' or self.ctype == 'double'):
959            error('Attempt to read control register as FP')
960        if self.read_code != None:
961            return self.buildReadCode('readMiscRegOperand')
962
963        if predRead:
964            rindex = '_sourceIndex++'
965        else:
966            rindex = '%d' % self.src_reg_idx
967
968        return '%s = xc->readMiscRegOperand(this, %s);\n' % \
969            (self.base_name, rindex)
970
971    def makeWrite(self, predWrite):
972        if (self.ctype == 'float' or self.ctype == 'double'):
973            error('Attempt to write control register as FP')
974        if self.write_code != None:
975            return self.buildWriteCode('setMiscRegOperand')
976
977        if predWrite:
978            windex = '_destIndex++'
979        else:
980            windex = '%d' % self.dest_reg_idx
981
982        wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
983             (windex, self.base_name)
984        wb += 'if (traceData) { traceData->setData(%s); }' % \
985              self.base_name
986
987        return wb
988
989class MemOperand(Operand):
990    def isMem(self):
991        return 1
992
993    def makeConstructor(self, predRead, predWrite):
994        return ''
995
996    def makeDecl(self):
997        # Declare memory data variable.
998        return '%s %s;\n' % (self.ctype, self.base_name)
999
1000    def makeRead(self, predRead):
1001        if self.read_code != None:
1002            return self.buildReadCode()
1003        return ''
1004
1005    def makeWrite(self, predWrite):
1006        if self.write_code != None:
1007            return self.buildWriteCode()
1008        return ''
1009
1010class PCStateOperand(Operand):
1011    def makeConstructor(self, predRead, predWrite):
1012        return ''
1013
1014    def makeRead(self, predRead):
1015        if self.reg_spec:
1016            # A component of the PC state.
1017            return '%s = __parserAutoPCState.%s();\n' % \
1018                (self.base_name, self.reg_spec)
1019        else:
1020            # The whole PC state itself.
1021            return '%s = xc->pcState();\n' % self.base_name
1022
1023    def makeWrite(self, predWrite):
1024        if self.reg_spec:
1025            # A component of the PC state.
1026            return '__parserAutoPCState.%s(%s);\n' % \
1027                (self.reg_spec, self.base_name)
1028        else:
1029            # The whole PC state itself.
1030            return 'xc->pcState(%s);\n' % self.base_name
1031
1032    def makeDecl(self):
1033        ctype = 'TheISA::PCState'
1034        if self.isPCPart():
1035            ctype = self.ctype
1036        # Note that initializations in the declarations are solely
1037        # to avoid 'uninitialized variable' errors from the compiler.
1038        return '%s %s = 0;\n' % (ctype, self.base_name)
1039
1040    def isPCState(self):
1041        return 1
1042
1043class OperandList(object):
1044    '''Find all the operands in the given code block.  Returns an operand
1045    descriptor list (instance of class OperandList).'''
1046    def __init__(self, parser, code):
1047        self.items = []
1048        self.bases = {}
1049        # delete strings and comments so we don't match on operands inside
1050        for regEx in (stringRE, commentRE):
1051            code = regEx.sub('', code)
1052        # search for operands
1053        next_pos = 0
1054        while 1:
1055            match = parser.operandsRE.search(code, next_pos)
1056            if not match:
1057                # no more matches: we're done
1058                break
1059            op = match.groups()
1060            # regexp groups are operand full name, base, and extension
1061            (op_full, op_base, op_ext) = op
1062            # If is a elem operand, define or update the corresponding
1063            # vector operand
1064            isElem = False
1065            if op_base in parser.elemToVector:
1066                isElem = True
1067                elem_op = (op_base, op_ext)
1068                op_base = parser.elemToVector[op_base]
1069                op_ext = '' # use the default one
1070            # if the token following the operand is an assignment, this is
1071            # a destination (LHS), else it's a source (RHS)
1072            is_dest = (assignRE.match(code, match.end()) != None)
1073            is_src = not is_dest
1074
1075            # see if we've already seen this one
1076            op_desc = self.find_base(op_base)
1077            if op_desc:
1078                if op_ext and op_ext != '' and op_desc.ext != op_ext:
1079                    error ('Inconsistent extensions for operand %s: %s - %s' \
1080                            % (op_base, op_desc.ext, op_ext))
1081                op_desc.is_src = op_desc.is_src or is_src
1082                op_desc.is_dest = op_desc.is_dest or is_dest
1083                if isElem:
1084                    (elem_base, elem_ext) = elem_op
1085                    found = False
1086                    for ae in op_desc.active_elems:
1087                        (ae_base, ae_ext) = ae
1088                        if ae_base == elem_base:
1089                            if ae_ext != elem_ext:
1090                                error('Inconsistent extensions for elem'
1091                                      ' operand %s' % elem_base)
1092                            else:
1093                                found = True
1094                    if not found:
1095                        op_desc.active_elems.append(elem_op)
1096            else:
1097                # new operand: create new descriptor
1098                op_desc = parser.operandNameMap[op_base](parser,
1099                    op_full, op_ext, is_src, is_dest)
1100                # if operand is a vector elem, add the corresponding vector
1101                # operand if not already done
1102                if isElem:
1103                    op_desc.elemExt = elem_op[1]
1104                    op_desc.active_elems = [elem_op]
1105                self.append(op_desc)
1106            # start next search after end of current match
1107            next_pos = match.end()
1108        self.sort()
1109        # enumerate source & dest register operands... used in building
1110        # constructor later
1111        self.numSrcRegs = 0
1112        self.numDestRegs = 0
1113        self.numFPDestRegs = 0
1114        self.numIntDestRegs = 0
1115        self.numVecDestRegs = 0
1116        self.numCCDestRegs = 0
1117        self.numMiscDestRegs = 0
1118        self.memOperand = None
1119
1120        # Flags to keep track if one or more operands are to be read/written
1121        # conditionally.
1122        self.predRead = False
1123        self.predWrite = False
1124
1125        for op_desc in self.items:
1126            if op_desc.isReg():
1127                if op_desc.is_src:
1128                    op_desc.src_reg_idx = self.numSrcRegs
1129                    self.numSrcRegs += 1
1130                if op_desc.is_dest:
1131                    op_desc.dest_reg_idx = self.numDestRegs
1132                    self.numDestRegs += 1
1133                    if op_desc.isFloatReg():
1134                        self.numFPDestRegs += 1
1135                    elif op_desc.isIntReg():
1136                        self.numIntDestRegs += 1
1137                    elif op_desc.isVecReg():
1138                        self.numVecDestRegs += 1
1139                    elif op_desc.isCCReg():
1140                        self.numCCDestRegs += 1
1141                    elif op_desc.isControlReg():
1142                        self.numMiscDestRegs += 1
1143            elif op_desc.isMem():
1144                if self.memOperand:
1145                    error("Code block has more than one memory operand.")
1146                self.memOperand = op_desc
1147
1148            # Check if this operand has read/write predication. If true, then
1149            # the microop will dynamically index source/dest registers.
1150            self.predRead = self.predRead or op_desc.hasReadPred()
1151            self.predWrite = self.predWrite or op_desc.hasWritePred()
1152
1153        if parser.maxInstSrcRegs < self.numSrcRegs:
1154            parser.maxInstSrcRegs = self.numSrcRegs
1155        if parser.maxInstDestRegs < self.numDestRegs:
1156            parser.maxInstDestRegs = self.numDestRegs
1157        if parser.maxMiscDestRegs < self.numMiscDestRegs:
1158            parser.maxMiscDestRegs = self.numMiscDestRegs
1159
1160        # now make a final pass to finalize op_desc fields that may depend
1161        # on the register enumeration
1162        for op_desc in self.items:
1163            op_desc.finalize(self.predRead, self.predWrite)
1164
1165    def __len__(self):
1166        return len(self.items)
1167
1168    def __getitem__(self, index):
1169        return self.items[index]
1170
1171    def append(self, op_desc):
1172        self.items.append(op_desc)
1173        self.bases[op_desc.base_name] = op_desc
1174
1175    def find_base(self, base_name):
1176        # like self.bases[base_name], but returns None if not found
1177        # (rather than raising exception)
1178        return self.bases.get(base_name)
1179
1180    # internal helper function for concat[Some]Attr{Strings|Lists}
1181    def __internalConcatAttrs(self, attr_name, filter, result):
1182        for op_desc in self.items:
1183            if filter(op_desc):
1184                result += getattr(op_desc, attr_name)
1185        return result
1186
1187    # return a single string that is the concatenation of the (string)
1188    # values of the specified attribute for all operands
1189    def concatAttrStrings(self, attr_name):
1190        return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1191
1192    # like concatAttrStrings, but only include the values for the operands
1193    # for which the provided filter function returns true
1194    def concatSomeAttrStrings(self, filter, attr_name):
1195        return self.__internalConcatAttrs(attr_name, filter, '')
1196
1197    # return a single list that is the concatenation of the (list)
1198    # values of the specified attribute for all operands
1199    def concatAttrLists(self, attr_name):
1200        return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1201
1202    # like concatAttrLists, but only include the values for the operands
1203    # for which the provided filter function returns true
1204    def concatSomeAttrLists(self, filter, attr_name):
1205        return self.__internalConcatAttrs(attr_name, filter, [])
1206
1207    def sort(self):
1208        self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1209
1210class SubOperandList(OperandList):
1211    '''Find all the operands in the given code block.  Returns an operand
1212    descriptor list (instance of class OperandList).'''
1213    def __init__(self, parser, code, master_list):
1214        self.items = []
1215        self.bases = {}
1216        # delete strings and comments so we don't match on operands inside
1217        for regEx in (stringRE, commentRE):
1218            code = regEx.sub('', code)
1219        # search for operands
1220        next_pos = 0
1221        while 1:
1222            match = parser.operandsRE.search(code, next_pos)
1223            if not match:
1224                # no more matches: we're done
1225                break
1226            op = match.groups()
1227            # regexp groups are operand full name, base, and extension
1228            (op_full, op_base, op_ext) = op
1229            # If is a elem operand, define or update the corresponding
1230            # vector operand
1231            if op_base in parser.elemToVector:
1232                elem_op = op_base
1233                op_base = parser.elemToVector[elem_op]
1234            # find this op in the master list
1235            op_desc = master_list.find_base(op_base)
1236            if not op_desc:
1237                error('Found operand %s which is not in the master list!'
1238                      % op_base)
1239            else:
1240                # See if we've already found this operand
1241                op_desc = self.find_base(op_base)
1242                if not op_desc:
1243                    # if not, add a reference to it to this sub list
1244                    self.append(master_list.bases[op_base])
1245
1246            # start next search after end of current match
1247            next_pos = match.end()
1248        self.sort()
1249        self.memOperand = None
1250        # Whether the whole PC needs to be read so parts of it can be accessed
1251        self.readPC = False
1252        # Whether the whole PC needs to be written after parts of it were
1253        # changed
1254        self.setPC = False
1255        # Whether this instruction manipulates the whole PC or parts of it.
1256        # Mixing the two is a bad idea and flagged as an error.
1257        self.pcPart = None
1258
1259        # Flags to keep track if one or more operands are to be read/written
1260        # conditionally.
1261        self.predRead = False
1262        self.predWrite = False
1263
1264        for op_desc in self.items:
1265            if op_desc.isPCPart():
1266                self.readPC = True
1267                if op_desc.is_dest:
1268                    self.setPC = True
1269
1270            if op_desc.isPCState():
1271                if self.pcPart is not None:
1272                    if self.pcPart and not op_desc.isPCPart() or \
1273                            not self.pcPart and op_desc.isPCPart():
1274                        error("Mixed whole and partial PC state operands.")
1275                self.pcPart = op_desc.isPCPart()
1276
1277            if op_desc.isMem():
1278                if self.memOperand:
1279                    error("Code block has more than one memory operand.")
1280                self.memOperand = op_desc
1281
1282            # Check if this operand has read/write predication. If true, then
1283            # the microop will dynamically index source/dest registers.
1284            self.predRead = self.predRead or op_desc.hasReadPred()
1285            self.predWrite = self.predWrite or op_desc.hasWritePred()
1286
1287# Regular expression object to match C++ strings
1288stringRE = re.compile(r'"([^"\\]|\\.)*"')
1289
1290# Regular expression object to match C++ comments
1291# (used in findOperands())
1292commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1293        re.DOTALL | re.MULTILINE)
1294
1295# Regular expression object to match assignment statements (used in
1296# findOperands()).  If the code immediately following the first
1297# appearance of the operand matches this regex, then the operand
1298# appears to be on the LHS of an assignment, and is thus a
1299# destination.  basically we're looking for an '=' that's not '=='.
1300# The heinous tangle before that handles the case where the operand
1301# has an array subscript.
1302assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
1303
1304def makeFlagConstructor(flag_list):
1305    if len(flag_list) == 0:
1306        return ''
1307    # filter out repeated flags
1308    flag_list.sort()
1309    i = 1
1310    while i < len(flag_list):
1311        if flag_list[i] == flag_list[i-1]:
1312            del flag_list[i]
1313        else:
1314            i += 1
1315    pre = '\n\tflags['
1316    post = '] = true;'
1317    code = pre + string.join(flag_list, post + pre) + post
1318    return code
1319
1320# Assume all instruction flags are of the form 'IsFoo'
1321instFlagRE = re.compile(r'Is.*')
1322
1323# OpClass constants end in 'Op' except No_OpClass
1324opClassRE = re.compile(r'.*Op|No_OpClass')
1325
1326class InstObjParams(object):
1327    def __init__(self, parser, mnem, class_name, base_class = '',
1328                 snippets = {}, opt_args = []):
1329        self.mnemonic = mnem
1330        self.class_name = class_name
1331        self.base_class = base_class
1332        if not isinstance(snippets, dict):
1333            snippets = {'code' : snippets}
1334        compositeCode = ' '.join(map(str, snippets.values()))
1335        self.snippets = snippets
1336
1337        self.operands = OperandList(parser, compositeCode)
1338
1339        # The header of the constructor declares the variables to be used
1340        # in the body of the constructor.
1341        header = ''
1342        header += '\n\t_numSrcRegs = 0;'
1343        header += '\n\t_numDestRegs = 0;'
1344        header += '\n\t_numFPDestRegs = 0;'
1345        header += '\n\t_numVecDestRegs = 0;'
1346        header += '\n\t_numVecElemDestRegs = 0;'
1347        header += '\n\t_numIntDestRegs = 0;'
1348        header += '\n\t_numCCDestRegs = 0;'
1349
1350        self.constructor = header + \
1351                           self.operands.concatAttrStrings('constructor')
1352
1353        self.flags = self.operands.concatAttrLists('flags')
1354
1355        self.op_class = None
1356
1357        # Optional arguments are assumed to be either StaticInst flags
1358        # or an OpClass value.  To avoid having to import a complete
1359        # list of these values to match against, we do it ad-hoc
1360        # with regexps.
1361        for oa in opt_args:
1362            if instFlagRE.match(oa):
1363                self.flags.append(oa)
1364            elif opClassRE.match(oa):
1365                self.op_class = oa
1366            else:
1367                error('InstObjParams: optional arg "%s" not recognized '
1368                      'as StaticInst::Flag or OpClass.' % oa)
1369
1370        # Make a basic guess on the operand class if not set.
1371        # These are good enough for most cases.
1372        if not self.op_class:
1373            if 'IsStore' in self.flags:
1374                # The order matters here: 'IsFloating' and 'IsInteger' are
1375                # usually set in FP instructions because of the base
1376                # register
1377                if 'IsFloating' in self.flags:
1378                    self.op_class = 'FloatMemWriteOp'
1379                else:
1380                    self.op_class = 'MemWriteOp'
1381            elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1382                # The order matters here: 'IsFloating' and 'IsInteger' are
1383                # usually set in FP instructions because of the base
1384                # register
1385                if 'IsFloating' in self.flags:
1386                    self.op_class = 'FloatMemReadOp'
1387                else:
1388                    self.op_class = 'MemReadOp'
1389            elif 'IsFloating' in self.flags:
1390                self.op_class = 'FloatAddOp'
1391            elif 'IsVector' in self.flags:
1392                self.op_class = 'SimdAddOp'
1393            else:
1394                self.op_class = 'IntAluOp'
1395
1396        # add flag initialization to contructor here to include
1397        # any flags added via opt_args
1398        self.constructor += makeFlagConstructor(self.flags)
1399
1400        # if 'IsFloating' is set, add call to the FP enable check
1401        # function (which should be provided by isa_desc via a declare)
1402        # if 'IsVector' is set, add call to the Vector enable check
1403        # function (which should be provided by isa_desc via a declare)
1404        if 'IsFloating' in self.flags:
1405            self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1406        elif 'IsVector' in self.flags:
1407            self.fp_enable_check = 'fault = checkVecEnableFault(xc);'
1408        else:
1409            self.fp_enable_check = ''
1410
1411##############
1412# Stack: a simple stack object.  Used for both formats (formatStack)
1413# and default cases (defaultStack).  Simply wraps a list to give more
1414# stack-like syntax and enable initialization with an argument list
1415# (as opposed to an argument that's a list).
1416
1417class Stack(list):
1418    def __init__(self, *items):
1419        list.__init__(self, items)
1420
1421    def push(self, item):
1422        self.append(item);
1423
1424    def top(self):
1425        return self[-1]
1426
1427# Format a file include stack backtrace as a string
1428def backtrace(filename_stack):
1429    fmt = "In file included from %s:"
1430    return "\n".join([fmt % f for f in filename_stack])
1431
1432
1433#######################
1434#
1435# LineTracker: track filenames along with line numbers in PLY lineno fields
1436#     PLY explicitly doesn't do anything with 'lineno' except propagate
1437#     it.  This class lets us tie filenames with the line numbers with a
1438#     minimum of disruption to existing increment code.
1439#
1440
1441class LineTracker(object):
1442    def __init__(self, filename, lineno=1):
1443        self.filename = filename
1444        self.lineno = lineno
1445
1446    # Overload '+=' for increments.  We need to create a new object on
1447    # each update else every token ends up referencing the same
1448    # constantly incrementing instance.
1449    def __iadd__(self, incr):
1450        return LineTracker(self.filename, self.lineno + incr)
1451
1452    def __str__(self):
1453        return "%s:%d" % (self.filename, self.lineno)
1454
1455    # In case there are places where someone really expects a number
1456    def __int__(self):
1457        return self.lineno
1458
1459
1460#######################
1461#
1462# ISA Parser
1463#   parses ISA DSL and emits C++ headers and source
1464#
1465
1466class ISAParser(Grammar):
1467    def __init__(self, output_dir):
1468        super(ISAParser, self).__init__()
1469        self.output_dir = output_dir
1470
1471        self.filename = None # for output file watermarking/scaremongering
1472
1473        # variable to hold templates
1474        self.templateMap = {}
1475
1476        # This dictionary maps format name strings to Format objects.
1477        self.formatMap = {}
1478
1479        # Track open files and, if applicable, how many chunks it has been
1480        # split into so far.
1481        self.files = {}
1482        self.splits = {}
1483
1484        # isa_name / namespace identifier from namespace declaration.
1485        # before the namespace declaration, None.
1486        self.isa_name = None
1487        self.namespace = None
1488
1489        # The format stack.
1490        self.formatStack = Stack(NoFormat())
1491
1492        # The default case stack.
1493        self.defaultStack = Stack(None)
1494
1495        # Stack that tracks current file and line number.  Each
1496        # element is a tuple (filename, lineno) that records the
1497        # *current* filename and the line number in the *previous*
1498        # file where it was included.
1499        self.fileNameStack = Stack()
1500
1501        symbols = ('makeList', 're', 'string')
1502        self.exportContext = dict([(s, eval(s)) for s in symbols])
1503
1504        self.maxInstSrcRegs = 0
1505        self.maxInstDestRegs = 0
1506        self.maxMiscDestRegs = 0
1507
1508    def __getitem__(self, i):    # Allow object (self) to be
1509        return getattr(self, i)  # passed to %-substitutions
1510
1511    # Change the file suffix of a base filename:
1512    #   (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1513    def suffixize(self, s, sec):
1514        extn = re.compile('(\.[^\.]+)$') # isolate extension
1515        if self.namespace:
1516            return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1517        else:
1518            return extn.sub(r'-g\1.inc', s)
1519
1520    # Get the file object for emitting code into the specified section
1521    # (header, decoder, exec, decode_block).
1522    def get_file(self, section):
1523        if section == 'decode_block':
1524            filename = 'decode-method.cc.inc'
1525        else:
1526            if section == 'header':
1527                file = 'decoder.hh'
1528            else:
1529                file = '%s.cc' % section
1530            filename = self.suffixize(file, section)
1531        try:
1532            return self.files[filename]
1533        except KeyError: pass
1534
1535        f = self.open(filename)
1536        self.files[filename] = f
1537
1538        # The splittable files are the ones with many independent
1539        # per-instruction functions - the decoder's instruction constructors
1540        # and the instruction execution (execute()) methods. These both have
1541        # the suffix -ns.cc.inc, meaning they are within the namespace part
1542        # of the ISA, contain object-emitting C++ source, and are included
1543        # into other top-level files. These are the files that need special
1544        # #define's to allow parts of them to be compiled separately. Rather
1545        # than splitting the emissions into separate files, the monolithic
1546        # output of the ISA parser is maintained, but the value (or lack
1547        # thereof) of the __SPLIT definition during C preprocessing will
1548        # select the different chunks. If no 'split' directives are used,
1549        # the cpp emissions have no effect.
1550        if re.search('-ns.cc.inc$', filename):
1551            print('#if !defined(__SPLIT) || (__SPLIT == 1)', file=f)
1552            self.splits[f] = 1
1553        # ensure requisite #include's
1554        elif filename == 'decoder-g.hh.inc':
1555            print('#include "base/bitfield.hh"', file=f)
1556
1557        return f
1558
1559    # Weave together the parts of the different output sections by
1560    # #include'ing them into some very short top-level .cc/.hh files.
1561    # These small files make it much clearer how this tool works, since
1562    # you directly see the chunks emitted as files that are #include'd.
1563    def write_top_level_files(self):
1564        # decoder header - everything depends on this
1565        file = 'decoder.hh'
1566        with self.open(file) as f:
1567            fn = 'decoder-g.hh.inc'
1568            assert(fn in self.files)
1569            f.write('#include "%s"\n' % fn)
1570
1571            fn = 'decoder-ns.hh.inc'
1572            assert(fn in self.files)
1573            f.write('namespace %s {\n#include "%s"\n}\n'
1574                    % (self.namespace, fn))
1575
1576        # decoder method - cannot be split
1577        file = 'decoder.cc'
1578        with self.open(file) as f:
1579            fn = 'base/compiler.hh'
1580            f.write('#include "%s"\n' % fn)
1581
1582            fn = 'decoder-g.cc.inc'
1583            assert(fn in self.files)
1584            f.write('#include "%s"\n' % fn)
1585
1586            fn = 'decoder.hh'
1587            f.write('#include "%s"\n' % fn)
1588
1589            fn = 'decode-method.cc.inc'
1590            # is guaranteed to have been written for parse to complete
1591            f.write('#include "%s"\n' % fn)
1592
1593        extn = re.compile('(\.[^\.]+)$')
1594
1595        # instruction constructors
1596        splits = self.splits[self.get_file('decoder')]
1597        file_ = 'inst-constrs.cc'
1598        for i in range(1, splits+1):
1599            if splits > 1:
1600                file = extn.sub(r'-%d\1' % i, file_)
1601            else:
1602                file = file_
1603            with self.open(file) as f:
1604                fn = 'decoder-g.cc.inc'
1605                assert(fn in self.files)
1606                f.write('#include "%s"\n' % fn)
1607
1608                fn = 'decoder.hh'
1609                f.write('#include "%s"\n' % fn)
1610
1611                fn = 'decoder-ns.cc.inc'
1612                assert(fn in self.files)
1613                print('namespace %s {' % self.namespace, file=f)
1614                if splits > 1:
1615                    print('#define __SPLIT %u' % i, file=f)
1616                print('#include "%s"' % fn, file=f)
1617                print('}', file=f)
1618
1619        # instruction execution
1620        splits = self.splits[self.get_file('exec')]
1621        for i in range(1, splits+1):
1622            file = 'generic_cpu_exec.cc'
1623            if splits > 1:
1624                file = extn.sub(r'_%d\1' % i, file)
1625            with self.open(file) as f:
1626                fn = 'exec-g.cc.inc'
1627                assert(fn in self.files)
1628                f.write('#include "%s"\n' % fn)
1629                f.write('#include "cpu/exec_context.hh"\n')
1630                f.write('#include "decoder.hh"\n')
1631
1632                fn = 'exec-ns.cc.inc'
1633                assert(fn in self.files)
1634                print('namespace %s {' % self.namespace, file=f)
1635                if splits > 1:
1636                    print('#define __SPLIT %u' % i, file=f)
1637                print('#include "%s"' % fn, file=f)
1638                print('}', file=f)
1639
1640        # max_inst_regs.hh
1641        self.update('max_inst_regs.hh',
1642                    '''namespace %(namespace)s {
1643    const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1644    const int MaxInstDestRegs = %(maxInstDestRegs)d;
1645    const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1646
1647    scaremonger_template ='''// DO NOT EDIT
1648// This file was automatically generated from an ISA description:
1649//   %(filename)s
1650
1651''';
1652
1653    #####################################################################
1654    #
1655    #                                Lexer
1656    #
1657    # The PLY lexer module takes two things as input:
1658    # - A list of token names (the string list 'tokens')
1659    # - A regular expression describing a match for each token.  The
1660    #   regexp for token FOO can be provided in two ways:
1661    #   - as a string variable named t_FOO
1662    #   - as the doc string for a function named t_FOO.  In this case,
1663    #     the function is also executed, allowing an action to be
1664    #     associated with each token match.
1665    #
1666    #####################################################################
1667
1668    # Reserved words.  These are listed separately as they are matched
1669    # using the same regexp as generic IDs, but distinguished in the
1670    # t_ID() function.  The PLY documentation suggests this approach.
1671    reserved = (
1672        'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1673        'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1674        'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1675        )
1676
1677    # List of tokens.  The lex module requires this.
1678    tokens = reserved + (
1679        # identifier
1680        'ID',
1681
1682        # integer literal
1683        'INTLIT',
1684
1685        # string literal
1686        'STRLIT',
1687
1688        # code literal
1689        'CODELIT',
1690
1691        # ( ) [ ] { } < > , ; . : :: *
1692        'LPAREN', 'RPAREN',
1693        'LBRACKET', 'RBRACKET',
1694        'LBRACE', 'RBRACE',
1695        'LESS', 'GREATER', 'EQUALS',
1696        'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1697        'ASTERISK',
1698
1699        # C preprocessor directives
1700        'CPPDIRECTIVE'
1701
1702    # The following are matched but never returned. commented out to
1703    # suppress PLY warning
1704        # newfile directive
1705    #    'NEWFILE',
1706
1707        # endfile directive
1708    #    'ENDFILE'
1709    )
1710
1711    # Regular expressions for token matching
1712    t_LPAREN           = r'\('
1713    t_RPAREN           = r'\)'
1714    t_LBRACKET         = r'\['
1715    t_RBRACKET         = r'\]'
1716    t_LBRACE           = r'\{'
1717    t_RBRACE           = r'\}'
1718    t_LESS             = r'\<'
1719    t_GREATER          = r'\>'
1720    t_EQUALS           = r'='
1721    t_COMMA            = r','
1722    t_SEMI             = r';'
1723    t_DOT              = r'\.'
1724    t_COLON            = r':'
1725    t_DBLCOLON         = r'::'
1726    t_ASTERISK         = r'\*'
1727
1728    # Identifiers and reserved words
1729    reserved_map = { }
1730    for r in reserved:
1731        reserved_map[r.lower()] = r
1732
1733    def t_ID(self, t):
1734        r'[A-Za-z_]\w*'
1735        t.type = self.reserved_map.get(t.value, 'ID')
1736        return t
1737
1738    # Integer literal
1739    def t_INTLIT(self, t):
1740        r'-?(0x[\da-fA-F]+)|\d+'
1741        try:
1742            t.value = int(t.value,0)
1743        except ValueError:
1744            error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
1745            t.value = 0
1746        return t
1747
1748    # String literal.  Note that these use only single quotes, and
1749    # can span multiple lines.
1750    def t_STRLIT(self, t):
1751        r"(?m)'([^'])+'"
1752        # strip off quotes
1753        t.value = t.value[1:-1]
1754        t.lexer.lineno += t.value.count('\n')
1755        return t
1756
1757
1758    # "Code literal"... like a string literal, but delimiters are
1759    # '{{' and '}}' so they get formatted nicely under emacs c-mode
1760    def t_CODELIT(self, t):
1761        r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1762        # strip off {{ & }}
1763        t.value = t.value[2:-2]
1764        t.lexer.lineno += t.value.count('\n')
1765        return t
1766
1767    def t_CPPDIRECTIVE(self, t):
1768        r'^\#[^\#].*\n'
1769        t.lexer.lineno += t.value.count('\n')
1770        return t
1771
1772    def t_NEWFILE(self, t):
1773        r'^\#\#newfile\s+"[^"]*"\n'
1774        self.fileNameStack.push(t.lexer.lineno)
1775        t.lexer.lineno = LineTracker(t.value[11:-2])
1776
1777    def t_ENDFILE(self, t):
1778        r'^\#\#endfile\n'
1779        t.lexer.lineno = self.fileNameStack.pop()
1780
1781    #
1782    # The functions t_NEWLINE, t_ignore, and t_error are
1783    # special for the lex module.
1784    #
1785
1786    # Newlines
1787    def t_NEWLINE(self, t):
1788        r'\n+'
1789        t.lexer.lineno += t.value.count('\n')
1790
1791    # Comments
1792    def t_comment(self, t):
1793        r'//.*'
1794
1795    # Completely ignored characters
1796    t_ignore = ' \t\x0c'
1797
1798    # Error handler
1799    def t_error(self, t):
1800        error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
1801        t.skip(1)
1802
1803    #####################################################################
1804    #
1805    #                                Parser
1806    #
1807    # Every function whose name starts with 'p_' defines a grammar
1808    # rule.  The rule is encoded in the function's doc string, while
1809    # the function body provides the action taken when the rule is
1810    # matched.  The argument to each function is a list of the values
1811    # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1812    # symbols on the RHS.  For tokens, the value is copied from the
1813    # t.value attribute provided by the lexer.  For non-terminals, the
1814    # value is assigned by the producing rule; i.e., the job of the
1815    # grammar rule function is to set the value for the non-terminal
1816    # on the LHS (by assigning to t[0]).
1817    #####################################################################
1818
1819    # The LHS of the first grammar rule is used as the start symbol
1820    # (in this case, 'specification').  Note that this rule enforces
1821    # that there will be exactly one namespace declaration, with 0 or
1822    # more global defs/decls before and after it.  The defs & decls
1823    # before the namespace decl will be outside the namespace; those
1824    # after will be inside.  The decoder function is always inside the
1825    # namespace.
1826    def p_specification(self, t):
1827        'specification : opt_defs_and_outputs top_level_decode_block'
1828
1829        for f in self.splits.iterkeys():
1830            f.write('\n#endif\n')
1831
1832        for f in self.files.itervalues(): # close ALL the files;
1833            f.close() # not doing so can cause compilation to fail
1834
1835        self.write_top_level_files()
1836
1837        t[0] = True
1838
1839    # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1840    # output statements. Its productions do the hard work of eventually
1841    # instantiating a GenCode, which are generally emitted (written to disk)
1842    # as soon as possible, except for the decode_block, which has to be
1843    # accumulated into one large function of nested switch/case blocks.
1844    def p_opt_defs_and_outputs_0(self, t):
1845        'opt_defs_and_outputs : empty'
1846
1847    def p_opt_defs_and_outputs_1(self, t):
1848        'opt_defs_and_outputs : defs_and_outputs'
1849
1850    def p_defs_and_outputs_0(self, t):
1851        'defs_and_outputs : def_or_output'
1852
1853    def p_defs_and_outputs_1(self, t):
1854        'defs_and_outputs : defs_and_outputs def_or_output'
1855
1856    # The list of possible definition/output statements.
1857    # They are all processed as they are seen.
1858    def p_def_or_output(self, t):
1859        '''def_or_output : name_decl
1860                         | def_format
1861                         | def_bitfield
1862                         | def_bitfield_struct
1863                         | def_template
1864                         | def_operand_types
1865                         | def_operands
1866                         | output
1867                         | global_let
1868                         | split'''
1869
1870    # Utility function used by both invocations of splitting - explicit
1871    # 'split' keyword and split() function inside "let {{ }};" blocks.
1872    def split(self, sec, write=False):
1873        assert(sec != 'header' and "header cannot be split")
1874
1875        f = self.get_file(sec)
1876        self.splits[f] += 1
1877        s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1878        if write:
1879            f.write(s)
1880        else:
1881            return s
1882
1883    # split output file to reduce compilation time
1884    def p_split(self, t):
1885        'split : SPLIT output_type SEMI'
1886        assert(self.isa_name and "'split' not allowed before namespace decl")
1887
1888        self.split(t[2], True)
1889
1890    def p_output_type(self, t):
1891        '''output_type : DECODER
1892                       | HEADER
1893                       | EXEC'''
1894        t[0] = t[1]
1895
1896    # ISA name declaration looks like "namespace <foo>;"
1897    def p_name_decl(self, t):
1898        'name_decl : NAMESPACE ID SEMI'
1899        assert(self.isa_name == None and "Only 1 namespace decl permitted")
1900        self.isa_name = t[2]
1901        self.namespace = t[2] + 'Inst'
1902
1903    # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1904    # directly to the appropriate output section.
1905
1906    # Massage output block by substituting in template definitions and
1907    # bit operators.  We handle '%'s embedded in the string that don't
1908    # indicate template substitutions by doubling them first so that the
1909    # format operation will reduce them back to single '%'s.
1910    def process_output(self, s):
1911        s = self.protectNonSubstPercents(s)
1912        return substBitOps(s % self.templateMap)
1913
1914    def p_output(self, t):
1915        'output : OUTPUT output_type CODELIT SEMI'
1916        kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1917        GenCode(self, **kwargs).emit()
1918
1919    # global let blocks 'let {{...}}' (Python code blocks) are
1920    # executed directly when seen.  Note that these execute in a
1921    # special variable context 'exportContext' to prevent the code
1922    # from polluting this script's namespace.
1923    def p_global_let(self, t):
1924        'global_let : LET CODELIT SEMI'
1925        def _split(sec):
1926            return self.split(sec)
1927        self.updateExportContext()
1928        self.exportContext["header_output"] = ''
1929        self.exportContext["decoder_output"] = ''
1930        self.exportContext["exec_output"] = ''
1931        self.exportContext["decode_block"] = ''
1932        self.exportContext["split"] = _split
1933        split_setup = '''
1934def wrap(func):
1935    def split(sec):
1936        globals()[sec + '_output'] += func(sec)
1937    return split
1938split = wrap(split)
1939del wrap
1940'''
1941        # This tricky setup (immediately above) allows us to just write
1942        # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1943        # will automatically be added to the exec_output variable. The inner
1944        # Python execution environment doesn't know about the split points,
1945        # so we carefully inject and wrap a closure that can retrieve the
1946        # next split's #define from the parser and add it to the current
1947        # emission-in-progress.
1948        try:
1949            exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1950        except Exception, exc:
1951            traceback.print_exc(file=sys.stdout)
1952            if debug:
1953                raise
1954            error(t.lineno(1), 'In global let block: %s' % exc)
1955        GenCode(self,
1956                header_output=self.exportContext["header_output"],
1957                decoder_output=self.exportContext["decoder_output"],
1958                exec_output=self.exportContext["exec_output"],
1959                decode_block=self.exportContext["decode_block"]).emit()
1960
1961    # Define the mapping from operand type extensions to C++ types and
1962    # bit widths (stored in operandTypeMap).
1963    def p_def_operand_types(self, t):
1964        'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1965        try:
1966            self.operandTypeMap = eval('{' + t[3] + '}')
1967        except Exception, exc:
1968            if debug:
1969                raise
1970            error(t.lineno(1),
1971                  'In def operand_types: %s' % exc)
1972
1973    # Define the mapping from operand names to operand classes and
1974    # other traits.  Stored in operandNameMap.
1975    def p_def_operands(self, t):
1976        'def_operands : DEF OPERANDS CODELIT SEMI'
1977        if not hasattr(self, 'operandTypeMap'):
1978            error(t.lineno(1),
1979                  'error: operand types must be defined before operands')
1980        try:
1981            user_dict = eval('{' + t[3] + '}', self.exportContext)
1982        except Exception, exc:
1983            if debug:
1984                raise
1985            error(t.lineno(1), 'In def operands: %s' % exc)
1986        self.buildOperandNameMap(user_dict, t.lexer.lineno)
1987
1988    # A bitfield definition looks like:
1989    # 'def [signed] bitfield <ID> [<first>:<last>]'
1990    # This generates a preprocessor macro in the output file.
1991    def p_def_bitfield_0(self, t):
1992        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1993        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1994        if (t[2] == 'signed'):
1995            expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1996        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1997        GenCode(self, header_output=hash_define).emit()
1998
1999    # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
2000    def p_def_bitfield_1(self, t):
2001        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
2002        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
2003        if (t[2] == 'signed'):
2004            expr = 'sext<%d>(%s)' % (1, expr)
2005        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
2006        GenCode(self, header_output=hash_define).emit()
2007
2008    # alternate form for structure member: 'def bitfield <ID> <ID>'
2009    def p_def_bitfield_struct(self, t):
2010        'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
2011        if (t[2] != ''):
2012            error(t.lineno(1),
2013                  'error: structure bitfields are always unsigned.')
2014        expr = 'machInst.%s' % t[5]
2015        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
2016        GenCode(self, header_output=hash_define).emit()
2017
2018    def p_id_with_dot_0(self, t):
2019        'id_with_dot : ID'
2020        t[0] = t[1]
2021
2022    def p_id_with_dot_1(self, t):
2023        'id_with_dot : ID DOT id_with_dot'
2024        t[0] = t[1] + t[2] + t[3]
2025
2026    def p_opt_signed_0(self, t):
2027        'opt_signed : SIGNED'
2028        t[0] = t[1]
2029
2030    def p_opt_signed_1(self, t):
2031        'opt_signed : empty'
2032        t[0] = ''
2033
2034    def p_def_template(self, t):
2035        'def_template : DEF TEMPLATE ID CODELIT SEMI'
2036        if t[3] in self.templateMap:
2037            print("warning: template %s already defined" % t[3])
2038        self.templateMap[t[3]] = Template(self, t[4])
2039
2040    # An instruction format definition looks like
2041    # "def format <fmt>(<params>) {{...}};"
2042    def p_def_format(self, t):
2043        'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
2044        (id, params, code) = (t[3], t[5], t[7])
2045        self.defFormat(id, params, code, t.lexer.lineno)
2046
2047    # The formal parameter list for an instruction format is a
2048    # possibly empty list of comma-separated parameters.  Positional
2049    # (standard, non-keyword) parameters must come first, followed by
2050    # keyword parameters, followed by a '*foo' parameter that gets
2051    # excess positional arguments (as in Python).  Each of these three
2052    # parameter categories is optional.
2053    #
2054    # Note that we do not support the '**foo' parameter for collecting
2055    # otherwise undefined keyword args.  Otherwise the parameter list
2056    # is (I believe) identical to what is supported in Python.
2057    #
2058    # The param list generates a tuple, where the first element is a
2059    # list of the positional params and the second element is a dict
2060    # containing the keyword params.
2061    def p_param_list_0(self, t):
2062        'param_list : positional_param_list COMMA nonpositional_param_list'
2063        t[0] = t[1] + t[3]
2064
2065    def p_param_list_1(self, t):
2066        '''param_list : positional_param_list
2067                      | nonpositional_param_list'''
2068        t[0] = t[1]
2069
2070    def p_positional_param_list_0(self, t):
2071        'positional_param_list : empty'
2072        t[0] = []
2073
2074    def p_positional_param_list_1(self, t):
2075        'positional_param_list : ID'
2076        t[0] = [t[1]]
2077
2078    def p_positional_param_list_2(self, t):
2079        'positional_param_list : positional_param_list COMMA ID'
2080        t[0] = t[1] + [t[3]]
2081
2082    def p_nonpositional_param_list_0(self, t):
2083        'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
2084        t[0] = t[1] + t[3]
2085
2086    def p_nonpositional_param_list_1(self, t):
2087        '''nonpositional_param_list : keyword_param_list
2088                                    | excess_args_param'''
2089        t[0] = t[1]
2090
2091    def p_keyword_param_list_0(self, t):
2092        'keyword_param_list : keyword_param'
2093        t[0] = [t[1]]
2094
2095    def p_keyword_param_list_1(self, t):
2096        'keyword_param_list : keyword_param_list COMMA keyword_param'
2097        t[0] = t[1] + [t[3]]
2098
2099    def p_keyword_param(self, t):
2100        'keyword_param : ID EQUALS expr'
2101        t[0] = t[1] + ' = ' + t[3].__repr__()
2102
2103    def p_excess_args_param(self, t):
2104        'excess_args_param : ASTERISK ID'
2105        # Just concatenate them: '*ID'.  Wrap in list to be consistent
2106        # with positional_param_list and keyword_param_list.
2107        t[0] = [t[1] + t[2]]
2108
2109    # End of format definition-related rules.
2110    ##############
2111
2112    #
2113    # A decode block looks like:
2114    #       decode <field1> [, <field2>]* [default <inst>] { ... }
2115    #
2116    def p_top_level_decode_block(self, t):
2117        'top_level_decode_block : decode_block'
2118        codeObj = t[1]
2119        codeObj.wrap_decode_block('''
2120StaticInstPtr
2121%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
2122{
2123    using namespace %(namespace)s;
2124''' % self, '}')
2125
2126        codeObj.emit()
2127
2128    def p_decode_block(self, t):
2129        'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
2130        default_defaults = self.defaultStack.pop()
2131        codeObj = t[5]
2132        # use the "default defaults" only if there was no explicit
2133        # default statement in decode_stmt_list
2134        if not codeObj.has_decode_default:
2135            codeObj += default_defaults
2136        codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
2137        t[0] = codeObj
2138
2139    # The opt_default statement serves only to push the "default
2140    # defaults" onto defaultStack.  This value will be used by nested
2141    # decode blocks, and used and popped off when the current
2142    # decode_block is processed (in p_decode_block() above).
2143    def p_opt_default_0(self, t):
2144        'opt_default : empty'
2145        # no default specified: reuse the one currently at the top of
2146        # the stack
2147        self.defaultStack.push(self.defaultStack.top())
2148        # no meaningful value returned
2149        t[0] = None
2150
2151    def p_opt_default_1(self, t):
2152        'opt_default : DEFAULT inst'
2153        # push the new default
2154        codeObj = t[2]
2155        codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
2156        self.defaultStack.push(codeObj)
2157        # no meaningful value returned
2158        t[0] = None
2159
2160    def p_decode_stmt_list_0(self, t):
2161        'decode_stmt_list : decode_stmt'
2162        t[0] = t[1]
2163
2164    def p_decode_stmt_list_1(self, t):
2165        'decode_stmt_list : decode_stmt decode_stmt_list'
2166        if (t[1].has_decode_default and t[2].has_decode_default):
2167            error(t.lineno(1), 'Two default cases in decode block')
2168        t[0] = t[1] + t[2]
2169
2170    #
2171    # Decode statement rules
2172    #
2173    # There are four types of statements allowed in a decode block:
2174    # 1. Format blocks 'format <foo> { ... }'
2175    # 2. Nested decode blocks
2176    # 3. Instruction definitions.
2177    # 4. C preprocessor directives.
2178
2179
2180    # Preprocessor directives found in a decode statement list are
2181    # passed through to the output, replicated to all of the output
2182    # code streams.  This works well for ifdefs, so we can ifdef out
2183    # both the declarations and the decode cases generated by an
2184    # instruction definition.  Handling them as part of the grammar
2185    # makes it easy to keep them in the right place with respect to
2186    # the code generated by the other statements.
2187    def p_decode_stmt_cpp(self, t):
2188        'decode_stmt : CPPDIRECTIVE'
2189        t[0] = GenCode(self, t[1], t[1], t[1], t[1])
2190
2191    # A format block 'format <foo> { ... }' sets the default
2192    # instruction format used to handle instruction definitions inside
2193    # the block.  This format can be overridden by using an explicit
2194    # format on the instruction definition or with a nested format
2195    # block.
2196    def p_decode_stmt_format(self, t):
2197        'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
2198        # The format will be pushed on the stack when 'push_format_id'
2199        # is processed (see below).  Once the parser has recognized
2200        # the full production (though the right brace), we're done
2201        # with the format, so now we can pop it.
2202        self.formatStack.pop()
2203        t[0] = t[4]
2204
2205    # This rule exists so we can set the current format (& push the
2206    # stack) when we recognize the format name part of the format
2207    # block.
2208    def p_push_format_id(self, t):
2209        'push_format_id : ID'
2210        try:
2211            self.formatStack.push(self.formatMap[t[1]])
2212            t[0] = ('', '// format %s' % t[1])
2213        except KeyError:
2214            error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2215
2216    # Nested decode block: if the value of the current field matches
2217    # the specified constant(s), do a nested decode on some other field.
2218    def p_decode_stmt_decode(self, t):
2219        'decode_stmt : case_list COLON decode_block'
2220        case_list = t[1]
2221        codeObj = t[3]
2222        # just wrap the decoding code from the block as a case in the
2223        # outer switch statement.
2224        codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list),
2225                                  'M5_UNREACHABLE;\n')
2226        codeObj.has_decode_default = (case_list == ['default:'])
2227        t[0] = codeObj
2228
2229    # Instruction definition (finally!).
2230    def p_decode_stmt_inst(self, t):
2231        'decode_stmt : case_list COLON inst SEMI'
2232        case_list = t[1]
2233        codeObj = t[3]
2234        codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2235        codeObj.has_decode_default = (case_list == ['default:'])
2236        t[0] = codeObj
2237
2238    # The constant list for a decode case label must be non-empty, and must
2239    # either be the keyword 'default', or made up of one or more
2240    # comma-separated integer literals or strings which evaluate to
2241    # constants when compiled as C++.
2242    def p_case_list_0(self, t):
2243        'case_list : DEFAULT'
2244        t[0] = ['default:']
2245
2246    def prep_int_lit_case_label(self, lit):
2247        if lit >= 2**32:
2248            return 'case ULL(%#x): ' % lit
2249        else:
2250            return 'case %#x: ' % lit
2251
2252    def prep_str_lit_case_label(self, lit):
2253        return 'case %s: ' % lit
2254
2255    def p_case_list_1(self, t):
2256        'case_list : INTLIT'
2257        t[0] = [self.prep_int_lit_case_label(t[1])]
2258
2259    def p_case_list_2(self, t):
2260        'case_list : STRLIT'
2261        t[0] = [self.prep_str_lit_case_label(t[1])]
2262
2263    def p_case_list_3(self, t):
2264        'case_list : case_list COMMA INTLIT'
2265        t[0] = t[1]
2266        t[0].append(self.prep_int_lit_case_label(t[3]))
2267
2268    def p_case_list_4(self, t):
2269        'case_list : case_list COMMA STRLIT'
2270        t[0] = t[1]
2271        t[0].append(self.prep_str_lit_case_label(t[3]))
2272
2273    # Define an instruction using the current instruction format
2274    # (specified by an enclosing format block).
2275    # "<mnemonic>(<args>)"
2276    def p_inst_0(self, t):
2277        'inst : ID LPAREN arg_list RPAREN'
2278        # Pass the ID and arg list to the current format class to deal with.
2279        currentFormat = self.formatStack.top()
2280        codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2281        args = ','.join(map(str, t[3]))
2282        args = re.sub('(?m)^', '//', args)
2283        args = re.sub('^//', '', args)
2284        comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2285        codeObj.prepend_all(comment)
2286        t[0] = codeObj
2287
2288    # Define an instruction using an explicitly specified format:
2289    # "<fmt>::<mnemonic>(<args>)"
2290    def p_inst_1(self, t):
2291        'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2292        try:
2293            format = self.formatMap[t[1]]
2294        except KeyError:
2295            error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2296
2297        codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2298        comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2299        codeObj.prepend_all(comment)
2300        t[0] = codeObj
2301
2302    # The arg list generates a tuple, where the first element is a
2303    # list of the positional args and the second element is a dict
2304    # containing the keyword args.
2305    def p_arg_list_0(self, t):
2306        'arg_list : positional_arg_list COMMA keyword_arg_list'
2307        t[0] = ( t[1], t[3] )
2308
2309    def p_arg_list_1(self, t):
2310        'arg_list : positional_arg_list'
2311        t[0] = ( t[1], {} )
2312
2313    def p_arg_list_2(self, t):
2314        'arg_list : keyword_arg_list'
2315        t[0] = ( [], t[1] )
2316
2317    def p_positional_arg_list_0(self, t):
2318        'positional_arg_list : empty'
2319        t[0] = []
2320
2321    def p_positional_arg_list_1(self, t):
2322        'positional_arg_list : expr'
2323        t[0] = [t[1]]
2324
2325    def p_positional_arg_list_2(self, t):
2326        'positional_arg_list : positional_arg_list COMMA expr'
2327        t[0] = t[1] + [t[3]]
2328
2329    def p_keyword_arg_list_0(self, t):
2330        'keyword_arg_list : keyword_arg'
2331        t[0] = t[1]
2332
2333    def p_keyword_arg_list_1(self, t):
2334        'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2335        t[0] = t[1]
2336        t[0].update(t[3])
2337
2338    def p_keyword_arg(self, t):
2339        'keyword_arg : ID EQUALS expr'
2340        t[0] = { t[1] : t[3] }
2341
2342    #
2343    # Basic expressions.  These constitute the argument values of
2344    # "function calls" (i.e. instruction definitions in the decode
2345    # block) and default values for formal parameters of format
2346    # functions.
2347    #
2348    # Right now, these are either strings, integers, or (recursively)
2349    # lists of exprs (using Python square-bracket list syntax).  Note
2350    # that bare identifiers are trated as string constants here (since
2351    # there isn't really a variable namespace to refer to).
2352    #
2353    def p_expr_0(self, t):
2354        '''expr : ID
2355                | INTLIT
2356                | STRLIT
2357                | CODELIT'''
2358        t[0] = t[1]
2359
2360    def p_expr_1(self, t):
2361        '''expr : LBRACKET list_expr RBRACKET'''
2362        t[0] = t[2]
2363
2364    def p_list_expr_0(self, t):
2365        'list_expr : expr'
2366        t[0] = [t[1]]
2367
2368    def p_list_expr_1(self, t):
2369        'list_expr : list_expr COMMA expr'
2370        t[0] = t[1] + [t[3]]
2371
2372    def p_list_expr_2(self, t):
2373        'list_expr : empty'
2374        t[0] = []
2375
2376    #
2377    # Empty production... use in other rules for readability.
2378    #
2379    def p_empty(self, t):
2380        'empty :'
2381        pass
2382
2383    # Parse error handler.  Note that the argument here is the
2384    # offending *token*, not a grammar symbol (hence the need to use
2385    # t.value)
2386    def p_error(self, t):
2387        if t:
2388            error(t.lexer.lineno, "syntax error at '%s'" % t.value)
2389        else:
2390            error("unknown syntax error")
2391
2392    # END OF GRAMMAR RULES
2393
2394    def updateExportContext(self):
2395
2396        # create a continuation that allows us to grab the current parser
2397        def wrapInstObjParams(*args):
2398            return InstObjParams(self, *args)
2399        self.exportContext['InstObjParams'] = wrapInstObjParams
2400        self.exportContext.update(self.templateMap)
2401
2402    def defFormat(self, id, params, code, lineno):
2403        '''Define a new format'''
2404
2405        # make sure we haven't already defined this one
2406        if id in self.formatMap:
2407            error(lineno, 'format %s redefined.' % id)
2408
2409        # create new object and store in global map
2410        self.formatMap[id] = Format(id, params, code)
2411
2412    def protectNonSubstPercents(self, s):
2413        '''Protect any non-dict-substitution '%'s in a format string
2414        (i.e. those not followed by '(')'''
2415
2416        return re.sub(r'%(?!\()', '%%', s)
2417
2418    def buildOperandNameMap(self, user_dict, lineno):
2419        operand_name = {}
2420        for op_name, val in user_dict.iteritems():
2421
2422            # Check if extra attributes have been specified.
2423            if len(val) > 9:
2424                error(lineno, 'error: too many attributes for operand "%s"' %
2425                      base_cls_name)
2426
2427            # Pad val with None in case optional args are missing
2428            val += (None, None, None, None)
2429            base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2430            read_code, write_code, read_predicate, write_predicate = val[:9]
2431
2432            # Canonical flag structure is a triple of lists, where each list
2433            # indicates the set of flags implied by this operand always, when
2434            # used as a source, and when used as a dest, respectively.
2435            # For simplicity this can be initialized using a variety of fairly
2436            # obvious shortcuts; we convert these to canonical form here.
2437            if not flags:
2438                # no flags specified (e.g., 'None')
2439                flags = ( [], [], [] )
2440            elif isinstance(flags, str):
2441                # a single flag: assumed to be unconditional
2442                flags = ( [ flags ], [], [] )
2443            elif isinstance(flags, list):
2444                # a list of flags: also assumed to be unconditional
2445                flags = ( flags, [], [] )
2446            elif isinstance(flags, tuple):
2447                # it's a tuple: it should be a triple,
2448                # but each item could be a single string or a list
2449                (uncond_flags, src_flags, dest_flags) = flags
2450                flags = (makeList(uncond_flags),
2451                         makeList(src_flags), makeList(dest_flags))
2452
2453            # Accumulate attributes of new operand class in tmp_dict
2454            tmp_dict = {}
2455            attrList = ['reg_spec', 'flags', 'sort_pri',
2456                        'read_code', 'write_code',
2457                        'read_predicate', 'write_predicate']
2458            if dflt_ext:
2459                dflt_ctype = self.operandTypeMap[dflt_ext]
2460                attrList.extend(['dflt_ctype', 'dflt_ext'])
2461            # reg_spec is either just a string or a dictionary
2462            # (for elems of vector)
2463            if isinstance(reg_spec, tuple):
2464                (reg_spec, elem_spec) = reg_spec
2465                if isinstance(elem_spec, str):
2466                    attrList.append('elem_spec')
2467                else:
2468                    assert(isinstance(elem_spec, dict))
2469                    elems = elem_spec
2470                    attrList.append('elems')
2471            for attr in attrList:
2472                tmp_dict[attr] = eval(attr)
2473            tmp_dict['base_name'] = op_name
2474
2475            # New class name will be e.g. "IntReg_Ra"
2476            cls_name = base_cls_name + '_' + op_name
2477            # Evaluate string arg to get class object.  Note that the
2478            # actual base class for "IntReg" is "IntRegOperand", i.e. we
2479            # have to append "Operand".
2480            try:
2481                base_cls = eval(base_cls_name + 'Operand')
2482            except NameError:
2483                error(lineno,
2484                      'error: unknown operand base class "%s"' % base_cls_name)
2485            # The following statement creates a new class called
2486            # <cls_name> as a subclass of <base_cls> with the attributes
2487            # in tmp_dict, just as if we evaluated a class declaration.
2488            operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2489
2490        self.operandNameMap = operand_name
2491
2492        # Define operand variables.
2493        operands = user_dict.keys()
2494        # Add the elems defined in the vector operands and
2495        # build a map elem -> vector (used in OperandList)
2496        elem_to_vec = {}
2497        for op in user_dict.keys():
2498            if hasattr(self.operandNameMap[op], 'elems'):
2499                for elem in self.operandNameMap[op].elems.keys():
2500                    operands.append(elem)
2501                    elem_to_vec[elem] = op
2502        self.elemToVector = elem_to_vec
2503        extensions = self.operandTypeMap.keys()
2504
2505        operandsREString = r'''
2506        (?<!\w)      # neg. lookbehind assertion: prevent partial matches
2507        ((%s)(?:_(%s))?)   # match: operand with optional '_' then suffix
2508        (?!\w)       # neg. lookahead assertion: prevent partial matches
2509        ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2510
2511        self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2512
2513        # Same as operandsREString, but extension is mandatory, and only two
2514        # groups are returned (base and ext, not full name as above).
2515        # Used for subtituting '_' for '.' to make C++ identifiers.
2516        operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2517            % (string.join(operands, '|'), string.join(extensions, '|'))
2518
2519        self.operandsWithExtRE = \
2520            re.compile(operandsWithExtREString, re.MULTILINE)
2521
2522    def substMungedOpNames(self, code):
2523        '''Munge operand names in code string to make legal C++
2524        variable names.  This means getting rid of the type extension
2525        if any.  Will match base_name attribute of Operand object.)'''
2526        return self.operandsWithExtRE.sub(r'\1', code)
2527
2528    def mungeSnippet(self, s):
2529        '''Fix up code snippets for final substitution in templates.'''
2530        if isinstance(s, str):
2531            return self.substMungedOpNames(substBitOps(s))
2532        else:
2533            return s
2534
2535    def open(self, name, bare=False):
2536        '''Open the output file for writing and include scary warning.'''
2537        filename = os.path.join(self.output_dir, name)
2538        f = open(filename, 'w')
2539        if f:
2540            if not bare:
2541                f.write(ISAParser.scaremonger_template % self)
2542        return f
2543
2544    def update(self, file, contents):
2545        '''Update the output file only.  Scons should handle the case when
2546        the new contents are unchanged using its built-in hash feature.'''
2547        f = self.open(file)
2548        f.write(contents)
2549        f.close()
2550
2551    # This regular expression matches '##include' directives
2552    includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2553                           re.MULTILINE)
2554
2555    def replace_include(self, matchobj, dirname):
2556        """Function to replace a matched '##include' directive with the
2557        contents of the specified file (with nested ##includes
2558        replaced recursively).  'matchobj' is an re match object
2559        (from a match of includeRE) and 'dirname' is the directory
2560        relative to which the file path should be resolved."""
2561
2562        fname = matchobj.group('filename')
2563        full_fname = os.path.normpath(os.path.join(dirname, fname))
2564        contents = '##newfile "%s"\n%s\n##endfile\n' % \
2565                   (full_fname, self.read_and_flatten(full_fname))
2566        return contents
2567
2568    def read_and_flatten(self, filename):
2569        """Read a file and recursively flatten nested '##include' files."""
2570
2571        current_dir = os.path.dirname(filename)
2572        try:
2573            contents = open(filename).read()
2574        except IOError:
2575            error('Error including file "%s"' % filename)
2576
2577        self.fileNameStack.push(LineTracker(filename))
2578
2579        # Find any includes and include them
2580        def replace(matchobj):
2581            return self.replace_include(matchobj, current_dir)
2582        contents = self.includeRE.sub(replace, contents)
2583
2584        self.fileNameStack.pop()
2585        return contents
2586
2587    AlreadyGenerated = {}
2588
2589    def _parse_isa_desc(self, isa_desc_file):
2590        '''Read in and parse the ISA description.'''
2591
2592        # The build system can end up running the ISA parser twice: once to
2593        # finalize the build dependencies, and then to actually generate
2594        # the files it expects (in src/arch/$ARCH/generated). This code
2595        # doesn't do anything different either time, however; the SCons
2596        # invocations just expect different things. Since this code runs
2597        # within SCons, we can just remember that we've already run and
2598        # not perform a completely unnecessary run, since the ISA parser's
2599        # effect is idempotent.
2600        if isa_desc_file in ISAParser.AlreadyGenerated:
2601            return
2602
2603        # grab the last three path components of isa_desc_file
2604        self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2605
2606        # Read file and (recursively) all included files into a string.
2607        # PLY requires that the input be in a single string so we have to
2608        # do this up front.
2609        isa_desc = self.read_and_flatten(isa_desc_file)
2610
2611        # Initialize lineno tracker
2612        self.lex.lineno = LineTracker(isa_desc_file)
2613
2614        # Parse.
2615        self.parse_string(isa_desc)
2616
2617        ISAParser.AlreadyGenerated[isa_desc_file] = None
2618
2619    def parse_isa_desc(self, *args, **kwargs):
2620        try:
2621            self._parse_isa_desc(*args, **kwargs)
2622        except ISAParserError, e:
2623            print(backtrace(self.fileNameStack))
2624            print("At %s:" % e.lineno)
2625            print(e)
2626            sys.exit(1)
2627
2628# Called as script: get args from command line.
2629# Args are: <isa desc file> <output dir>
2630if __name__ == '__main__':
2631    ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
2632