isa_parser.py revision 13595:d673075b3204
1# Copyright (c) 2014, 2016 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder.  You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement, print_function
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64    return re.sub(r'(?m)^(?!#)', '  ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation.  Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation.  Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84    # get rid of blank lines first
85    s = re.sub(r'(?m)^\s*\n', '', s);
86    if (s != '' and re.match(r'[ \t]', s[0])):
87        s = 'if 1:\n' + s
88    return s
89
90class ISAParserError(Exception):
91    """Exception class for parser errors"""
92    def __init__(self, first, second=None):
93        if second is None:
94            self.lineno = 0
95            self.string = first
96        else:
97            self.lineno = first
98            self.string = second
99
100    def __str__(self):
101        return self.string
102
103def error(*args):
104    raise ISAParserError(*args)
105
106####################
107# Template objects.
108#
109# Template objects are format strings that allow substitution from
110# the attribute spaces of other objects (e.g. InstObjParams instances).
111
112labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
113
114class Template(object):
115    def __init__(self, parser, t):
116        self.parser = parser
117        self.template = t
118
119    def subst(self, d):
120        myDict = None
121
122        # Protect non-Python-dict substitutions (e.g. if there's a printf
123        # in the templated C++ code)
124        template = self.parser.protectNonSubstPercents(self.template)
125
126        # Build a dict ('myDict') to use for the template substitution.
127        # Start with the template namespace.  Make a copy since we're
128        # going to modify it.
129        myDict = self.parser.templateMap.copy()
130
131        if isinstance(d, InstObjParams):
132            # If we're dealing with an InstObjParams object, we need
133            # to be a little more sophisticated.  The instruction-wide
134            # parameters are already formed, but the parameters which
135            # are only function wide still need to be generated.
136            compositeCode = ''
137
138            myDict.update(d.__dict__)
139            # The "operands" and "snippets" attributes of the InstObjParams
140            # objects are for internal use and not substitution.
141            del myDict['operands']
142            del myDict['snippets']
143
144            snippetLabels = [l for l in labelRE.findall(template)
145                             if d.snippets.has_key(l)]
146
147            snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
148                             for s in snippetLabels])
149
150            myDict.update(snippets)
151
152            compositeCode = ' '.join(map(str, snippets.values()))
153
154            # Add in template itself in case it references any
155            # operands explicitly (like Mem)
156            compositeCode += ' ' + template
157
158            operands = SubOperandList(self.parser, compositeCode, d.operands)
159
160            myDict['op_decl'] = operands.concatAttrStrings('op_decl')
161            if operands.readPC or operands.setPC:
162                myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
163
164            # In case there are predicated register reads and write, declare
165            # the variables for register indicies. It is being assumed that
166            # all the operands in the OperandList are also in the
167            # SubOperandList and in the same order. Otherwise, it is
168            # expected that predication would not be used for the operands.
169            if operands.predRead:
170                myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
171            if operands.predWrite:
172                myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
173
174            is_src = lambda op: op.is_src
175            is_dest = lambda op: op.is_dest
176
177            myDict['op_src_decl'] = \
178                      operands.concatSomeAttrStrings(is_src, 'op_src_decl')
179            myDict['op_dest_decl'] = \
180                      operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
181            if operands.readPC:
182                myDict['op_src_decl'] += \
183                    'TheISA::PCState __parserAutoPCState;\n'
184            if operands.setPC:
185                myDict['op_dest_decl'] += \
186                    'TheISA::PCState __parserAutoPCState;\n'
187
188            myDict['op_rd'] = operands.concatAttrStrings('op_rd')
189            if operands.readPC:
190                myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
191                                  myDict['op_rd']
192
193            # Compose the op_wb string. If we're going to write back the
194            # PC state because we changed some of its elements, we'll need to
195            # do that as early as possible. That allows later uncoordinated
196            # modifications to the PC to layer appropriately.
197            reordered = list(operands.items)
198            reordered.reverse()
199            op_wb_str = ''
200            pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
201            for op_desc in reordered:
202                if op_desc.isPCPart() and op_desc.is_dest:
203                    op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
204                    pcWbStr = ''
205                else:
206                    op_wb_str = op_desc.op_wb + op_wb_str
207            myDict['op_wb'] = op_wb_str
208
209        elif isinstance(d, dict):
210            # if the argument is a dictionary, we just use it.
211            myDict.update(d)
212        elif hasattr(d, '__dict__'):
213            # if the argument is an object, we use its attribute map.
214            myDict.update(d.__dict__)
215        else:
216            raise TypeError, "Template.subst() arg must be or have dictionary"
217        return template % myDict
218
219    # Convert to string.
220    def __str__(self):
221        return self.template
222
223################
224# Format object.
225#
226# A format object encapsulates an instruction format.  It must provide
227# a defineInst() method that generates the code for an instruction
228# definition.
229
230class Format(object):
231    def __init__(self, id, params, code):
232        self.id = id
233        self.params = params
234        label = 'def format ' + id
235        self.user_code = compile(fixPythonIndentation(code), label, 'exec')
236        param_list = string.join(params, ", ")
237        f = '''def defInst(_code, _context, %s):
238                my_locals = vars().copy()
239                exec _code in _context, my_locals
240                return my_locals\n''' % param_list
241        c = compile(f, label + ' wrapper', 'exec')
242        exec c
243        self.func = defInst
244
245    def defineInst(self, parser, name, args, lineno):
246        parser.updateExportContext()
247        context = parser.exportContext.copy()
248        if len(name):
249            Name = name[0].upper()
250            if len(name) > 1:
251                Name += name[1:]
252        context.update({ 'name' : name, 'Name' : Name })
253        try:
254            vars = self.func(self.user_code, context, *args[0], **args[1])
255        except Exception, exc:
256            if debug:
257                raise
258            error(lineno, 'error defining "%s": %s.' % (name, exc))
259        for k in vars.keys():
260            if k not in ('header_output', 'decoder_output',
261                         'exec_output', 'decode_block'):
262                del vars[k]
263        return GenCode(parser, **vars)
264
265# Special null format to catch an implicit-format instruction
266# definition outside of any format block.
267class NoFormat(object):
268    def __init__(self):
269        self.defaultInst = ''
270
271    def defineInst(self, parser, name, args, lineno):
272        error(lineno,
273              'instruction definition "%s" with no active format!' % name)
274
275###############
276# GenCode class
277#
278# The GenCode class encapsulates generated code destined for various
279# output files.  The header_output and decoder_output attributes are
280# strings containing code destined for decoder.hh and decoder.cc
281# respectively.  The decode_block attribute contains code to be
282# incorporated in the decode function itself (that will also end up in
283# decoder.cc).  The exec_output attribute  is the string of code for the
284# exec.cc file.  The has_decode_default attribute is used in the decode block
285# to allow explicit default clauses to override default default clauses.
286
287class GenCode(object):
288    # Constructor.
289    def __init__(self, parser,
290                 header_output = '', decoder_output = '', exec_output = '',
291                 decode_block = '', has_decode_default = False):
292        self.parser = parser
293        self.header_output = header_output
294        self.decoder_output = decoder_output
295        self.exec_output = exec_output
296        self.decode_block = decode_block
297        self.has_decode_default = has_decode_default
298
299    # Write these code chunks out to the filesystem.  They will be properly
300    # interwoven by the write_top_level_files().
301    def emit(self):
302        if self.header_output:
303            self.parser.get_file('header').write(self.header_output)
304        if self.decoder_output:
305            self.parser.get_file('decoder').write(self.decoder_output)
306        if self.exec_output:
307            self.parser.get_file('exec').write(self.exec_output)
308        if self.decode_block:
309            self.parser.get_file('decode_block').write(self.decode_block)
310
311    # Override '+' operator: generate a new GenCode object that
312    # concatenates all the individual strings in the operands.
313    def __add__(self, other):
314        return GenCode(self.parser,
315                       self.header_output + other.header_output,
316                       self.decoder_output + other.decoder_output,
317                       self.exec_output + other.exec_output,
318                       self.decode_block + other.decode_block,
319                       self.has_decode_default or other.has_decode_default)
320
321    # Prepend a string (typically a comment) to all the strings.
322    def prepend_all(self, pre):
323        self.header_output = pre + self.header_output
324        self.decoder_output  = pre + self.decoder_output
325        self.decode_block = pre + self.decode_block
326        self.exec_output  = pre + self.exec_output
327
328    # Wrap the decode block in a pair of strings (e.g., 'case foo:'
329    # and 'break;').  Used to build the big nested switch statement.
330    def wrap_decode_block(self, pre, post = ''):
331        self.decode_block = pre + indent(self.decode_block) + post
332
333#####################################################################
334#
335#                      Bitfield Operator Support
336#
337#####################################################################
338
339bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
340
341bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
342bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
343
344def substBitOps(code):
345    # first convert single-bit selectors to two-index form
346    # i.e., <n> --> <n:n>
347    code = bitOp1ArgRE.sub(r'<\1:\1>', code)
348    # simple case: selector applied to ID (name)
349    # i.e., foo<a:b> --> bits(foo, a, b)
350    code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
351    # if selector is applied to expression (ending in ')'),
352    # we need to search backward for matching '('
353    match = bitOpExprRE.search(code)
354    while match:
355        exprEnd = match.start()
356        here = exprEnd - 1
357        nestLevel = 1
358        while nestLevel > 0:
359            if code[here] == '(':
360                nestLevel -= 1
361            elif code[here] == ')':
362                nestLevel += 1
363            here -= 1
364            if here < 0:
365                sys.exit("Didn't find '('!")
366        exprStart = here+1
367        newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
368                                         match.group(1), match.group(2))
369        code = code[:exprStart] + newExpr + code[match.end():]
370        match = bitOpExprRE.search(code)
371    return code
372
373
374#####################################################################
375#
376#                             Code Parser
377#
378# The remaining code is the support for automatically extracting
379# instruction characteristics from pseudocode.
380#
381#####################################################################
382
383# Force the argument to be a list.  Useful for flags, where a caller
384# can specify a singleton flag or a list of flags.  Also usful for
385# converting tuples to lists so they can be modified.
386def makeList(arg):
387    if isinstance(arg, list):
388        return arg
389    elif isinstance(arg, tuple):
390        return list(arg)
391    elif not arg:
392        return []
393    else:
394        return [ arg ]
395
396class Operand(object):
397    '''Base class for operand descriptors.  An instance of this class
398    (or actually a class derived from this one) represents a specific
399    operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
400    derived classes encapsulates the traits of a particular operand
401    type (e.g., "32-bit integer register").'''
402
403    def buildReadCode(self, func = None):
404        subst_dict = {"name": self.base_name,
405                      "func": func,
406                      "reg_idx": self.reg_spec,
407                      "ctype": self.ctype}
408        if hasattr(self, 'src_reg_idx'):
409            subst_dict['op_idx'] = self.src_reg_idx
410        code = self.read_code % subst_dict
411        return '%s = %s;\n' % (self.base_name, code)
412
413    def buildWriteCode(self, func = None):
414        subst_dict = {"name": self.base_name,
415                      "func": func,
416                      "reg_idx": self.reg_spec,
417                      "ctype": self.ctype,
418                      "final_val": self.base_name}
419        if hasattr(self, 'dest_reg_idx'):
420            subst_dict['op_idx'] = self.dest_reg_idx
421        code = self.write_code % subst_dict
422        return '''
423        {
424            %s final_val = %s;
425            %s;
426            if (traceData) { traceData->setData(final_val); }
427        }''' % (self.dflt_ctype, self.base_name, code)
428
429    def __init__(self, parser, full_name, ext, is_src, is_dest):
430        self.full_name = full_name
431        self.ext = ext
432        self.is_src = is_src
433        self.is_dest = is_dest
434        # The 'effective extension' (eff_ext) is either the actual
435        # extension, if one was explicitly provided, or the default.
436        if ext:
437            self.eff_ext = ext
438        elif hasattr(self, 'dflt_ext'):
439            self.eff_ext = self.dflt_ext
440
441        if hasattr(self, 'eff_ext'):
442            self.ctype = parser.operandTypeMap[self.eff_ext]
443
444    # Finalize additional fields (primarily code fields).  This step
445    # is done separately since some of these fields may depend on the
446    # register index enumeration that hasn't been performed yet at the
447    # time of __init__(). The register index enumeration is affected
448    # by predicated register reads/writes. Hence, we forward the flags
449    # that indicate whether or not predication is in use.
450    def finalize(self, predRead, predWrite):
451        self.flags = self.getFlags()
452        self.constructor = self.makeConstructor(predRead, predWrite)
453        self.op_decl = self.makeDecl()
454
455        if self.is_src:
456            self.op_rd = self.makeRead(predRead)
457            self.op_src_decl = self.makeDecl()
458        else:
459            self.op_rd = ''
460            self.op_src_decl = ''
461
462        if self.is_dest:
463            self.op_wb = self.makeWrite(predWrite)
464            self.op_dest_decl = self.makeDecl()
465        else:
466            self.op_wb = ''
467            self.op_dest_decl = ''
468
469    def isMem(self):
470        return 0
471
472    def isReg(self):
473        return 0
474
475    def isFloatReg(self):
476        return 0
477
478    def isIntReg(self):
479        return 0
480
481    def isCCReg(self):
482        return 0
483
484    def isControlReg(self):
485        return 0
486
487    def isVecReg(self):
488        return 0
489
490    def isVecElem(self):
491        return 0
492
493    def isPCState(self):
494        return 0
495
496    def isPCPart(self):
497        return self.isPCState() and self.reg_spec
498
499    def hasReadPred(self):
500        return self.read_predicate != None
501
502    def hasWritePred(self):
503        return self.write_predicate != None
504
505    def getFlags(self):
506        # note the empty slice '[:]' gives us a copy of self.flags[0]
507        # instead of a reference to it
508        my_flags = self.flags[0][:]
509        if self.is_src:
510            my_flags += self.flags[1]
511        if self.is_dest:
512            my_flags += self.flags[2]
513        return my_flags
514
515    def makeDecl(self):
516        # Note that initializations in the declarations are solely
517        # to avoid 'uninitialized variable' errors from the compiler.
518        return self.ctype + ' ' + self.base_name + ' = 0;\n';
519
520
521src_reg_constructor = '\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s);'
522dst_reg_constructor = '\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s);'
523
524
525class IntRegOperand(Operand):
526    reg_class = 'IntRegClass'
527
528    def isReg(self):
529        return 1
530
531    def isIntReg(self):
532        return 1
533
534    def makeConstructor(self, predRead, predWrite):
535        c_src = ''
536        c_dest = ''
537
538        if self.is_src:
539            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
540            if self.hasReadPred():
541                c_src = '\n\tif (%s) {%s\n\t}' % \
542                        (self.read_predicate, c_src)
543
544        if self.is_dest:
545            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
546            c_dest += '\n\t_numIntDestRegs++;'
547            if self.hasWritePred():
548                c_dest = '\n\tif (%s) {%s\n\t}' % \
549                         (self.write_predicate, c_dest)
550
551        return c_src + c_dest
552
553    def makeRead(self, predRead):
554        if (self.ctype == 'float' or self.ctype == 'double'):
555            error('Attempt to read integer register as FP')
556        if self.read_code != None:
557            return self.buildReadCode('readIntRegOperand')
558
559        int_reg_val = ''
560        if predRead:
561            int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
562            if self.hasReadPred():
563                int_reg_val = '(%s) ? %s : 0' % \
564                              (self.read_predicate, int_reg_val)
565        else:
566            int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
567
568        return '%s = %s;\n' % (self.base_name, int_reg_val)
569
570    def makeWrite(self, predWrite):
571        if (self.ctype == 'float' or self.ctype == 'double'):
572            error('Attempt to write integer register as FP')
573        if self.write_code != None:
574            return self.buildWriteCode('setIntRegOperand')
575
576        if predWrite:
577            wp = 'true'
578            if self.hasWritePred():
579                wp = self.write_predicate
580
581            wcond = 'if (%s)' % (wp)
582            windex = '_destIndex++'
583        else:
584            wcond = ''
585            windex = '%d' % self.dest_reg_idx
586
587        wb = '''
588        %s
589        {
590            %s final_val = %s;
591            xc->setIntRegOperand(this, %s, final_val);\n
592            if (traceData) { traceData->setData(final_val); }
593        }''' % (wcond, self.ctype, self.base_name, windex)
594
595        return wb
596
597class FloatRegOperand(Operand):
598    reg_class = 'FloatRegClass'
599
600    def isReg(self):
601        return 1
602
603    def isFloatReg(self):
604        return 1
605
606    def makeConstructor(self, predRead, predWrite):
607        c_src = ''
608        c_dest = ''
609
610        if self.is_src:
611            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
612
613        if self.is_dest:
614            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
615            c_dest += '\n\t_numFPDestRegs++;'
616
617        return c_src + c_dest
618
619    def makeRead(self, predRead):
620        if self.read_code != None:
621            return self.buildReadCode('readFloatRegOperandBits')
622
623        if predRead:
624            rindex = '_sourceIndex++'
625        else:
626            rindex = '%d' % self.src_reg_idx
627
628        code = 'xc->readFloatRegOperandBits(this, %s)' % rindex
629        if self.ctype == 'float':
630            code = 'bitsToFloat32(%s)' % code
631        elif self.ctype == 'double':
632            code = 'bitsToFloat64(%s)' % code
633        return '%s = %s;\n' % (self.base_name, code)
634
635    def makeWrite(self, predWrite):
636        if self.write_code != None:
637            return self.buildWriteCode('setFloatRegOperandBits')
638
639        if predWrite:
640            wp = '_destIndex++'
641        else:
642            wp = '%d' % self.dest_reg_idx
643
644        val = 'final_val'
645        if self.ctype == 'float':
646            val = 'floatToBits32(%s)' % val
647        elif self.ctype == 'double':
648            val = 'floatToBits64(%s)' % val
649
650        wp = 'xc->setFloatRegOperandBits(this, %s, %s);' % (wp, val)
651
652        wb = '''
653        {
654            %s final_val = %s;
655            %s\n
656            if (traceData) { traceData->setData(final_val); }
657        }''' % (self.ctype, self.base_name, wp)
658        return wb
659
660class VecRegOperand(Operand):
661    reg_class = 'VecRegClass'
662
663    def __init__(self, parser, full_name, ext, is_src, is_dest):
664        Operand.__init__(self, parser, full_name, ext, is_src, is_dest)
665        self.elemExt = None
666        self.parser = parser
667
668    def isReg(self):
669        return 1
670
671    def isVecReg(self):
672        return 1
673
674    def makeDeclElem(self, elem_op):
675        (elem_name, elem_ext) = elem_op
676        (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
677        if elem_ext:
678            ext = elem_ext
679        else:
680            ext = dflt_elem_ext
681        ctype = self.parser.operandTypeMap[ext]
682        return '\n\t%s %s = 0;' % (ctype, elem_name)
683
684    def makeDecl(self):
685        if not self.is_dest and self.is_src:
686            c_decl = '\t/* Vars for %s*/' % (self.base_name)
687            if hasattr(self, 'active_elems'):
688                if self.active_elems:
689                    for elem in self.active_elems:
690                        c_decl += self.makeDeclElem(elem)
691            return c_decl + '\t/* End vars for %s */\n' % (self.base_name)
692        else:
693            return ''
694
695    def makeConstructor(self, predRead, predWrite):
696        c_src = ''
697        c_dest = ''
698
699        numAccessNeeded = 1
700
701        if self.is_src:
702            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
703
704        if self.is_dest:
705            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
706            c_dest += '\n\t_numVecDestRegs++;'
707
708        return c_src + c_dest
709
710    # Read destination register to write
711    def makeReadWElem(self, elem_op):
712        (elem_name, elem_ext) = elem_op
713        (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
714        if elem_ext:
715            ext = elem_ext
716        else:
717            ext = dflt_elem_ext
718        ctype = self.parser.operandTypeMap[ext]
719        c_read = '\t\t%s& %s = %s[%s];\n' % \
720                  (ctype, elem_name, self.base_name, elem_spec)
721        return c_read
722
723    def makeReadW(self, predWrite):
724        func = 'getWritableVecRegOperand'
725        if self.read_code != None:
726            return self.buildReadCode(func)
727
728        if predWrite:
729            rindex = '_destIndex++'
730        else:
731            rindex = '%d' % self.dest_reg_idx
732
733        c_readw = '\t\t%s& tmp_d%s = xc->%s(this, %s);\n'\
734                % ('TheISA::VecRegContainer', rindex, func, rindex)
735        if self.elemExt:
736            c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
737                        rindex, self.parser.operandTypeMap[self.elemExt])
738        if self.ext:
739            c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
740                        rindex, self.parser.operandTypeMap[self.ext])
741        if hasattr(self, 'active_elems'):
742            if self.active_elems:
743                for elem in self.active_elems:
744                    c_readw += self.makeReadWElem(elem)
745        return c_readw
746
747    # Normal source operand read
748    def makeReadElem(self, elem_op, name):
749        (elem_name, elem_ext) = elem_op
750        (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
751
752        if elem_ext:
753            ext = elem_ext
754        else:
755            ext = dflt_elem_ext
756        ctype = self.parser.operandTypeMap[ext]
757        c_read = '\t\t%s = %s[%s];\n' % \
758                  (elem_name, name, elem_spec)
759        return c_read
760
761    def makeRead(self, predRead):
762        func = 'readVecRegOperand'
763        if self.read_code != None:
764            return self.buildReadCode(func)
765
766        if predRead:
767            rindex = '_sourceIndex++'
768        else:
769            rindex = '%d' % self.src_reg_idx
770
771        name = self.base_name
772        if self.is_dest and self.is_src:
773            name += '_merger'
774
775        c_read =  '\t\t%s& tmp_s%s = xc->%s(this, %s);\n' \
776                % ('const TheISA::VecRegContainer', rindex, func, rindex)
777        # If the parser has detected that elements are being access, create
778        # the appropriate view
779        if self.elemExt:
780            c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
781                 (name, rindex, self.parser.operandTypeMap[self.elemExt])
782        if self.ext:
783            c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
784                 (name, rindex, self.parser.operandTypeMap[self.ext])
785        if hasattr(self, 'active_elems'):
786            if self.active_elems:
787                for elem in self.active_elems:
788                    c_read += self.makeReadElem(elem, name)
789        return c_read
790
791    def makeWrite(self, predWrite):
792        func = 'setVecRegOperand'
793        if self.write_code != None:
794            return self.buildWriteCode(func)
795
796        wb = '''
797        if (traceData) {
798            warn_once("Vectors not supported yet in tracedata");
799            /*traceData->setData(final_val);*/
800        }
801        '''
802        return wb
803
804    def finalize(self, predRead, predWrite):
805        super(VecRegOperand, self).finalize(predRead, predWrite)
806        if self.is_dest:
807            self.op_rd = self.makeReadW(predWrite) + self.op_rd
808
809class VecElemOperand(Operand):
810    reg_class = 'VectorElemClass'
811
812    def isReg(self):
813        return 1
814
815    def isVecElem(self):
816        return 1
817
818    def makeDecl(self):
819        if self.is_dest and not self.is_src:
820            return '\n\t%s %s;' % (self.ctype, self.base_name)
821        else:
822            return ''
823
824    def makeConstructor(self, predRead, predWrite):
825        c_src = ''
826        c_dest = ''
827
828        numAccessNeeded = 1
829        regId = 'RegId(%s, %s * numVecElemPerVecReg + elemIdx, %s)' % \
830                (self.reg_class, self.reg_spec)
831
832        if self.is_src:
833            c_src = ('\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s, %s);' %
834                    (self.reg_class, self.reg_spec, self.elem_spec))
835
836        if self.is_dest:
837            c_dest = ('\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s, %s);' %
838                    (self.reg_class, self.reg_spec, self.elem_spec))
839            c_dest += '\n\t_numVecElemDestRegs++;'
840        return c_src + c_dest
841
842    def makeRead(self, predRead):
843        c_read = ('\n/* Elem is kept inside the operand description */' +
844                  '\n\tVecElem %s = xc->readVecElemOperand(this, %d);' %
845                  (self.base_name, self.src_reg_idx))
846        return c_read
847
848    def makeWrite(self, predWrite):
849        c_write = ('\n/* Elem is kept inside the operand description */' +
850                   '\n\txc->setVecElemOperand(this, %d, %s);' %
851                   (self.dest_reg_idx, self.base_name))
852        return c_write
853
854class CCRegOperand(Operand):
855    reg_class = 'CCRegClass'
856
857    def isReg(self):
858        return 1
859
860    def isCCReg(self):
861        return 1
862
863    def makeConstructor(self, predRead, predWrite):
864        c_src = ''
865        c_dest = ''
866
867        if self.is_src:
868            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
869            if self.hasReadPred():
870                c_src = '\n\tif (%s) {%s\n\t}' % \
871                        (self.read_predicate, c_src)
872
873        if self.is_dest:
874            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
875            c_dest += '\n\t_numCCDestRegs++;'
876            if self.hasWritePred():
877                c_dest = '\n\tif (%s) {%s\n\t}' % \
878                         (self.write_predicate, c_dest)
879
880        return c_src + c_dest
881
882    def makeRead(self, predRead):
883        if (self.ctype == 'float' or self.ctype == 'double'):
884            error('Attempt to read condition-code register as FP')
885        if self.read_code != None:
886            return self.buildReadCode('readCCRegOperand')
887
888        int_reg_val = ''
889        if predRead:
890            int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
891            if self.hasReadPred():
892                int_reg_val = '(%s) ? %s : 0' % \
893                              (self.read_predicate, int_reg_val)
894        else:
895            int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
896
897        return '%s = %s;\n' % (self.base_name, int_reg_val)
898
899    def makeWrite(self, predWrite):
900        if (self.ctype == 'float' or self.ctype == 'double'):
901            error('Attempt to write condition-code register as FP')
902        if self.write_code != None:
903            return self.buildWriteCode('setCCRegOperand')
904
905        if predWrite:
906            wp = 'true'
907            if self.hasWritePred():
908                wp = self.write_predicate
909
910            wcond = 'if (%s)' % (wp)
911            windex = '_destIndex++'
912        else:
913            wcond = ''
914            windex = '%d' % self.dest_reg_idx
915
916        wb = '''
917        %s
918        {
919            %s final_val = %s;
920            xc->setCCRegOperand(this, %s, final_val);\n
921            if (traceData) { traceData->setData(final_val); }
922        }''' % (wcond, self.ctype, self.base_name, windex)
923
924        return wb
925
926class ControlRegOperand(Operand):
927    reg_class = 'MiscRegClass'
928
929    def isReg(self):
930        return 1
931
932    def isControlReg(self):
933        return 1
934
935    def makeConstructor(self, predRead, predWrite):
936        c_src = ''
937        c_dest = ''
938
939        if self.is_src:
940            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
941
942        if self.is_dest:
943            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
944
945        return c_src + c_dest
946
947    def makeRead(self, predRead):
948        bit_select = 0
949        if (self.ctype == 'float' or self.ctype == 'double'):
950            error('Attempt to read control register as FP')
951        if self.read_code != None:
952            return self.buildReadCode('readMiscRegOperand')
953
954        if predRead:
955            rindex = '_sourceIndex++'
956        else:
957            rindex = '%d' % self.src_reg_idx
958
959        return '%s = xc->readMiscRegOperand(this, %s);\n' % \
960            (self.base_name, rindex)
961
962    def makeWrite(self, predWrite):
963        if (self.ctype == 'float' or self.ctype == 'double'):
964            error('Attempt to write control register as FP')
965        if self.write_code != None:
966            return self.buildWriteCode('setMiscRegOperand')
967
968        if predWrite:
969            windex = '_destIndex++'
970        else:
971            windex = '%d' % self.dest_reg_idx
972
973        wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
974             (windex, self.base_name)
975        wb += 'if (traceData) { traceData->setData(%s); }' % \
976              self.base_name
977
978        return wb
979
980class MemOperand(Operand):
981    def isMem(self):
982        return 1
983
984    def makeConstructor(self, predRead, predWrite):
985        return ''
986
987    def makeDecl(self):
988        # Declare memory data variable.
989        return '%s %s;\n' % (self.ctype, self.base_name)
990
991    def makeRead(self, predRead):
992        if self.read_code != None:
993            return self.buildReadCode()
994        return ''
995
996    def makeWrite(self, predWrite):
997        if self.write_code != None:
998            return self.buildWriteCode()
999        return ''
1000
1001class PCStateOperand(Operand):
1002    def makeConstructor(self, predRead, predWrite):
1003        return ''
1004
1005    def makeRead(self, predRead):
1006        if self.reg_spec:
1007            # A component of the PC state.
1008            return '%s = __parserAutoPCState.%s();\n' % \
1009                (self.base_name, self.reg_spec)
1010        else:
1011            # The whole PC state itself.
1012            return '%s = xc->pcState();\n' % self.base_name
1013
1014    def makeWrite(self, predWrite):
1015        if self.reg_spec:
1016            # A component of the PC state.
1017            return '__parserAutoPCState.%s(%s);\n' % \
1018                (self.reg_spec, self.base_name)
1019        else:
1020            # The whole PC state itself.
1021            return 'xc->pcState(%s);\n' % self.base_name
1022
1023    def makeDecl(self):
1024        ctype = 'TheISA::PCState'
1025        if self.isPCPart():
1026            ctype = self.ctype
1027        # Note that initializations in the declarations are solely
1028        # to avoid 'uninitialized variable' errors from the compiler.
1029        return '%s %s = 0;\n' % (ctype, self.base_name)
1030
1031    def isPCState(self):
1032        return 1
1033
1034class OperandList(object):
1035    '''Find all the operands in the given code block.  Returns an operand
1036    descriptor list (instance of class OperandList).'''
1037    def __init__(self, parser, code):
1038        self.items = []
1039        self.bases = {}
1040        # delete strings and comments so we don't match on operands inside
1041        for regEx in (stringRE, commentRE):
1042            code = regEx.sub('', code)
1043        # search for operands
1044        next_pos = 0
1045        while 1:
1046            match = parser.operandsRE.search(code, next_pos)
1047            if not match:
1048                # no more matches: we're done
1049                break
1050            op = match.groups()
1051            # regexp groups are operand full name, base, and extension
1052            (op_full, op_base, op_ext) = op
1053            # If is a elem operand, define or update the corresponding
1054            # vector operand
1055            isElem = False
1056            if op_base in parser.elemToVector:
1057                isElem = True
1058                elem_op = (op_base, op_ext)
1059                op_base = parser.elemToVector[op_base]
1060                op_ext = '' # use the default one
1061            # if the token following the operand is an assignment, this is
1062            # a destination (LHS), else it's a source (RHS)
1063            is_dest = (assignRE.match(code, match.end()) != None)
1064            is_src = not is_dest
1065
1066            # see if we've already seen this one
1067            op_desc = self.find_base(op_base)
1068            if op_desc:
1069                if op_ext and op_ext != '' and op_desc.ext != op_ext:
1070                    error ('Inconsistent extensions for operand %s: %s - %s' \
1071                            % (op_base, op_desc.ext, op_ext))
1072                op_desc.is_src = op_desc.is_src or is_src
1073                op_desc.is_dest = op_desc.is_dest or is_dest
1074                if isElem:
1075                    (elem_base, elem_ext) = elem_op
1076                    found = False
1077                    for ae in op_desc.active_elems:
1078                        (ae_base, ae_ext) = ae
1079                        if ae_base == elem_base:
1080                            if ae_ext != elem_ext:
1081                                error('Inconsistent extensions for elem'
1082                                      ' operand %s' % elem_base)
1083                            else:
1084                                found = True
1085                    if not found:
1086                        op_desc.active_elems.append(elem_op)
1087            else:
1088                # new operand: create new descriptor
1089                op_desc = parser.operandNameMap[op_base](parser,
1090                    op_full, op_ext, is_src, is_dest)
1091                # if operand is a vector elem, add the corresponding vector
1092                # operand if not already done
1093                if isElem:
1094                    op_desc.elemExt = elem_op[1]
1095                    op_desc.active_elems = [elem_op]
1096                self.append(op_desc)
1097            # start next search after end of current match
1098            next_pos = match.end()
1099        self.sort()
1100        # enumerate source & dest register operands... used in building
1101        # constructor later
1102        self.numSrcRegs = 0
1103        self.numDestRegs = 0
1104        self.numFPDestRegs = 0
1105        self.numIntDestRegs = 0
1106        self.numVecDestRegs = 0
1107        self.numCCDestRegs = 0
1108        self.numMiscDestRegs = 0
1109        self.memOperand = None
1110
1111        # Flags to keep track if one or more operands are to be read/written
1112        # conditionally.
1113        self.predRead = False
1114        self.predWrite = False
1115
1116        for op_desc in self.items:
1117            if op_desc.isReg():
1118                if op_desc.is_src:
1119                    op_desc.src_reg_idx = self.numSrcRegs
1120                    self.numSrcRegs += 1
1121                if op_desc.is_dest:
1122                    op_desc.dest_reg_idx = self.numDestRegs
1123                    self.numDestRegs += 1
1124                    if op_desc.isFloatReg():
1125                        self.numFPDestRegs += 1
1126                    elif op_desc.isIntReg():
1127                        self.numIntDestRegs += 1
1128                    elif op_desc.isVecReg():
1129                        self.numVecDestRegs += 1
1130                    elif op_desc.isCCReg():
1131                        self.numCCDestRegs += 1
1132                    elif op_desc.isControlReg():
1133                        self.numMiscDestRegs += 1
1134            elif op_desc.isMem():
1135                if self.memOperand:
1136                    error("Code block has more than one memory operand.")
1137                self.memOperand = op_desc
1138
1139            # Check if this operand has read/write predication. If true, then
1140            # the microop will dynamically index source/dest registers.
1141            self.predRead = self.predRead or op_desc.hasReadPred()
1142            self.predWrite = self.predWrite or op_desc.hasWritePred()
1143
1144        if parser.maxInstSrcRegs < self.numSrcRegs:
1145            parser.maxInstSrcRegs = self.numSrcRegs
1146        if parser.maxInstDestRegs < self.numDestRegs:
1147            parser.maxInstDestRegs = self.numDestRegs
1148        if parser.maxMiscDestRegs < self.numMiscDestRegs:
1149            parser.maxMiscDestRegs = self.numMiscDestRegs
1150
1151        # now make a final pass to finalize op_desc fields that may depend
1152        # on the register enumeration
1153        for op_desc in self.items:
1154            op_desc.finalize(self.predRead, self.predWrite)
1155
1156    def __len__(self):
1157        return len(self.items)
1158
1159    def __getitem__(self, index):
1160        return self.items[index]
1161
1162    def append(self, op_desc):
1163        self.items.append(op_desc)
1164        self.bases[op_desc.base_name] = op_desc
1165
1166    def find_base(self, base_name):
1167        # like self.bases[base_name], but returns None if not found
1168        # (rather than raising exception)
1169        return self.bases.get(base_name)
1170
1171    # internal helper function for concat[Some]Attr{Strings|Lists}
1172    def __internalConcatAttrs(self, attr_name, filter, result):
1173        for op_desc in self.items:
1174            if filter(op_desc):
1175                result += getattr(op_desc, attr_name)
1176        return result
1177
1178    # return a single string that is the concatenation of the (string)
1179    # values of the specified attribute for all operands
1180    def concatAttrStrings(self, attr_name):
1181        return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1182
1183    # like concatAttrStrings, but only include the values for the operands
1184    # for which the provided filter function returns true
1185    def concatSomeAttrStrings(self, filter, attr_name):
1186        return self.__internalConcatAttrs(attr_name, filter, '')
1187
1188    # return a single list that is the concatenation of the (list)
1189    # values of the specified attribute for all operands
1190    def concatAttrLists(self, attr_name):
1191        return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1192
1193    # like concatAttrLists, but only include the values for the operands
1194    # for which the provided filter function returns true
1195    def concatSomeAttrLists(self, filter, attr_name):
1196        return self.__internalConcatAttrs(attr_name, filter, [])
1197
1198    def sort(self):
1199        self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1200
1201class SubOperandList(OperandList):
1202    '''Find all the operands in the given code block.  Returns an operand
1203    descriptor list (instance of class OperandList).'''
1204    def __init__(self, parser, code, master_list):
1205        self.items = []
1206        self.bases = {}
1207        # delete strings and comments so we don't match on operands inside
1208        for regEx in (stringRE, commentRE):
1209            code = regEx.sub('', code)
1210        # search for operands
1211        next_pos = 0
1212        while 1:
1213            match = parser.operandsRE.search(code, next_pos)
1214            if not match:
1215                # no more matches: we're done
1216                break
1217            op = match.groups()
1218            # regexp groups are operand full name, base, and extension
1219            (op_full, op_base, op_ext) = op
1220            # If is a elem operand, define or update the corresponding
1221            # vector operand
1222            if op_base in parser.elemToVector:
1223                elem_op = op_base
1224                op_base = parser.elemToVector[elem_op]
1225            # find this op in the master list
1226            op_desc = master_list.find_base(op_base)
1227            if not op_desc:
1228                error('Found operand %s which is not in the master list!'
1229                      % op_base)
1230            else:
1231                # See if we've already found this operand
1232                op_desc = self.find_base(op_base)
1233                if not op_desc:
1234                    # if not, add a reference to it to this sub list
1235                    self.append(master_list.bases[op_base])
1236
1237            # start next search after end of current match
1238            next_pos = match.end()
1239        self.sort()
1240        self.memOperand = None
1241        # Whether the whole PC needs to be read so parts of it can be accessed
1242        self.readPC = False
1243        # Whether the whole PC needs to be written after parts of it were
1244        # changed
1245        self.setPC = False
1246        # Whether this instruction manipulates the whole PC or parts of it.
1247        # Mixing the two is a bad idea and flagged as an error.
1248        self.pcPart = None
1249
1250        # Flags to keep track if one or more operands are to be read/written
1251        # conditionally.
1252        self.predRead = False
1253        self.predWrite = False
1254
1255        for op_desc in self.items:
1256            if op_desc.isPCPart():
1257                self.readPC = True
1258                if op_desc.is_dest:
1259                    self.setPC = True
1260
1261            if op_desc.isPCState():
1262                if self.pcPart is not None:
1263                    if self.pcPart and not op_desc.isPCPart() or \
1264                            not self.pcPart and op_desc.isPCPart():
1265                        error("Mixed whole and partial PC state operands.")
1266                self.pcPart = op_desc.isPCPart()
1267
1268            if op_desc.isMem():
1269                if self.memOperand:
1270                    error("Code block has more than one memory operand.")
1271                self.memOperand = op_desc
1272
1273            # Check if this operand has read/write predication. If true, then
1274            # the microop will dynamically index source/dest registers.
1275            self.predRead = self.predRead or op_desc.hasReadPred()
1276            self.predWrite = self.predWrite or op_desc.hasWritePred()
1277
1278# Regular expression object to match C++ strings
1279stringRE = re.compile(r'"([^"\\]|\\.)*"')
1280
1281# Regular expression object to match C++ comments
1282# (used in findOperands())
1283commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1284        re.DOTALL | re.MULTILINE)
1285
1286# Regular expression object to match assignment statements (used in
1287# findOperands()).  If the code immediately following the first
1288# appearance of the operand matches this regex, then the operand
1289# appears to be on the LHS of an assignment, and is thus a
1290# destination.  basically we're looking for an '=' that's not '=='.
1291# The heinous tangle before that handles the case where the operand
1292# has an array subscript.
1293assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
1294
1295def makeFlagConstructor(flag_list):
1296    if len(flag_list) == 0:
1297        return ''
1298    # filter out repeated flags
1299    flag_list.sort()
1300    i = 1
1301    while i < len(flag_list):
1302        if flag_list[i] == flag_list[i-1]:
1303            del flag_list[i]
1304        else:
1305            i += 1
1306    pre = '\n\tflags['
1307    post = '] = true;'
1308    code = pre + string.join(flag_list, post + pre) + post
1309    return code
1310
1311# Assume all instruction flags are of the form 'IsFoo'
1312instFlagRE = re.compile(r'Is.*')
1313
1314# OpClass constants end in 'Op' except No_OpClass
1315opClassRE = re.compile(r'.*Op|No_OpClass')
1316
1317class InstObjParams(object):
1318    def __init__(self, parser, mnem, class_name, base_class = '',
1319                 snippets = {}, opt_args = []):
1320        self.mnemonic = mnem
1321        self.class_name = class_name
1322        self.base_class = base_class
1323        if not isinstance(snippets, dict):
1324            snippets = {'code' : snippets}
1325        compositeCode = ' '.join(map(str, snippets.values()))
1326        self.snippets = snippets
1327
1328        self.operands = OperandList(parser, compositeCode)
1329
1330        # The header of the constructor declares the variables to be used
1331        # in the body of the constructor.
1332        header = ''
1333        header += '\n\t_numSrcRegs = 0;'
1334        header += '\n\t_numDestRegs = 0;'
1335        header += '\n\t_numFPDestRegs = 0;'
1336        header += '\n\t_numVecDestRegs = 0;'
1337        header += '\n\t_numVecElemDestRegs = 0;'
1338        header += '\n\t_numIntDestRegs = 0;'
1339        header += '\n\t_numCCDestRegs = 0;'
1340
1341        self.constructor = header + \
1342                           self.operands.concatAttrStrings('constructor')
1343
1344        self.flags = self.operands.concatAttrLists('flags')
1345
1346        self.op_class = None
1347
1348        # Optional arguments are assumed to be either StaticInst flags
1349        # or an OpClass value.  To avoid having to import a complete
1350        # list of these values to match against, we do it ad-hoc
1351        # with regexps.
1352        for oa in opt_args:
1353            if instFlagRE.match(oa):
1354                self.flags.append(oa)
1355            elif opClassRE.match(oa):
1356                self.op_class = oa
1357            else:
1358                error('InstObjParams: optional arg "%s" not recognized '
1359                      'as StaticInst::Flag or OpClass.' % oa)
1360
1361        # Make a basic guess on the operand class if not set.
1362        # These are good enough for most cases.
1363        if not self.op_class:
1364            if 'IsStore' in self.flags:
1365                # The order matters here: 'IsFloating' and 'IsInteger' are
1366                # usually set in FP instructions because of the base
1367                # register
1368                if 'IsFloating' in self.flags:
1369                    self.op_class = 'FloatMemWriteOp'
1370                else:
1371                    self.op_class = 'MemWriteOp'
1372            elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1373                # The order matters here: 'IsFloating' and 'IsInteger' are
1374                # usually set in FP instructions because of the base
1375                # register
1376                if 'IsFloating' in self.flags:
1377                    self.op_class = 'FloatMemReadOp'
1378                else:
1379                    self.op_class = 'MemReadOp'
1380            elif 'IsFloating' in self.flags:
1381                self.op_class = 'FloatAddOp'
1382            elif 'IsVector' in self.flags:
1383                self.op_class = 'SimdAddOp'
1384            else:
1385                self.op_class = 'IntAluOp'
1386
1387        # add flag initialization to contructor here to include
1388        # any flags added via opt_args
1389        self.constructor += makeFlagConstructor(self.flags)
1390
1391        # if 'IsFloating' is set, add call to the FP enable check
1392        # function (which should be provided by isa_desc via a declare)
1393        # if 'IsVector' is set, add call to the Vector enable check
1394        # function (which should be provided by isa_desc via a declare)
1395        if 'IsFloating' in self.flags:
1396            self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1397        elif 'IsVector' in self.flags:
1398            self.fp_enable_check = 'fault = checkVecEnableFault(xc);'
1399        else:
1400            self.fp_enable_check = ''
1401
1402##############
1403# Stack: a simple stack object.  Used for both formats (formatStack)
1404# and default cases (defaultStack).  Simply wraps a list to give more
1405# stack-like syntax and enable initialization with an argument list
1406# (as opposed to an argument that's a list).
1407
1408class Stack(list):
1409    def __init__(self, *items):
1410        list.__init__(self, items)
1411
1412    def push(self, item):
1413        self.append(item);
1414
1415    def top(self):
1416        return self[-1]
1417
1418# Format a file include stack backtrace as a string
1419def backtrace(filename_stack):
1420    fmt = "In file included from %s:"
1421    return "\n".join([fmt % f for f in filename_stack])
1422
1423
1424#######################
1425#
1426# LineTracker: track filenames along with line numbers in PLY lineno fields
1427#     PLY explicitly doesn't do anything with 'lineno' except propagate
1428#     it.  This class lets us tie filenames with the line numbers with a
1429#     minimum of disruption to existing increment code.
1430#
1431
1432class LineTracker(object):
1433    def __init__(self, filename, lineno=1):
1434        self.filename = filename
1435        self.lineno = lineno
1436
1437    # Overload '+=' for increments.  We need to create a new object on
1438    # each update else every token ends up referencing the same
1439    # constantly incrementing instance.
1440    def __iadd__(self, incr):
1441        return LineTracker(self.filename, self.lineno + incr)
1442
1443    def __str__(self):
1444        return "%s:%d" % (self.filename, self.lineno)
1445
1446    # In case there are places where someone really expects a number
1447    def __int__(self):
1448        return self.lineno
1449
1450
1451#######################
1452#
1453# ISA Parser
1454#   parses ISA DSL and emits C++ headers and source
1455#
1456
1457class ISAParser(Grammar):
1458    def __init__(self, output_dir):
1459        super(ISAParser, self).__init__()
1460        self.output_dir = output_dir
1461
1462        self.filename = None # for output file watermarking/scaremongering
1463
1464        # variable to hold templates
1465        self.templateMap = {}
1466
1467        # This dictionary maps format name strings to Format objects.
1468        self.formatMap = {}
1469
1470        # Track open files and, if applicable, how many chunks it has been
1471        # split into so far.
1472        self.files = {}
1473        self.splits = {}
1474
1475        # isa_name / namespace identifier from namespace declaration.
1476        # before the namespace declaration, None.
1477        self.isa_name = None
1478        self.namespace = None
1479
1480        # The format stack.
1481        self.formatStack = Stack(NoFormat())
1482
1483        # The default case stack.
1484        self.defaultStack = Stack(None)
1485
1486        # Stack that tracks current file and line number.  Each
1487        # element is a tuple (filename, lineno) that records the
1488        # *current* filename and the line number in the *previous*
1489        # file where it was included.
1490        self.fileNameStack = Stack()
1491
1492        symbols = ('makeList', 're', 'string')
1493        self.exportContext = dict([(s, eval(s)) for s in symbols])
1494
1495        self.maxInstSrcRegs = 0
1496        self.maxInstDestRegs = 0
1497        self.maxMiscDestRegs = 0
1498
1499    def __getitem__(self, i):    # Allow object (self) to be
1500        return getattr(self, i)  # passed to %-substitutions
1501
1502    # Change the file suffix of a base filename:
1503    #   (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1504    def suffixize(self, s, sec):
1505        extn = re.compile('(\.[^\.]+)$') # isolate extension
1506        if self.namespace:
1507            return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1508        else:
1509            return extn.sub(r'-g\1.inc', s)
1510
1511    # Get the file object for emitting code into the specified section
1512    # (header, decoder, exec, decode_block).
1513    def get_file(self, section):
1514        if section == 'decode_block':
1515            filename = 'decode-method.cc.inc'
1516        else:
1517            if section == 'header':
1518                file = 'decoder.hh'
1519            else:
1520                file = '%s.cc' % section
1521            filename = self.suffixize(file, section)
1522        try:
1523            return self.files[filename]
1524        except KeyError: pass
1525
1526        f = self.open(filename)
1527        self.files[filename] = f
1528
1529        # The splittable files are the ones with many independent
1530        # per-instruction functions - the decoder's instruction constructors
1531        # and the instruction execution (execute()) methods. These both have
1532        # the suffix -ns.cc.inc, meaning they are within the namespace part
1533        # of the ISA, contain object-emitting C++ source, and are included
1534        # into other top-level files. These are the files that need special
1535        # #define's to allow parts of them to be compiled separately. Rather
1536        # than splitting the emissions into separate files, the monolithic
1537        # output of the ISA parser is maintained, but the value (or lack
1538        # thereof) of the __SPLIT definition during C preprocessing will
1539        # select the different chunks. If no 'split' directives are used,
1540        # the cpp emissions have no effect.
1541        if re.search('-ns.cc.inc$', filename):
1542            print('#if !defined(__SPLIT) || (__SPLIT == 1)', file=f)
1543            self.splits[f] = 1
1544        # ensure requisite #include's
1545        elif filename == 'decoder-g.hh.inc':
1546            print('#include "base/bitfield.hh"', file=f)
1547
1548        return f
1549
1550    # Weave together the parts of the different output sections by
1551    # #include'ing them into some very short top-level .cc/.hh files.
1552    # These small files make it much clearer how this tool works, since
1553    # you directly see the chunks emitted as files that are #include'd.
1554    def write_top_level_files(self):
1555        # decoder header - everything depends on this
1556        file = 'decoder.hh'
1557        with self.open(file) as f:
1558            fn = 'decoder-g.hh.inc'
1559            assert(fn in self.files)
1560            f.write('#include "%s"\n' % fn)
1561
1562            fn = 'decoder-ns.hh.inc'
1563            assert(fn in self.files)
1564            f.write('namespace %s {\n#include "%s"\n}\n'
1565                    % (self.namespace, fn))
1566
1567        # decoder method - cannot be split
1568        file = 'decoder.cc'
1569        with self.open(file) as f:
1570            fn = 'base/compiler.hh'
1571            f.write('#include "%s"\n' % fn)
1572
1573            fn = 'decoder-g.cc.inc'
1574            assert(fn in self.files)
1575            f.write('#include "%s"\n' % fn)
1576
1577            fn = 'decoder.hh'
1578            f.write('#include "%s"\n' % fn)
1579
1580            fn = 'decode-method.cc.inc'
1581            # is guaranteed to have been written for parse to complete
1582            f.write('#include "%s"\n' % fn)
1583
1584        extn = re.compile('(\.[^\.]+)$')
1585
1586        # instruction constructors
1587        splits = self.splits[self.get_file('decoder')]
1588        file_ = 'inst-constrs.cc'
1589        for i in range(1, splits+1):
1590            if splits > 1:
1591                file = extn.sub(r'-%d\1' % i, file_)
1592            else:
1593                file = file_
1594            with self.open(file) as f:
1595                fn = 'decoder-g.cc.inc'
1596                assert(fn in self.files)
1597                f.write('#include "%s"\n' % fn)
1598
1599                fn = 'decoder.hh'
1600                f.write('#include "%s"\n' % fn)
1601
1602                fn = 'decoder-ns.cc.inc'
1603                assert(fn in self.files)
1604                print('namespace %s {' % self.namespace, file=f)
1605                if splits > 1:
1606                    print('#define __SPLIT %u' % i, file=f)
1607                print('#include "%s"' % fn, file=f)
1608                print('}', file=f)
1609
1610        # instruction execution
1611        splits = self.splits[self.get_file('exec')]
1612        for i in range(1, splits+1):
1613            file = 'generic_cpu_exec.cc'
1614            if splits > 1:
1615                file = extn.sub(r'_%d\1' % i, file)
1616            with self.open(file) as f:
1617                fn = 'exec-g.cc.inc'
1618                assert(fn in self.files)
1619                f.write('#include "%s"\n' % fn)
1620                f.write('#include "cpu/exec_context.hh"\n')
1621                f.write('#include "decoder.hh"\n')
1622
1623                fn = 'exec-ns.cc.inc'
1624                assert(fn in self.files)
1625                print('namespace %s {' % self.namespace, file=f)
1626                if splits > 1:
1627                    print('#define __SPLIT %u' % i, file=f)
1628                print('#include "%s"' % fn, file=f)
1629                print('}', file=f)
1630
1631        # max_inst_regs.hh
1632        self.update('max_inst_regs.hh',
1633                    '''namespace %(namespace)s {
1634    const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1635    const int MaxInstDestRegs = %(maxInstDestRegs)d;
1636    const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1637
1638    scaremonger_template ='''// DO NOT EDIT
1639// This file was automatically generated from an ISA description:
1640//   %(filename)s
1641
1642''';
1643
1644    #####################################################################
1645    #
1646    #                                Lexer
1647    #
1648    # The PLY lexer module takes two things as input:
1649    # - A list of token names (the string list 'tokens')
1650    # - A regular expression describing a match for each token.  The
1651    #   regexp for token FOO can be provided in two ways:
1652    #   - as a string variable named t_FOO
1653    #   - as the doc string for a function named t_FOO.  In this case,
1654    #     the function is also executed, allowing an action to be
1655    #     associated with each token match.
1656    #
1657    #####################################################################
1658
1659    # Reserved words.  These are listed separately as they are matched
1660    # using the same regexp as generic IDs, but distinguished in the
1661    # t_ID() function.  The PLY documentation suggests this approach.
1662    reserved = (
1663        'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1664        'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1665        'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1666        )
1667
1668    # List of tokens.  The lex module requires this.
1669    tokens = reserved + (
1670        # identifier
1671        'ID',
1672
1673        # integer literal
1674        'INTLIT',
1675
1676        # string literal
1677        'STRLIT',
1678
1679        # code literal
1680        'CODELIT',
1681
1682        # ( ) [ ] { } < > , ; . : :: *
1683        'LPAREN', 'RPAREN',
1684        'LBRACKET', 'RBRACKET',
1685        'LBRACE', 'RBRACE',
1686        'LESS', 'GREATER', 'EQUALS',
1687        'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1688        'ASTERISK',
1689
1690        # C preprocessor directives
1691        'CPPDIRECTIVE'
1692
1693    # The following are matched but never returned. commented out to
1694    # suppress PLY warning
1695        # newfile directive
1696    #    'NEWFILE',
1697
1698        # endfile directive
1699    #    'ENDFILE'
1700    )
1701
1702    # Regular expressions for token matching
1703    t_LPAREN           = r'\('
1704    t_RPAREN           = r'\)'
1705    t_LBRACKET         = r'\['
1706    t_RBRACKET         = r'\]'
1707    t_LBRACE           = r'\{'
1708    t_RBRACE           = r'\}'
1709    t_LESS             = r'\<'
1710    t_GREATER          = r'\>'
1711    t_EQUALS           = r'='
1712    t_COMMA            = r','
1713    t_SEMI             = r';'
1714    t_DOT              = r'\.'
1715    t_COLON            = r':'
1716    t_DBLCOLON         = r'::'
1717    t_ASTERISK         = r'\*'
1718
1719    # Identifiers and reserved words
1720    reserved_map = { }
1721    for r in reserved:
1722        reserved_map[r.lower()] = r
1723
1724    def t_ID(self, t):
1725        r'[A-Za-z_]\w*'
1726        t.type = self.reserved_map.get(t.value, 'ID')
1727        return t
1728
1729    # Integer literal
1730    def t_INTLIT(self, t):
1731        r'-?(0x[\da-fA-F]+)|\d+'
1732        try:
1733            t.value = int(t.value,0)
1734        except ValueError:
1735            error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
1736            t.value = 0
1737        return t
1738
1739    # String literal.  Note that these use only single quotes, and
1740    # can span multiple lines.
1741    def t_STRLIT(self, t):
1742        r"(?m)'([^'])+'"
1743        # strip off quotes
1744        t.value = t.value[1:-1]
1745        t.lexer.lineno += t.value.count('\n')
1746        return t
1747
1748
1749    # "Code literal"... like a string literal, but delimiters are
1750    # '{{' and '}}' so they get formatted nicely under emacs c-mode
1751    def t_CODELIT(self, t):
1752        r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1753        # strip off {{ & }}
1754        t.value = t.value[2:-2]
1755        t.lexer.lineno += t.value.count('\n')
1756        return t
1757
1758    def t_CPPDIRECTIVE(self, t):
1759        r'^\#[^\#].*\n'
1760        t.lexer.lineno += t.value.count('\n')
1761        return t
1762
1763    def t_NEWFILE(self, t):
1764        r'^\#\#newfile\s+"[^"]*"\n'
1765        self.fileNameStack.push(t.lexer.lineno)
1766        t.lexer.lineno = LineTracker(t.value[11:-2])
1767
1768    def t_ENDFILE(self, t):
1769        r'^\#\#endfile\n'
1770        t.lexer.lineno = self.fileNameStack.pop()
1771
1772    #
1773    # The functions t_NEWLINE, t_ignore, and t_error are
1774    # special for the lex module.
1775    #
1776
1777    # Newlines
1778    def t_NEWLINE(self, t):
1779        r'\n+'
1780        t.lexer.lineno += t.value.count('\n')
1781
1782    # Comments
1783    def t_comment(self, t):
1784        r'//.*'
1785
1786    # Completely ignored characters
1787    t_ignore = ' \t\x0c'
1788
1789    # Error handler
1790    def t_error(self, t):
1791        error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
1792        t.skip(1)
1793
1794    #####################################################################
1795    #
1796    #                                Parser
1797    #
1798    # Every function whose name starts with 'p_' defines a grammar
1799    # rule.  The rule is encoded in the function's doc string, while
1800    # the function body provides the action taken when the rule is
1801    # matched.  The argument to each function is a list of the values
1802    # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1803    # symbols on the RHS.  For tokens, the value is copied from the
1804    # t.value attribute provided by the lexer.  For non-terminals, the
1805    # value is assigned by the producing rule; i.e., the job of the
1806    # grammar rule function is to set the value for the non-terminal
1807    # on the LHS (by assigning to t[0]).
1808    #####################################################################
1809
1810    # The LHS of the first grammar rule is used as the start symbol
1811    # (in this case, 'specification').  Note that this rule enforces
1812    # that there will be exactly one namespace declaration, with 0 or
1813    # more global defs/decls before and after it.  The defs & decls
1814    # before the namespace decl will be outside the namespace; those
1815    # after will be inside.  The decoder function is always inside the
1816    # namespace.
1817    def p_specification(self, t):
1818        'specification : opt_defs_and_outputs top_level_decode_block'
1819
1820        for f in self.splits.iterkeys():
1821            f.write('\n#endif\n')
1822
1823        for f in self.files.itervalues(): # close ALL the files;
1824            f.close() # not doing so can cause compilation to fail
1825
1826        self.write_top_level_files()
1827
1828        t[0] = True
1829
1830    # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1831    # output statements. Its productions do the hard work of eventually
1832    # instantiating a GenCode, which are generally emitted (written to disk)
1833    # as soon as possible, except for the decode_block, which has to be
1834    # accumulated into one large function of nested switch/case blocks.
1835    def p_opt_defs_and_outputs_0(self, t):
1836        'opt_defs_and_outputs : empty'
1837
1838    def p_opt_defs_and_outputs_1(self, t):
1839        'opt_defs_and_outputs : defs_and_outputs'
1840
1841    def p_defs_and_outputs_0(self, t):
1842        'defs_and_outputs : def_or_output'
1843
1844    def p_defs_and_outputs_1(self, t):
1845        'defs_and_outputs : defs_and_outputs def_or_output'
1846
1847    # The list of possible definition/output statements.
1848    # They are all processed as they are seen.
1849    def p_def_or_output(self, t):
1850        '''def_or_output : name_decl
1851                         | def_format
1852                         | def_bitfield
1853                         | def_bitfield_struct
1854                         | def_template
1855                         | def_operand_types
1856                         | def_operands
1857                         | output
1858                         | global_let
1859                         | split'''
1860
1861    # Utility function used by both invocations of splitting - explicit
1862    # 'split' keyword and split() function inside "let {{ }};" blocks.
1863    def split(self, sec, write=False):
1864        assert(sec != 'header' and "header cannot be split")
1865
1866        f = self.get_file(sec)
1867        self.splits[f] += 1
1868        s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1869        if write:
1870            f.write(s)
1871        else:
1872            return s
1873
1874    # split output file to reduce compilation time
1875    def p_split(self, t):
1876        'split : SPLIT output_type SEMI'
1877        assert(self.isa_name and "'split' not allowed before namespace decl")
1878
1879        self.split(t[2], True)
1880
1881    def p_output_type(self, t):
1882        '''output_type : DECODER
1883                       | HEADER
1884                       | EXEC'''
1885        t[0] = t[1]
1886
1887    # ISA name declaration looks like "namespace <foo>;"
1888    def p_name_decl(self, t):
1889        'name_decl : NAMESPACE ID SEMI'
1890        assert(self.isa_name == None and "Only 1 namespace decl permitted")
1891        self.isa_name = t[2]
1892        self.namespace = t[2] + 'Inst'
1893
1894    # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1895    # directly to the appropriate output section.
1896
1897    # Massage output block by substituting in template definitions and
1898    # bit operators.  We handle '%'s embedded in the string that don't
1899    # indicate template substitutions by doubling them first so that the
1900    # format operation will reduce them back to single '%'s.
1901    def process_output(self, s):
1902        s = self.protectNonSubstPercents(s)
1903        return substBitOps(s % self.templateMap)
1904
1905    def p_output(self, t):
1906        'output : OUTPUT output_type CODELIT SEMI'
1907        kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1908        GenCode(self, **kwargs).emit()
1909
1910    # global let blocks 'let {{...}}' (Python code blocks) are
1911    # executed directly when seen.  Note that these execute in a
1912    # special variable context 'exportContext' to prevent the code
1913    # from polluting this script's namespace.
1914    def p_global_let(self, t):
1915        'global_let : LET CODELIT SEMI'
1916        def _split(sec):
1917            return self.split(sec)
1918        self.updateExportContext()
1919        self.exportContext["header_output"] = ''
1920        self.exportContext["decoder_output"] = ''
1921        self.exportContext["exec_output"] = ''
1922        self.exportContext["decode_block"] = ''
1923        self.exportContext["split"] = _split
1924        split_setup = '''
1925def wrap(func):
1926    def split(sec):
1927        globals()[sec + '_output'] += func(sec)
1928    return split
1929split = wrap(split)
1930del wrap
1931'''
1932        # This tricky setup (immediately above) allows us to just write
1933        # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1934        # will automatically be added to the exec_output variable. The inner
1935        # Python execution environment doesn't know about the split points,
1936        # so we carefully inject and wrap a closure that can retrieve the
1937        # next split's #define from the parser and add it to the current
1938        # emission-in-progress.
1939        try:
1940            exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1941        except Exception, exc:
1942            traceback.print_exc(file=sys.stdout)
1943            if debug:
1944                raise
1945            error(t.lineno(1), 'In global let block: %s' % exc)
1946        GenCode(self,
1947                header_output=self.exportContext["header_output"],
1948                decoder_output=self.exportContext["decoder_output"],
1949                exec_output=self.exportContext["exec_output"],
1950                decode_block=self.exportContext["decode_block"]).emit()
1951
1952    # Define the mapping from operand type extensions to C++ types and
1953    # bit widths (stored in operandTypeMap).
1954    def p_def_operand_types(self, t):
1955        'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1956        try:
1957            self.operandTypeMap = eval('{' + t[3] + '}')
1958        except Exception, exc:
1959            if debug:
1960                raise
1961            error(t.lineno(1),
1962                  'In def operand_types: %s' % exc)
1963
1964    # Define the mapping from operand names to operand classes and
1965    # other traits.  Stored in operandNameMap.
1966    def p_def_operands(self, t):
1967        'def_operands : DEF OPERANDS CODELIT SEMI'
1968        if not hasattr(self, 'operandTypeMap'):
1969            error(t.lineno(1),
1970                  'error: operand types must be defined before operands')
1971        try:
1972            user_dict = eval('{' + t[3] + '}', self.exportContext)
1973        except Exception, exc:
1974            if debug:
1975                raise
1976            error(t.lineno(1), 'In def operands: %s' % exc)
1977        self.buildOperandNameMap(user_dict, t.lexer.lineno)
1978
1979    # A bitfield definition looks like:
1980    # 'def [signed] bitfield <ID> [<first>:<last>]'
1981    # This generates a preprocessor macro in the output file.
1982    def p_def_bitfield_0(self, t):
1983        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1984        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1985        if (t[2] == 'signed'):
1986            expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1987        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1988        GenCode(self, header_output=hash_define).emit()
1989
1990    # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1991    def p_def_bitfield_1(self, t):
1992        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1993        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1994        if (t[2] == 'signed'):
1995            expr = 'sext<%d>(%s)' % (1, expr)
1996        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1997        GenCode(self, header_output=hash_define).emit()
1998
1999    # alternate form for structure member: 'def bitfield <ID> <ID>'
2000    def p_def_bitfield_struct(self, t):
2001        'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
2002        if (t[2] != ''):
2003            error(t.lineno(1),
2004                  'error: structure bitfields are always unsigned.')
2005        expr = 'machInst.%s' % t[5]
2006        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
2007        GenCode(self, header_output=hash_define).emit()
2008
2009    def p_id_with_dot_0(self, t):
2010        'id_with_dot : ID'
2011        t[0] = t[1]
2012
2013    def p_id_with_dot_1(self, t):
2014        'id_with_dot : ID DOT id_with_dot'
2015        t[0] = t[1] + t[2] + t[3]
2016
2017    def p_opt_signed_0(self, t):
2018        'opt_signed : SIGNED'
2019        t[0] = t[1]
2020
2021    def p_opt_signed_1(self, t):
2022        'opt_signed : empty'
2023        t[0] = ''
2024
2025    def p_def_template(self, t):
2026        'def_template : DEF TEMPLATE ID CODELIT SEMI'
2027        if t[3] in self.templateMap:
2028            print("warning: template %s already defined" % t[3])
2029        self.templateMap[t[3]] = Template(self, t[4])
2030
2031    # An instruction format definition looks like
2032    # "def format <fmt>(<params>) {{...}};"
2033    def p_def_format(self, t):
2034        'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
2035        (id, params, code) = (t[3], t[5], t[7])
2036        self.defFormat(id, params, code, t.lexer.lineno)
2037
2038    # The formal parameter list for an instruction format is a
2039    # possibly empty list of comma-separated parameters.  Positional
2040    # (standard, non-keyword) parameters must come first, followed by
2041    # keyword parameters, followed by a '*foo' parameter that gets
2042    # excess positional arguments (as in Python).  Each of these three
2043    # parameter categories is optional.
2044    #
2045    # Note that we do not support the '**foo' parameter for collecting
2046    # otherwise undefined keyword args.  Otherwise the parameter list
2047    # is (I believe) identical to what is supported in Python.
2048    #
2049    # The param list generates a tuple, where the first element is a
2050    # list of the positional params and the second element is a dict
2051    # containing the keyword params.
2052    def p_param_list_0(self, t):
2053        'param_list : positional_param_list COMMA nonpositional_param_list'
2054        t[0] = t[1] + t[3]
2055
2056    def p_param_list_1(self, t):
2057        '''param_list : positional_param_list
2058                      | nonpositional_param_list'''
2059        t[0] = t[1]
2060
2061    def p_positional_param_list_0(self, t):
2062        'positional_param_list : empty'
2063        t[0] = []
2064
2065    def p_positional_param_list_1(self, t):
2066        'positional_param_list : ID'
2067        t[0] = [t[1]]
2068
2069    def p_positional_param_list_2(self, t):
2070        'positional_param_list : positional_param_list COMMA ID'
2071        t[0] = t[1] + [t[3]]
2072
2073    def p_nonpositional_param_list_0(self, t):
2074        'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
2075        t[0] = t[1] + t[3]
2076
2077    def p_nonpositional_param_list_1(self, t):
2078        '''nonpositional_param_list : keyword_param_list
2079                                    | excess_args_param'''
2080        t[0] = t[1]
2081
2082    def p_keyword_param_list_0(self, t):
2083        'keyword_param_list : keyword_param'
2084        t[0] = [t[1]]
2085
2086    def p_keyword_param_list_1(self, t):
2087        'keyword_param_list : keyword_param_list COMMA keyword_param'
2088        t[0] = t[1] + [t[3]]
2089
2090    def p_keyword_param(self, t):
2091        'keyword_param : ID EQUALS expr'
2092        t[0] = t[1] + ' = ' + t[3].__repr__()
2093
2094    def p_excess_args_param(self, t):
2095        'excess_args_param : ASTERISK ID'
2096        # Just concatenate them: '*ID'.  Wrap in list to be consistent
2097        # with positional_param_list and keyword_param_list.
2098        t[0] = [t[1] + t[2]]
2099
2100    # End of format definition-related rules.
2101    ##############
2102
2103    #
2104    # A decode block looks like:
2105    #       decode <field1> [, <field2>]* [default <inst>] { ... }
2106    #
2107    def p_top_level_decode_block(self, t):
2108        'top_level_decode_block : decode_block'
2109        codeObj = t[1]
2110        codeObj.wrap_decode_block('''
2111StaticInstPtr
2112%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
2113{
2114    using namespace %(namespace)s;
2115''' % self, '}')
2116
2117        codeObj.emit()
2118
2119    def p_decode_block(self, t):
2120        'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
2121        default_defaults = self.defaultStack.pop()
2122        codeObj = t[5]
2123        # use the "default defaults" only if there was no explicit
2124        # default statement in decode_stmt_list
2125        if not codeObj.has_decode_default:
2126            codeObj += default_defaults
2127        codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
2128        t[0] = codeObj
2129
2130    # The opt_default statement serves only to push the "default
2131    # defaults" onto defaultStack.  This value will be used by nested
2132    # decode blocks, and used and popped off when the current
2133    # decode_block is processed (in p_decode_block() above).
2134    def p_opt_default_0(self, t):
2135        'opt_default : empty'
2136        # no default specified: reuse the one currently at the top of
2137        # the stack
2138        self.defaultStack.push(self.defaultStack.top())
2139        # no meaningful value returned
2140        t[0] = None
2141
2142    def p_opt_default_1(self, t):
2143        'opt_default : DEFAULT inst'
2144        # push the new default
2145        codeObj = t[2]
2146        codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
2147        self.defaultStack.push(codeObj)
2148        # no meaningful value returned
2149        t[0] = None
2150
2151    def p_decode_stmt_list_0(self, t):
2152        'decode_stmt_list : decode_stmt'
2153        t[0] = t[1]
2154
2155    def p_decode_stmt_list_1(self, t):
2156        'decode_stmt_list : decode_stmt decode_stmt_list'
2157        if (t[1].has_decode_default and t[2].has_decode_default):
2158            error(t.lineno(1), 'Two default cases in decode block')
2159        t[0] = t[1] + t[2]
2160
2161    #
2162    # Decode statement rules
2163    #
2164    # There are four types of statements allowed in a decode block:
2165    # 1. Format blocks 'format <foo> { ... }'
2166    # 2. Nested decode blocks
2167    # 3. Instruction definitions.
2168    # 4. C preprocessor directives.
2169
2170
2171    # Preprocessor directives found in a decode statement list are
2172    # passed through to the output, replicated to all of the output
2173    # code streams.  This works well for ifdefs, so we can ifdef out
2174    # both the declarations and the decode cases generated by an
2175    # instruction definition.  Handling them as part of the grammar
2176    # makes it easy to keep them in the right place with respect to
2177    # the code generated by the other statements.
2178    def p_decode_stmt_cpp(self, t):
2179        'decode_stmt : CPPDIRECTIVE'
2180        t[0] = GenCode(self, t[1], t[1], t[1], t[1])
2181
2182    # A format block 'format <foo> { ... }' sets the default
2183    # instruction format used to handle instruction definitions inside
2184    # the block.  This format can be overridden by using an explicit
2185    # format on the instruction definition or with a nested format
2186    # block.
2187    def p_decode_stmt_format(self, t):
2188        'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
2189        # The format will be pushed on the stack when 'push_format_id'
2190        # is processed (see below).  Once the parser has recognized
2191        # the full production (though the right brace), we're done
2192        # with the format, so now we can pop it.
2193        self.formatStack.pop()
2194        t[0] = t[4]
2195
2196    # This rule exists so we can set the current format (& push the
2197    # stack) when we recognize the format name part of the format
2198    # block.
2199    def p_push_format_id(self, t):
2200        'push_format_id : ID'
2201        try:
2202            self.formatStack.push(self.formatMap[t[1]])
2203            t[0] = ('', '// format %s' % t[1])
2204        except KeyError:
2205            error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2206
2207    # Nested decode block: if the value of the current field matches
2208    # the specified constant(s), do a nested decode on some other field.
2209    def p_decode_stmt_decode(self, t):
2210        'decode_stmt : case_list COLON decode_block'
2211        case_list = t[1]
2212        codeObj = t[3]
2213        # just wrap the decoding code from the block as a case in the
2214        # outer switch statement.
2215        codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list),
2216                                  'M5_UNREACHABLE;\n')
2217        codeObj.has_decode_default = (case_list == ['default:'])
2218        t[0] = codeObj
2219
2220    # Instruction definition (finally!).
2221    def p_decode_stmt_inst(self, t):
2222        'decode_stmt : case_list COLON inst SEMI'
2223        case_list = t[1]
2224        codeObj = t[3]
2225        codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2226        codeObj.has_decode_default = (case_list == ['default:'])
2227        t[0] = codeObj
2228
2229    # The constant list for a decode case label must be non-empty, and must
2230    # either be the keyword 'default', or made up of one or more
2231    # comma-separated integer literals or strings which evaluate to
2232    # constants when compiled as C++.
2233    def p_case_list_0(self, t):
2234        'case_list : DEFAULT'
2235        t[0] = ['default:']
2236
2237    def prep_int_lit_case_label(self, lit):
2238        if lit >= 2**32:
2239            return 'case ULL(%#x): ' % lit
2240        else:
2241            return 'case %#x: ' % lit
2242
2243    def prep_str_lit_case_label(self, lit):
2244        return 'case %s: ' % lit
2245
2246    def p_case_list_1(self, t):
2247        'case_list : INTLIT'
2248        t[0] = [self.prep_int_lit_case_label(t[1])]
2249
2250    def p_case_list_2(self, t):
2251        'case_list : STRLIT'
2252        t[0] = [self.prep_str_lit_case_label(t[1])]
2253
2254    def p_case_list_3(self, t):
2255        'case_list : case_list COMMA INTLIT'
2256        t[0] = t[1]
2257        t[0].append(self.prep_int_lit_case_label(t[3]))
2258
2259    def p_case_list_4(self, t):
2260        'case_list : case_list COMMA STRLIT'
2261        t[0] = t[1]
2262        t[0].append(self.prep_str_lit_case_label(t[3]))
2263
2264    # Define an instruction using the current instruction format
2265    # (specified by an enclosing format block).
2266    # "<mnemonic>(<args>)"
2267    def p_inst_0(self, t):
2268        'inst : ID LPAREN arg_list RPAREN'
2269        # Pass the ID and arg list to the current format class to deal with.
2270        currentFormat = self.formatStack.top()
2271        codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2272        args = ','.join(map(str, t[3]))
2273        args = re.sub('(?m)^', '//', args)
2274        args = re.sub('^//', '', args)
2275        comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2276        codeObj.prepend_all(comment)
2277        t[0] = codeObj
2278
2279    # Define an instruction using an explicitly specified format:
2280    # "<fmt>::<mnemonic>(<args>)"
2281    def p_inst_1(self, t):
2282        'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2283        try:
2284            format = self.formatMap[t[1]]
2285        except KeyError:
2286            error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2287
2288        codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2289        comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2290        codeObj.prepend_all(comment)
2291        t[0] = codeObj
2292
2293    # The arg list generates a tuple, where the first element is a
2294    # list of the positional args and the second element is a dict
2295    # containing the keyword args.
2296    def p_arg_list_0(self, t):
2297        'arg_list : positional_arg_list COMMA keyword_arg_list'
2298        t[0] = ( t[1], t[3] )
2299
2300    def p_arg_list_1(self, t):
2301        'arg_list : positional_arg_list'
2302        t[0] = ( t[1], {} )
2303
2304    def p_arg_list_2(self, t):
2305        'arg_list : keyword_arg_list'
2306        t[0] = ( [], t[1] )
2307
2308    def p_positional_arg_list_0(self, t):
2309        'positional_arg_list : empty'
2310        t[0] = []
2311
2312    def p_positional_arg_list_1(self, t):
2313        'positional_arg_list : expr'
2314        t[0] = [t[1]]
2315
2316    def p_positional_arg_list_2(self, t):
2317        'positional_arg_list : positional_arg_list COMMA expr'
2318        t[0] = t[1] + [t[3]]
2319
2320    def p_keyword_arg_list_0(self, t):
2321        'keyword_arg_list : keyword_arg'
2322        t[0] = t[1]
2323
2324    def p_keyword_arg_list_1(self, t):
2325        'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2326        t[0] = t[1]
2327        t[0].update(t[3])
2328
2329    def p_keyword_arg(self, t):
2330        'keyword_arg : ID EQUALS expr'
2331        t[0] = { t[1] : t[3] }
2332
2333    #
2334    # Basic expressions.  These constitute the argument values of
2335    # "function calls" (i.e. instruction definitions in the decode
2336    # block) and default values for formal parameters of format
2337    # functions.
2338    #
2339    # Right now, these are either strings, integers, or (recursively)
2340    # lists of exprs (using Python square-bracket list syntax).  Note
2341    # that bare identifiers are trated as string constants here (since
2342    # there isn't really a variable namespace to refer to).
2343    #
2344    def p_expr_0(self, t):
2345        '''expr : ID
2346                | INTLIT
2347                | STRLIT
2348                | CODELIT'''
2349        t[0] = t[1]
2350
2351    def p_expr_1(self, t):
2352        '''expr : LBRACKET list_expr RBRACKET'''
2353        t[0] = t[2]
2354
2355    def p_list_expr_0(self, t):
2356        'list_expr : expr'
2357        t[0] = [t[1]]
2358
2359    def p_list_expr_1(self, t):
2360        'list_expr : list_expr COMMA expr'
2361        t[0] = t[1] + [t[3]]
2362
2363    def p_list_expr_2(self, t):
2364        'list_expr : empty'
2365        t[0] = []
2366
2367    #
2368    # Empty production... use in other rules for readability.
2369    #
2370    def p_empty(self, t):
2371        'empty :'
2372        pass
2373
2374    # Parse error handler.  Note that the argument here is the
2375    # offending *token*, not a grammar symbol (hence the need to use
2376    # t.value)
2377    def p_error(self, t):
2378        if t:
2379            error(t.lexer.lineno, "syntax error at '%s'" % t.value)
2380        else:
2381            error("unknown syntax error")
2382
2383    # END OF GRAMMAR RULES
2384
2385    def updateExportContext(self):
2386
2387        # create a continuation that allows us to grab the current parser
2388        def wrapInstObjParams(*args):
2389            return InstObjParams(self, *args)
2390        self.exportContext['InstObjParams'] = wrapInstObjParams
2391        self.exportContext.update(self.templateMap)
2392
2393    def defFormat(self, id, params, code, lineno):
2394        '''Define a new format'''
2395
2396        # make sure we haven't already defined this one
2397        if id in self.formatMap:
2398            error(lineno, 'format %s redefined.' % id)
2399
2400        # create new object and store in global map
2401        self.formatMap[id] = Format(id, params, code)
2402
2403    def protectNonSubstPercents(self, s):
2404        '''Protect any non-dict-substitution '%'s in a format string
2405        (i.e. those not followed by '(')'''
2406
2407        return re.sub(r'%(?!\()', '%%', s)
2408
2409    def buildOperandNameMap(self, user_dict, lineno):
2410        operand_name = {}
2411        for op_name, val in user_dict.iteritems():
2412
2413            # Check if extra attributes have been specified.
2414            if len(val) > 9:
2415                error(lineno, 'error: too many attributes for operand "%s"' %
2416                      base_cls_name)
2417
2418            # Pad val with None in case optional args are missing
2419            val += (None, None, None, None)
2420            base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2421            read_code, write_code, read_predicate, write_predicate = val[:9]
2422
2423            # Canonical flag structure is a triple of lists, where each list
2424            # indicates the set of flags implied by this operand always, when
2425            # used as a source, and when used as a dest, respectively.
2426            # For simplicity this can be initialized using a variety of fairly
2427            # obvious shortcuts; we convert these to canonical form here.
2428            if not flags:
2429                # no flags specified (e.g., 'None')
2430                flags = ( [], [], [] )
2431            elif isinstance(flags, str):
2432                # a single flag: assumed to be unconditional
2433                flags = ( [ flags ], [], [] )
2434            elif isinstance(flags, list):
2435                # a list of flags: also assumed to be unconditional
2436                flags = ( flags, [], [] )
2437            elif isinstance(flags, tuple):
2438                # it's a tuple: it should be a triple,
2439                # but each item could be a single string or a list
2440                (uncond_flags, src_flags, dest_flags) = flags
2441                flags = (makeList(uncond_flags),
2442                         makeList(src_flags), makeList(dest_flags))
2443
2444            # Accumulate attributes of new operand class in tmp_dict
2445            tmp_dict = {}
2446            attrList = ['reg_spec', 'flags', 'sort_pri',
2447                        'read_code', 'write_code',
2448                        'read_predicate', 'write_predicate']
2449            if dflt_ext:
2450                dflt_ctype = self.operandTypeMap[dflt_ext]
2451                attrList.extend(['dflt_ctype', 'dflt_ext'])
2452            # reg_spec is either just a string or a dictionary
2453            # (for elems of vector)
2454            if isinstance(reg_spec, tuple):
2455                (reg_spec, elem_spec) = reg_spec
2456                if isinstance(elem_spec, str):
2457                    attrList.append('elem_spec')
2458                else:
2459                    assert(isinstance(elem_spec, dict))
2460                    elems = elem_spec
2461                    attrList.append('elems')
2462            for attr in attrList:
2463                tmp_dict[attr] = eval(attr)
2464            tmp_dict['base_name'] = op_name
2465
2466            # New class name will be e.g. "IntReg_Ra"
2467            cls_name = base_cls_name + '_' + op_name
2468            # Evaluate string arg to get class object.  Note that the
2469            # actual base class for "IntReg" is "IntRegOperand", i.e. we
2470            # have to append "Operand".
2471            try:
2472                base_cls = eval(base_cls_name + 'Operand')
2473            except NameError:
2474                error(lineno,
2475                      'error: unknown operand base class "%s"' % base_cls_name)
2476            # The following statement creates a new class called
2477            # <cls_name> as a subclass of <base_cls> with the attributes
2478            # in tmp_dict, just as if we evaluated a class declaration.
2479            operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2480
2481        self.operandNameMap = operand_name
2482
2483        # Define operand variables.
2484        operands = user_dict.keys()
2485        # Add the elems defined in the vector operands and
2486        # build a map elem -> vector (used in OperandList)
2487        elem_to_vec = {}
2488        for op in user_dict.keys():
2489            if hasattr(self.operandNameMap[op], 'elems'):
2490                for elem in self.operandNameMap[op].elems.keys():
2491                    operands.append(elem)
2492                    elem_to_vec[elem] = op
2493        self.elemToVector = elem_to_vec
2494        extensions = self.operandTypeMap.keys()
2495
2496        operandsREString = r'''
2497        (?<!\w)      # neg. lookbehind assertion: prevent partial matches
2498        ((%s)(?:_(%s))?)   # match: operand with optional '_' then suffix
2499        (?!\w)       # neg. lookahead assertion: prevent partial matches
2500        ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2501
2502        self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2503
2504        # Same as operandsREString, but extension is mandatory, and only two
2505        # groups are returned (base and ext, not full name as above).
2506        # Used for subtituting '_' for '.' to make C++ identifiers.
2507        operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2508            % (string.join(operands, '|'), string.join(extensions, '|'))
2509
2510        self.operandsWithExtRE = \
2511            re.compile(operandsWithExtREString, re.MULTILINE)
2512
2513    def substMungedOpNames(self, code):
2514        '''Munge operand names in code string to make legal C++
2515        variable names.  This means getting rid of the type extension
2516        if any.  Will match base_name attribute of Operand object.)'''
2517        return self.operandsWithExtRE.sub(r'\1', code)
2518
2519    def mungeSnippet(self, s):
2520        '''Fix up code snippets for final substitution in templates.'''
2521        if isinstance(s, str):
2522            return self.substMungedOpNames(substBitOps(s))
2523        else:
2524            return s
2525
2526    def open(self, name, bare=False):
2527        '''Open the output file for writing and include scary warning.'''
2528        filename = os.path.join(self.output_dir, name)
2529        f = open(filename, 'w')
2530        if f:
2531            if not bare:
2532                f.write(ISAParser.scaremonger_template % self)
2533        return f
2534
2535    def update(self, file, contents):
2536        '''Update the output file only.  Scons should handle the case when
2537        the new contents are unchanged using its built-in hash feature.'''
2538        f = self.open(file)
2539        f.write(contents)
2540        f.close()
2541
2542    # This regular expression matches '##include' directives
2543    includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2544                           re.MULTILINE)
2545
2546    def replace_include(self, matchobj, dirname):
2547        """Function to replace a matched '##include' directive with the
2548        contents of the specified file (with nested ##includes
2549        replaced recursively).  'matchobj' is an re match object
2550        (from a match of includeRE) and 'dirname' is the directory
2551        relative to which the file path should be resolved."""
2552
2553        fname = matchobj.group('filename')
2554        full_fname = os.path.normpath(os.path.join(dirname, fname))
2555        contents = '##newfile "%s"\n%s\n##endfile\n' % \
2556                   (full_fname, self.read_and_flatten(full_fname))
2557        return contents
2558
2559    def read_and_flatten(self, filename):
2560        """Read a file and recursively flatten nested '##include' files."""
2561
2562        current_dir = os.path.dirname(filename)
2563        try:
2564            contents = open(filename).read()
2565        except IOError:
2566            error('Error including file "%s"' % filename)
2567
2568        self.fileNameStack.push(LineTracker(filename))
2569
2570        # Find any includes and include them
2571        def replace(matchobj):
2572            return self.replace_include(matchobj, current_dir)
2573        contents = self.includeRE.sub(replace, contents)
2574
2575        self.fileNameStack.pop()
2576        return contents
2577
2578    AlreadyGenerated = {}
2579
2580    def _parse_isa_desc(self, isa_desc_file):
2581        '''Read in and parse the ISA description.'''
2582
2583        # The build system can end up running the ISA parser twice: once to
2584        # finalize the build dependencies, and then to actually generate
2585        # the files it expects (in src/arch/$ARCH/generated). This code
2586        # doesn't do anything different either time, however; the SCons
2587        # invocations just expect different things. Since this code runs
2588        # within SCons, we can just remember that we've already run and
2589        # not perform a completely unnecessary run, since the ISA parser's
2590        # effect is idempotent.
2591        if isa_desc_file in ISAParser.AlreadyGenerated:
2592            return
2593
2594        # grab the last three path components of isa_desc_file
2595        self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2596
2597        # Read file and (recursively) all included files into a string.
2598        # PLY requires that the input be in a single string so we have to
2599        # do this up front.
2600        isa_desc = self.read_and_flatten(isa_desc_file)
2601
2602        # Initialize lineno tracker
2603        self.lex.lineno = LineTracker(isa_desc_file)
2604
2605        # Parse.
2606        self.parse_string(isa_desc)
2607
2608        ISAParser.AlreadyGenerated[isa_desc_file] = None
2609
2610    def parse_isa_desc(self, *args, **kwargs):
2611        try:
2612            self._parse_isa_desc(*args, **kwargs)
2613        except ISAParserError, e:
2614            print(backtrace(self.fileNameStack))
2615            print("At %s:" % e.lineno)
2616            print(e)
2617            sys.exit(1)
2618
2619# Called as script: get args from command line.
2620# Args are: <isa desc file> <output dir>
2621if __name__ == '__main__':
2622    ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
2623