isa_parser.py revision 10592:7734249c92b9
1# Copyright (c) 2014 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder.  You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64    return re.sub(r'(?m)^(?!#)', '  ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation.  Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation.  Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84    # get rid of blank lines first
85    s = re.sub(r'(?m)^\s*\n', '', s);
86    if (s != '' and re.match(r'[ \t]', s[0])):
87        s = 'if 1:\n' + s
88    return s
89
90class ISAParserError(Exception):
91    """Error handler for parser errors"""
92    def __init__(self, first, second=None):
93        if second is None:
94            self.lineno = 0
95            self.string = first
96        else:
97            if hasattr(first, 'lexer'):
98                first = first.lexer.lineno
99            self.lineno = first
100            self.string = second
101
102    def display(self, filename_stack, print_traceback=debug):
103        # Output formatted to work under Emacs compile-mode.  Optional
104        # 'print_traceback' arg, if set to True, prints a Python stack
105        # backtrace too (can be handy when trying to debug the parser
106        # itself).
107
108        spaces = ""
109        for (filename, line) in filename_stack[:-1]:
110            print "%sIn file included from %s:" % (spaces, filename)
111            spaces += "  "
112
113        # Print a Python stack backtrace if requested.
114        if print_traceback or not self.lineno:
115            traceback.print_exc()
116
117        line_str = "%s:" % (filename_stack[-1][0], )
118        if self.lineno:
119            line_str += "%d:" % (self.lineno, )
120
121        return "%s%s %s" % (spaces, line_str, self.string)
122
123    def exit(self, filename_stack, print_traceback=debug):
124        # Just call exit.
125
126        sys.exit(self.display(filename_stack, print_traceback))
127
128def error(*args):
129    raise ISAParserError(*args)
130
131####################
132# Template objects.
133#
134# Template objects are format strings that allow substitution from
135# the attribute spaces of other objects (e.g. InstObjParams instances).
136
137labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
138
139class Template(object):
140    def __init__(self, parser, t):
141        self.parser = parser
142        self.template = t
143
144    def subst(self, d):
145        myDict = None
146
147        # Protect non-Python-dict substitutions (e.g. if there's a printf
148        # in the templated C++ code)
149        template = self.parser.protectNonSubstPercents(self.template)
150        # CPU-model-specific substitutions are handled later (in GenCode).
151        template = self.parser.protectCpuSymbols(template)
152
153        # Build a dict ('myDict') to use for the template substitution.
154        # Start with the template namespace.  Make a copy since we're
155        # going to modify it.
156        myDict = self.parser.templateMap.copy()
157
158        if isinstance(d, InstObjParams):
159            # If we're dealing with an InstObjParams object, we need
160            # to be a little more sophisticated.  The instruction-wide
161            # parameters are already formed, but the parameters which
162            # are only function wide still need to be generated.
163            compositeCode = ''
164
165            myDict.update(d.__dict__)
166            # The "operands" and "snippets" attributes of the InstObjParams
167            # objects are for internal use and not substitution.
168            del myDict['operands']
169            del myDict['snippets']
170
171            snippetLabels = [l for l in labelRE.findall(template)
172                             if d.snippets.has_key(l)]
173
174            snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
175                             for s in snippetLabels])
176
177            myDict.update(snippets)
178
179            compositeCode = ' '.join(map(str, snippets.values()))
180
181            # Add in template itself in case it references any
182            # operands explicitly (like Mem)
183            compositeCode += ' ' + template
184
185            operands = SubOperandList(self.parser, compositeCode, d.operands)
186
187            myDict['op_decl'] = operands.concatAttrStrings('op_decl')
188            if operands.readPC or operands.setPC:
189                myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
190
191            # In case there are predicated register reads and write, declare
192            # the variables for register indicies. It is being assumed that
193            # all the operands in the OperandList are also in the
194            # SubOperandList and in the same order. Otherwise, it is
195            # expected that predication would not be used for the operands.
196            if operands.predRead:
197                myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
198            if operands.predWrite:
199                myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
200
201            is_src = lambda op: op.is_src
202            is_dest = lambda op: op.is_dest
203
204            myDict['op_src_decl'] = \
205                      operands.concatSomeAttrStrings(is_src, 'op_src_decl')
206            myDict['op_dest_decl'] = \
207                      operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
208            if operands.readPC:
209                myDict['op_src_decl'] += \
210                    'TheISA::PCState __parserAutoPCState;\n'
211            if operands.setPC:
212                myDict['op_dest_decl'] += \
213                    'TheISA::PCState __parserAutoPCState;\n'
214
215            myDict['op_rd'] = operands.concatAttrStrings('op_rd')
216            if operands.readPC:
217                myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
218                                  myDict['op_rd']
219
220            # Compose the op_wb string. If we're going to write back the
221            # PC state because we changed some of its elements, we'll need to
222            # do that as early as possible. That allows later uncoordinated
223            # modifications to the PC to layer appropriately.
224            reordered = list(operands.items)
225            reordered.reverse()
226            op_wb_str = ''
227            pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
228            for op_desc in reordered:
229                if op_desc.isPCPart() and op_desc.is_dest:
230                    op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
231                    pcWbStr = ''
232                else:
233                    op_wb_str = op_desc.op_wb + op_wb_str
234            myDict['op_wb'] = op_wb_str
235
236        elif isinstance(d, dict):
237            # if the argument is a dictionary, we just use it.
238            myDict.update(d)
239        elif hasattr(d, '__dict__'):
240            # if the argument is an object, we use its attribute map.
241            myDict.update(d.__dict__)
242        else:
243            raise TypeError, "Template.subst() arg must be or have dictionary"
244        return template % myDict
245
246    # Convert to string.  This handles the case when a template with a
247    # CPU-specific term gets interpolated into another template or into
248    # an output block.
249    def __str__(self):
250        return self.parser.expandCpuSymbolsToString(self.template)
251
252################
253# Format object.
254#
255# A format object encapsulates an instruction format.  It must provide
256# a defineInst() method that generates the code for an instruction
257# definition.
258
259class Format(object):
260    def __init__(self, id, params, code):
261        self.id = id
262        self.params = params
263        label = 'def format ' + id
264        self.user_code = compile(fixPythonIndentation(code), label, 'exec')
265        param_list = string.join(params, ", ")
266        f = '''def defInst(_code, _context, %s):
267                my_locals = vars().copy()
268                exec _code in _context, my_locals
269                return my_locals\n''' % param_list
270        c = compile(f, label + ' wrapper', 'exec')
271        exec c
272        self.func = defInst
273
274    def defineInst(self, parser, name, args, lineno):
275        parser.updateExportContext()
276        context = parser.exportContext.copy()
277        if len(name):
278            Name = name[0].upper()
279            if len(name) > 1:
280                Name += name[1:]
281        context.update({ 'name' : name, 'Name' : Name })
282        try:
283            vars = self.func(self.user_code, context, *args[0], **args[1])
284        except Exception, exc:
285            if debug:
286                raise
287            error(lineno, 'error defining "%s": %s.' % (name, exc))
288        for k in vars.keys():
289            if k not in ('header_output', 'decoder_output',
290                         'exec_output', 'decode_block'):
291                del vars[k]
292        return GenCode(parser, **vars)
293
294# Special null format to catch an implicit-format instruction
295# definition outside of any format block.
296class NoFormat(object):
297    def __init__(self):
298        self.defaultInst = ''
299
300    def defineInst(self, parser, name, args, lineno):
301        error(lineno,
302              'instruction definition "%s" with no active format!' % name)
303
304###############
305# GenCode class
306#
307# The GenCode class encapsulates generated code destined for various
308# output files.  The header_output and decoder_output attributes are
309# strings containing code destined for decoder.hh and decoder.cc
310# respectively.  The decode_block attribute contains code to be
311# incorporated in the decode function itself (that will also end up in
312# decoder.cc).  The exec_output attribute is a dictionary with a key
313# for each CPU model name; the value associated with a particular key
314# is the string of code for that CPU model's exec.cc file.  The
315# has_decode_default attribute is used in the decode block to allow
316# explicit default clauses to override default default clauses.
317
318class GenCode(object):
319    # Constructor.  At this point we substitute out all CPU-specific
320    # symbols.  For the exec output, these go into the per-model
321    # dictionary.  For all other output types they get collapsed into
322    # a single string.
323    def __init__(self, parser,
324                 header_output = '', decoder_output = '', exec_output = '',
325                 decode_block = '', has_decode_default = False):
326        self.parser = parser
327        self.header_output = parser.expandCpuSymbolsToString(header_output)
328        self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
329        self.exec_output = exec_output
330        self.decode_block = decode_block
331        self.has_decode_default = has_decode_default
332
333    # Write these code chunks out to the filesystem.  They will be properly
334    # interwoven by the write_top_level_files().
335    def emit(self):
336        if self.header_output:
337            self.parser.get_file('header').write(self.header_output)
338        if self.decoder_output:
339            self.parser.get_file('decoder').write(self.decoder_output)
340        if self.exec_output:
341            self.parser.get_file('exec').write(self.exec_output)
342        if self.decode_block:
343            self.parser.get_file('decode_block').write(self.decode_block)
344
345    # Override '+' operator: generate a new GenCode object that
346    # concatenates all the individual strings in the operands.
347    def __add__(self, other):
348        return GenCode(self.parser,
349                       self.header_output + other.header_output,
350                       self.decoder_output + other.decoder_output,
351                       self.exec_output + other.exec_output,
352                       self.decode_block + other.decode_block,
353                       self.has_decode_default or other.has_decode_default)
354
355    # Prepend a string (typically a comment) to all the strings.
356    def prepend_all(self, pre):
357        self.header_output = pre + self.header_output
358        self.decoder_output  = pre + self.decoder_output
359        self.decode_block = pre + self.decode_block
360        self.exec_output  = pre + self.exec_output
361
362    # Wrap the decode block in a pair of strings (e.g., 'case foo:'
363    # and 'break;').  Used to build the big nested switch statement.
364    def wrap_decode_block(self, pre, post = ''):
365        self.decode_block = pre + indent(self.decode_block) + post
366
367#####################################################################
368#
369#                      Bitfield Operator Support
370#
371#####################################################################
372
373bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
374
375bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
376bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
377
378def substBitOps(code):
379    # first convert single-bit selectors to two-index form
380    # i.e., <n> --> <n:n>
381    code = bitOp1ArgRE.sub(r'<\1:\1>', code)
382    # simple case: selector applied to ID (name)
383    # i.e., foo<a:b> --> bits(foo, a, b)
384    code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
385    # if selector is applied to expression (ending in ')'),
386    # we need to search backward for matching '('
387    match = bitOpExprRE.search(code)
388    while match:
389        exprEnd = match.start()
390        here = exprEnd - 1
391        nestLevel = 1
392        while nestLevel > 0:
393            if code[here] == '(':
394                nestLevel -= 1
395            elif code[here] == ')':
396                nestLevel += 1
397            here -= 1
398            if here < 0:
399                sys.exit("Didn't find '('!")
400        exprStart = here+1
401        newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
402                                         match.group(1), match.group(2))
403        code = code[:exprStart] + newExpr + code[match.end():]
404        match = bitOpExprRE.search(code)
405    return code
406
407
408#####################################################################
409#
410#                             Code Parser
411#
412# The remaining code is the support for automatically extracting
413# instruction characteristics from pseudocode.
414#
415#####################################################################
416
417# Force the argument to be a list.  Useful for flags, where a caller
418# can specify a singleton flag or a list of flags.  Also usful for
419# converting tuples to lists so they can be modified.
420def makeList(arg):
421    if isinstance(arg, list):
422        return arg
423    elif isinstance(arg, tuple):
424        return list(arg)
425    elif not arg:
426        return []
427    else:
428        return [ arg ]
429
430class Operand(object):
431    '''Base class for operand descriptors.  An instance of this class
432    (or actually a class derived from this one) represents a specific
433    operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
434    derived classes encapsulates the traits of a particular operand
435    type (e.g., "32-bit integer register").'''
436
437    def buildReadCode(self, func = None):
438        subst_dict = {"name": self.base_name,
439                      "func": func,
440                      "reg_idx": self.reg_spec,
441                      "ctype": self.ctype}
442        if hasattr(self, 'src_reg_idx'):
443            subst_dict['op_idx'] = self.src_reg_idx
444        code = self.read_code % subst_dict
445        return '%s = %s;\n' % (self.base_name, code)
446
447    def buildWriteCode(self, func = None):
448        subst_dict = {"name": self.base_name,
449                      "func": func,
450                      "reg_idx": self.reg_spec,
451                      "ctype": self.ctype,
452                      "final_val": self.base_name}
453        if hasattr(self, 'dest_reg_idx'):
454            subst_dict['op_idx'] = self.dest_reg_idx
455        code = self.write_code % subst_dict
456        return '''
457        {
458            %s final_val = %s;
459            %s;
460            if (traceData) { traceData->setData(final_val); }
461        }''' % (self.dflt_ctype, self.base_name, code)
462
463    def __init__(self, parser, full_name, ext, is_src, is_dest):
464        self.full_name = full_name
465        self.ext = ext
466        self.is_src = is_src
467        self.is_dest = is_dest
468        # The 'effective extension' (eff_ext) is either the actual
469        # extension, if one was explicitly provided, or the default.
470        if ext:
471            self.eff_ext = ext
472        elif hasattr(self, 'dflt_ext'):
473            self.eff_ext = self.dflt_ext
474
475        if hasattr(self, 'eff_ext'):
476            self.ctype = parser.operandTypeMap[self.eff_ext]
477
478    # Finalize additional fields (primarily code fields).  This step
479    # is done separately since some of these fields may depend on the
480    # register index enumeration that hasn't been performed yet at the
481    # time of __init__(). The register index enumeration is affected
482    # by predicated register reads/writes. Hence, we forward the flags
483    # that indicate whether or not predication is in use.
484    def finalize(self, predRead, predWrite):
485        self.flags = self.getFlags()
486        self.constructor = self.makeConstructor(predRead, predWrite)
487        self.op_decl = self.makeDecl()
488
489        if self.is_src:
490            self.op_rd = self.makeRead(predRead)
491            self.op_src_decl = self.makeDecl()
492        else:
493            self.op_rd = ''
494            self.op_src_decl = ''
495
496        if self.is_dest:
497            self.op_wb = self.makeWrite(predWrite)
498            self.op_dest_decl = self.makeDecl()
499        else:
500            self.op_wb = ''
501            self.op_dest_decl = ''
502
503    def isMem(self):
504        return 0
505
506    def isReg(self):
507        return 0
508
509    def isFloatReg(self):
510        return 0
511
512    def isIntReg(self):
513        return 0
514
515    def isCCReg(self):
516        return 0
517
518    def isControlReg(self):
519        return 0
520
521    def isPCState(self):
522        return 0
523
524    def isPCPart(self):
525        return self.isPCState() and self.reg_spec
526
527    def hasReadPred(self):
528        return self.read_predicate != None
529
530    def hasWritePred(self):
531        return self.write_predicate != None
532
533    def getFlags(self):
534        # note the empty slice '[:]' gives us a copy of self.flags[0]
535        # instead of a reference to it
536        my_flags = self.flags[0][:]
537        if self.is_src:
538            my_flags += self.flags[1]
539        if self.is_dest:
540            my_flags += self.flags[2]
541        return my_flags
542
543    def makeDecl(self):
544        # Note that initializations in the declarations are solely
545        # to avoid 'uninitialized variable' errors from the compiler.
546        return self.ctype + ' ' + self.base_name + ' = 0;\n';
547
548class IntRegOperand(Operand):
549    def isReg(self):
550        return 1
551
552    def isIntReg(self):
553        return 1
554
555    def makeConstructor(self, predRead, predWrite):
556        c_src = ''
557        c_dest = ''
558
559        if self.is_src:
560            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
561            if self.hasReadPred():
562                c_src = '\n\tif (%s) {%s\n\t}' % \
563                        (self.read_predicate, c_src)
564
565        if self.is_dest:
566            c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
567                    (self.reg_spec)
568            c_dest += '\n\t_numIntDestRegs++;'
569            if self.hasWritePred():
570                c_dest = '\n\tif (%s) {%s\n\t}' % \
571                         (self.write_predicate, c_dest)
572
573        return c_src + c_dest
574
575    def makeRead(self, predRead):
576        if (self.ctype == 'float' or self.ctype == 'double'):
577            error('Attempt to read integer register as FP')
578        if self.read_code != None:
579            return self.buildReadCode('readIntRegOperand')
580
581        int_reg_val = ''
582        if predRead:
583            int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
584            if self.hasReadPred():
585                int_reg_val = '(%s) ? %s : 0' % \
586                              (self.read_predicate, int_reg_val)
587        else:
588            int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
589
590        return '%s = %s;\n' % (self.base_name, int_reg_val)
591
592    def makeWrite(self, predWrite):
593        if (self.ctype == 'float' or self.ctype == 'double'):
594            error('Attempt to write integer register as FP')
595        if self.write_code != None:
596            return self.buildWriteCode('setIntRegOperand')
597
598        if predWrite:
599            wp = 'true'
600            if self.hasWritePred():
601                wp = self.write_predicate
602
603            wcond = 'if (%s)' % (wp)
604            windex = '_destIndex++'
605        else:
606            wcond = ''
607            windex = '%d' % self.dest_reg_idx
608
609        wb = '''
610        %s
611        {
612            %s final_val = %s;
613            xc->setIntRegOperand(this, %s, final_val);\n
614            if (traceData) { traceData->setData(final_val); }
615        }''' % (wcond, self.ctype, self.base_name, windex)
616
617        return wb
618
619class FloatRegOperand(Operand):
620    def isReg(self):
621        return 1
622
623    def isFloatReg(self):
624        return 1
625
626    def makeConstructor(self, predRead, predWrite):
627        c_src = ''
628        c_dest = ''
629
630        if self.is_src:
631            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
632                    (self.reg_spec)
633
634        if self.is_dest:
635            c_dest = \
636              '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
637              (self.reg_spec)
638            c_dest += '\n\t_numFPDestRegs++;'
639
640        return c_src + c_dest
641
642    def makeRead(self, predRead):
643        bit_select = 0
644        if (self.ctype == 'float' or self.ctype == 'double'):
645            func = 'readFloatRegOperand'
646        else:
647            func = 'readFloatRegOperandBits'
648        if self.read_code != None:
649            return self.buildReadCode(func)
650
651        if predRead:
652            rindex = '_sourceIndex++'
653        else:
654            rindex = '%d' % self.src_reg_idx
655
656        return '%s = xc->%s(this, %s);\n' % \
657            (self.base_name, func, rindex)
658
659    def makeWrite(self, predWrite):
660        if (self.ctype == 'float' or self.ctype == 'double'):
661            func = 'setFloatRegOperand'
662        else:
663            func = 'setFloatRegOperandBits'
664        if self.write_code != None:
665            return self.buildWriteCode(func)
666
667        if predWrite:
668            wp = '_destIndex++'
669        else:
670            wp = '%d' % self.dest_reg_idx
671        wp = 'xc->%s(this, %s, final_val);' % (func, wp)
672
673        wb = '''
674        {
675            %s final_val = %s;
676            %s\n
677            if (traceData) { traceData->setData(final_val); }
678        }''' % (self.ctype, self.base_name, wp)
679        return wb
680
681class CCRegOperand(Operand):
682    def isReg(self):
683        return 1
684
685    def isCCReg(self):
686        return 1
687
688    def makeConstructor(self, predRead, predWrite):
689        c_src = ''
690        c_dest = ''
691
692        if self.is_src:
693            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
694                     (self.reg_spec)
695            if self.hasReadPred():
696                c_src = '\n\tif (%s) {%s\n\t}' % \
697                        (self.read_predicate, c_src)
698
699        if self.is_dest:
700            c_dest = \
701              '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
702              (self.reg_spec)
703            c_dest += '\n\t_numCCDestRegs++;'
704            if self.hasWritePred():
705                c_dest = '\n\tif (%s) {%s\n\t}' % \
706                         (self.write_predicate, c_dest)
707
708        return c_src + c_dest
709
710    def makeRead(self, predRead):
711        if (self.ctype == 'float' or self.ctype == 'double'):
712            error('Attempt to read condition-code register as FP')
713        if self.read_code != None:
714            return self.buildReadCode('readCCRegOperand')
715
716        int_reg_val = ''
717        if predRead:
718            int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
719            if self.hasReadPred():
720                int_reg_val = '(%s) ? %s : 0' % \
721                              (self.read_predicate, int_reg_val)
722        else:
723            int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
724
725        return '%s = %s;\n' % (self.base_name, int_reg_val)
726
727    def makeWrite(self, predWrite):
728        if (self.ctype == 'float' or self.ctype == 'double'):
729            error('Attempt to write condition-code register as FP')
730        if self.write_code != None:
731            return self.buildWriteCode('setCCRegOperand')
732
733        if predWrite:
734            wp = 'true'
735            if self.hasWritePred():
736                wp = self.write_predicate
737
738            wcond = 'if (%s)' % (wp)
739            windex = '_destIndex++'
740        else:
741            wcond = ''
742            windex = '%d' % self.dest_reg_idx
743
744        wb = '''
745        %s
746        {
747            %s final_val = %s;
748            xc->setCCRegOperand(this, %s, final_val);\n
749            if (traceData) { traceData->setData(final_val); }
750        }''' % (wcond, self.ctype, self.base_name, windex)
751
752        return wb
753
754class ControlRegOperand(Operand):
755    def isReg(self):
756        return 1
757
758    def isControlReg(self):
759        return 1
760
761    def makeConstructor(self, predRead, predWrite):
762        c_src = ''
763        c_dest = ''
764
765        if self.is_src:
766            c_src = \
767              '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
768              (self.reg_spec)
769
770        if self.is_dest:
771            c_dest = \
772              '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
773              (self.reg_spec)
774
775        return c_src + c_dest
776
777    def makeRead(self, predRead):
778        bit_select = 0
779        if (self.ctype == 'float' or self.ctype == 'double'):
780            error('Attempt to read control register as FP')
781        if self.read_code != None:
782            return self.buildReadCode('readMiscRegOperand')
783
784        if predRead:
785            rindex = '_sourceIndex++'
786        else:
787            rindex = '%d' % self.src_reg_idx
788
789        return '%s = xc->readMiscRegOperand(this, %s);\n' % \
790            (self.base_name, rindex)
791
792    def makeWrite(self, predWrite):
793        if (self.ctype == 'float' or self.ctype == 'double'):
794            error('Attempt to write control register as FP')
795        if self.write_code != None:
796            return self.buildWriteCode('setMiscRegOperand')
797
798        if predWrite:
799            windex = '_destIndex++'
800        else:
801            windex = '%d' % self.dest_reg_idx
802
803        wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
804             (windex, self.base_name)
805        wb += 'if (traceData) { traceData->setData(%s); }' % \
806              self.base_name
807
808        return wb
809
810class MemOperand(Operand):
811    def isMem(self):
812        return 1
813
814    def makeConstructor(self, predRead, predWrite):
815        return ''
816
817    def makeDecl(self):
818        # Note that initializations in the declarations are solely
819        # to avoid 'uninitialized variable' errors from the compiler.
820        # Declare memory data variable.
821        return '%s %s = 0;\n' % (self.ctype, self.base_name)
822
823    def makeRead(self, predRead):
824        if self.read_code != None:
825            return self.buildReadCode()
826        return ''
827
828    def makeWrite(self, predWrite):
829        if self.write_code != None:
830            return self.buildWriteCode()
831        return ''
832
833class PCStateOperand(Operand):
834    def makeConstructor(self, predRead, predWrite):
835        return ''
836
837    def makeRead(self, predRead):
838        if self.reg_spec:
839            # A component of the PC state.
840            return '%s = __parserAutoPCState.%s();\n' % \
841                (self.base_name, self.reg_spec)
842        else:
843            # The whole PC state itself.
844            return '%s = xc->pcState();\n' % self.base_name
845
846    def makeWrite(self, predWrite):
847        if self.reg_spec:
848            # A component of the PC state.
849            return '__parserAutoPCState.%s(%s);\n' % \
850                (self.reg_spec, self.base_name)
851        else:
852            # The whole PC state itself.
853            return 'xc->pcState(%s);\n' % self.base_name
854
855    def makeDecl(self):
856        ctype = 'TheISA::PCState'
857        if self.isPCPart():
858            ctype = self.ctype
859        # Note that initializations in the declarations are solely
860        # to avoid 'uninitialized variable' errors from the compiler.
861        return '%s %s = 0;\n' % (ctype, self.base_name)
862
863    def isPCState(self):
864        return 1
865
866class OperandList(object):
867    '''Find all the operands in the given code block.  Returns an operand
868    descriptor list (instance of class OperandList).'''
869    def __init__(self, parser, code):
870        self.items = []
871        self.bases = {}
872        # delete strings and comments so we don't match on operands inside
873        for regEx in (stringRE, commentRE):
874            code = regEx.sub('', code)
875        # search for operands
876        next_pos = 0
877        while 1:
878            match = parser.operandsRE.search(code, next_pos)
879            if not match:
880                # no more matches: we're done
881                break
882            op = match.groups()
883            # regexp groups are operand full name, base, and extension
884            (op_full, op_base, op_ext) = op
885            # if the token following the operand is an assignment, this is
886            # a destination (LHS), else it's a source (RHS)
887            is_dest = (assignRE.match(code, match.end()) != None)
888            is_src = not is_dest
889            # see if we've already seen this one
890            op_desc = self.find_base(op_base)
891            if op_desc:
892                if op_desc.ext != op_ext:
893                    error('Inconsistent extensions for operand %s' % \
894                          op_base)
895                op_desc.is_src = op_desc.is_src or is_src
896                op_desc.is_dest = op_desc.is_dest or is_dest
897            else:
898                # new operand: create new descriptor
899                op_desc = parser.operandNameMap[op_base](parser,
900                    op_full, op_ext, is_src, is_dest)
901                self.append(op_desc)
902            # start next search after end of current match
903            next_pos = match.end()
904        self.sort()
905        # enumerate source & dest register operands... used in building
906        # constructor later
907        self.numSrcRegs = 0
908        self.numDestRegs = 0
909        self.numFPDestRegs = 0
910        self.numIntDestRegs = 0
911        self.numCCDestRegs = 0
912        self.numMiscDestRegs = 0
913        self.memOperand = None
914
915        # Flags to keep track if one or more operands are to be read/written
916        # conditionally.
917        self.predRead = False
918        self.predWrite = False
919
920        for op_desc in self.items:
921            if op_desc.isReg():
922                if op_desc.is_src:
923                    op_desc.src_reg_idx = self.numSrcRegs
924                    self.numSrcRegs += 1
925                if op_desc.is_dest:
926                    op_desc.dest_reg_idx = self.numDestRegs
927                    self.numDestRegs += 1
928                    if op_desc.isFloatReg():
929                        self.numFPDestRegs += 1
930                    elif op_desc.isIntReg():
931                        self.numIntDestRegs += 1
932                    elif op_desc.isCCReg():
933                        self.numCCDestRegs += 1
934                    elif op_desc.isControlReg():
935                        self.numMiscDestRegs += 1
936            elif op_desc.isMem():
937                if self.memOperand:
938                    error("Code block has more than one memory operand.")
939                self.memOperand = op_desc
940
941            # Check if this operand has read/write predication. If true, then
942            # the microop will dynamically index source/dest registers.
943            self.predRead = self.predRead or op_desc.hasReadPred()
944            self.predWrite = self.predWrite or op_desc.hasWritePred()
945
946        if parser.maxInstSrcRegs < self.numSrcRegs:
947            parser.maxInstSrcRegs = self.numSrcRegs
948        if parser.maxInstDestRegs < self.numDestRegs:
949            parser.maxInstDestRegs = self.numDestRegs
950        if parser.maxMiscDestRegs < self.numMiscDestRegs:
951            parser.maxMiscDestRegs = self.numMiscDestRegs
952
953        # now make a final pass to finalize op_desc fields that may depend
954        # on the register enumeration
955        for op_desc in self.items:
956            op_desc.finalize(self.predRead, self.predWrite)
957
958    def __len__(self):
959        return len(self.items)
960
961    def __getitem__(self, index):
962        return self.items[index]
963
964    def append(self, op_desc):
965        self.items.append(op_desc)
966        self.bases[op_desc.base_name] = op_desc
967
968    def find_base(self, base_name):
969        # like self.bases[base_name], but returns None if not found
970        # (rather than raising exception)
971        return self.bases.get(base_name)
972
973    # internal helper function for concat[Some]Attr{Strings|Lists}
974    def __internalConcatAttrs(self, attr_name, filter, result):
975        for op_desc in self.items:
976            if filter(op_desc):
977                result += getattr(op_desc, attr_name)
978        return result
979
980    # return a single string that is the concatenation of the (string)
981    # values of the specified attribute for all operands
982    def concatAttrStrings(self, attr_name):
983        return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
984
985    # like concatAttrStrings, but only include the values for the operands
986    # for which the provided filter function returns true
987    def concatSomeAttrStrings(self, filter, attr_name):
988        return self.__internalConcatAttrs(attr_name, filter, '')
989
990    # return a single list that is the concatenation of the (list)
991    # values of the specified attribute for all operands
992    def concatAttrLists(self, attr_name):
993        return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
994
995    # like concatAttrLists, but only include the values for the operands
996    # for which the provided filter function returns true
997    def concatSomeAttrLists(self, filter, attr_name):
998        return self.__internalConcatAttrs(attr_name, filter, [])
999
1000    def sort(self):
1001        self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1002
1003class SubOperandList(OperandList):
1004    '''Find all the operands in the given code block.  Returns an operand
1005    descriptor list (instance of class OperandList).'''
1006    def __init__(self, parser, code, master_list):
1007        self.items = []
1008        self.bases = {}
1009        # delete strings and comments so we don't match on operands inside
1010        for regEx in (stringRE, commentRE):
1011            code = regEx.sub('', code)
1012        # search for operands
1013        next_pos = 0
1014        while 1:
1015            match = parser.operandsRE.search(code, next_pos)
1016            if not match:
1017                # no more matches: we're done
1018                break
1019            op = match.groups()
1020            # regexp groups are operand full name, base, and extension
1021            (op_full, op_base, op_ext) = op
1022            # find this op in the master list
1023            op_desc = master_list.find_base(op_base)
1024            if not op_desc:
1025                error('Found operand %s which is not in the master list!' \
1026                      ' This is an internal error' % op_base)
1027            else:
1028                # See if we've already found this operand
1029                op_desc = self.find_base(op_base)
1030                if not op_desc:
1031                    # if not, add a reference to it to this sub list
1032                    self.append(master_list.bases[op_base])
1033
1034            # start next search after end of current match
1035            next_pos = match.end()
1036        self.sort()
1037        self.memOperand = None
1038        # Whether the whole PC needs to be read so parts of it can be accessed
1039        self.readPC = False
1040        # Whether the whole PC needs to be written after parts of it were
1041        # changed
1042        self.setPC = False
1043        # Whether this instruction manipulates the whole PC or parts of it.
1044        # Mixing the two is a bad idea and flagged as an error.
1045        self.pcPart = None
1046
1047        # Flags to keep track if one or more operands are to be read/written
1048        # conditionally.
1049        self.predRead = False
1050        self.predWrite = False
1051
1052        for op_desc in self.items:
1053            if op_desc.isPCPart():
1054                self.readPC = True
1055                if op_desc.is_dest:
1056                    self.setPC = True
1057
1058            if op_desc.isPCState():
1059                if self.pcPart is not None:
1060                    if self.pcPart and not op_desc.isPCPart() or \
1061                            not self.pcPart and op_desc.isPCPart():
1062                        error("Mixed whole and partial PC state operands.")
1063                self.pcPart = op_desc.isPCPart()
1064
1065            if op_desc.isMem():
1066                if self.memOperand:
1067                    error("Code block has more than one memory operand.")
1068                self.memOperand = op_desc
1069
1070            # Check if this operand has read/write predication. If true, then
1071            # the microop will dynamically index source/dest registers.
1072            self.predRead = self.predRead or op_desc.hasReadPred()
1073            self.predWrite = self.predWrite or op_desc.hasWritePred()
1074
1075# Regular expression object to match C++ strings
1076stringRE = re.compile(r'"([^"\\]|\\.)*"')
1077
1078# Regular expression object to match C++ comments
1079# (used in findOperands())
1080commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1081        re.DOTALL | re.MULTILINE)
1082
1083# Regular expression object to match assignment statements
1084# (used in findOperands())
1085assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1086
1087def makeFlagConstructor(flag_list):
1088    if len(flag_list) == 0:
1089        return ''
1090    # filter out repeated flags
1091    flag_list.sort()
1092    i = 1
1093    while i < len(flag_list):
1094        if flag_list[i] == flag_list[i-1]:
1095            del flag_list[i]
1096        else:
1097            i += 1
1098    pre = '\n\tflags['
1099    post = '] = true;'
1100    code = pre + string.join(flag_list, post + pre) + post
1101    return code
1102
1103# Assume all instruction flags are of the form 'IsFoo'
1104instFlagRE = re.compile(r'Is.*')
1105
1106# OpClass constants end in 'Op' except No_OpClass
1107opClassRE = re.compile(r'.*Op|No_OpClass')
1108
1109class InstObjParams(object):
1110    def __init__(self, parser, mnem, class_name, base_class = '',
1111                 snippets = {}, opt_args = []):
1112        self.mnemonic = mnem
1113        self.class_name = class_name
1114        self.base_class = base_class
1115        if not isinstance(snippets, dict):
1116            snippets = {'code' : snippets}
1117        compositeCode = ' '.join(map(str, snippets.values()))
1118        self.snippets = snippets
1119
1120        self.operands = OperandList(parser, compositeCode)
1121
1122        # The header of the constructor declares the variables to be used
1123        # in the body of the constructor.
1124        header = ''
1125        header += '\n\t_numSrcRegs = 0;'
1126        header += '\n\t_numDestRegs = 0;'
1127        header += '\n\t_numFPDestRegs = 0;'
1128        header += '\n\t_numIntDestRegs = 0;'
1129        header += '\n\t_numCCDestRegs = 0;'
1130
1131        self.constructor = header + \
1132                           self.operands.concatAttrStrings('constructor')
1133
1134        self.flags = self.operands.concatAttrLists('flags')
1135
1136        self.op_class = None
1137
1138        # Optional arguments are assumed to be either StaticInst flags
1139        # or an OpClass value.  To avoid having to import a complete
1140        # list of these values to match against, we do it ad-hoc
1141        # with regexps.
1142        for oa in opt_args:
1143            if instFlagRE.match(oa):
1144                self.flags.append(oa)
1145            elif opClassRE.match(oa):
1146                self.op_class = oa
1147            else:
1148                error('InstObjParams: optional arg "%s" not recognized '
1149                      'as StaticInst::Flag or OpClass.' % oa)
1150
1151        # Make a basic guess on the operand class if not set.
1152        # These are good enough for most cases.
1153        if not self.op_class:
1154            if 'IsStore' in self.flags:
1155                self.op_class = 'MemWriteOp'
1156            elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1157                self.op_class = 'MemReadOp'
1158            elif 'IsFloating' in self.flags:
1159                self.op_class = 'FloatAddOp'
1160            else:
1161                self.op_class = 'IntAluOp'
1162
1163        # add flag initialization to contructor here to include
1164        # any flags added via opt_args
1165        self.constructor += makeFlagConstructor(self.flags)
1166
1167        # if 'IsFloating' is set, add call to the FP enable check
1168        # function (which should be provided by isa_desc via a declare)
1169        if 'IsFloating' in self.flags:
1170            self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1171        else:
1172            self.fp_enable_check = ''
1173
1174##############
1175# Stack: a simple stack object.  Used for both formats (formatStack)
1176# and default cases (defaultStack).  Simply wraps a list to give more
1177# stack-like syntax and enable initialization with an argument list
1178# (as opposed to an argument that's a list).
1179
1180class Stack(list):
1181    def __init__(self, *items):
1182        list.__init__(self, items)
1183
1184    def push(self, item):
1185        self.append(item);
1186
1187    def top(self):
1188        return self[-1]
1189
1190#######################
1191#
1192# ISA Parser
1193#   parses ISA DSL and emits C++ headers and source
1194#
1195
1196class ISAParser(Grammar):
1197    class CpuModel(object):
1198        def __init__(self, name, filename, includes, strings):
1199            self.name = name
1200            self.filename = filename
1201            self.includes = includes
1202            self.strings = strings
1203
1204    def __init__(self, output_dir):
1205        super(ISAParser, self).__init__()
1206        self.output_dir = output_dir
1207
1208        self.filename = None # for output file watermarking/scaremongering
1209
1210        self.cpuModels = [
1211            ISAParser.CpuModel('ExecContext',
1212                               'generic_cpu_exec.cc',
1213                               '#include "cpu/exec_context.hh"',
1214                               { "CPU_exec_context" : "ExecContext" }),
1215            ]
1216
1217        # variable to hold templates
1218        self.templateMap = {}
1219
1220        # This dictionary maps format name strings to Format objects.
1221        self.formatMap = {}
1222
1223        # Track open files and, if applicable, how many chunks it has been
1224        # split into so far.
1225        self.files = {}
1226        self.splits = {}
1227
1228        # isa_name / namespace identifier from namespace declaration.
1229        # before the namespace declaration, None.
1230        self.isa_name = None
1231        self.namespace = None
1232
1233        # The format stack.
1234        self.formatStack = Stack(NoFormat())
1235
1236        # The default case stack.
1237        self.defaultStack = Stack(None)
1238
1239        # Stack that tracks current file and line number.  Each
1240        # element is a tuple (filename, lineno) that records the
1241        # *current* filename and the line number in the *previous*
1242        # file where it was included.
1243        self.fileNameStack = Stack()
1244
1245        symbols = ('makeList', 're', 'string')
1246        self.exportContext = dict([(s, eval(s)) for s in symbols])
1247
1248        self.maxInstSrcRegs = 0
1249        self.maxInstDestRegs = 0
1250        self.maxMiscDestRegs = 0
1251
1252    def __getitem__(self, i):    # Allow object (self) to be
1253        return getattr(self, i)  # passed to %-substitutions
1254
1255    # Change the file suffix of a base filename:
1256    #   (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1257    def suffixize(self, s, sec):
1258        extn = re.compile('(\.[^\.]+)$') # isolate extension
1259        if self.namespace:
1260            return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1261        else:
1262            return extn.sub(r'-g\1.inc', s)
1263
1264    # Get the file object for emitting code into the specified section
1265    # (header, decoder, exec, decode_block).
1266    def get_file(self, section):
1267        if section == 'decode_block':
1268            filename = 'decode-method.cc.inc'
1269        else:
1270            if section == 'header':
1271                file = 'decoder.hh'
1272            else:
1273                file = '%s.cc' % section
1274            filename = self.suffixize(file, section)
1275        try:
1276            return self.files[filename]
1277        except KeyError: pass
1278
1279        f = self.open(filename)
1280        self.files[filename] = f
1281
1282        # The splittable files are the ones with many independent
1283        # per-instruction functions - the decoder's instruction constructors
1284        # and the instruction execution (execute()) methods. These both have
1285        # the suffix -ns.cc.inc, meaning they are within the namespace part
1286        # of the ISA, contain object-emitting C++ source, and are included
1287        # into other top-level files. These are the files that need special
1288        # #define's to allow parts of them to be compiled separately. Rather
1289        # than splitting the emissions into separate files, the monolithic
1290        # output of the ISA parser is maintained, but the value (or lack
1291        # thereof) of the __SPLIT definition during C preprocessing will
1292        # select the different chunks. If no 'split' directives are used,
1293        # the cpp emissions have no effect.
1294        if re.search('-ns.cc.inc$', filename):
1295            print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1296            self.splits[f] = 1
1297        # ensure requisite #include's
1298        elif filename in ['decoder-g.cc.inc', 'exec-g.cc.inc']:
1299            print >>f, '#include "decoder.hh"'
1300        elif filename == 'decoder-g.hh.inc':
1301            print >>f, '#include "base/bitfield.hh"'
1302
1303        return f
1304
1305    # Weave together the parts of the different output sections by
1306    # #include'ing them into some very short top-level .cc/.hh files.
1307    # These small files make it much clearer how this tool works, since
1308    # you directly see the chunks emitted as files that are #include'd.
1309    def write_top_level_files(self):
1310        dep = self.open('inc.d', bare=True)
1311
1312        # decoder header - everything depends on this
1313        file = 'decoder.hh'
1314        with self.open(file) as f:
1315            inc = []
1316
1317            fn = 'decoder-g.hh.inc'
1318            assert(fn in self.files)
1319            f.write('#include "%s"\n' % fn)
1320            inc.append(fn)
1321
1322            fn = 'decoder-ns.hh.inc'
1323            assert(fn in self.files)
1324            f.write('namespace %s {\n#include "%s"\n}\n'
1325                    % (self.namespace, fn))
1326            inc.append(fn)
1327
1328            print >>dep, file+':', ' '.join(inc)
1329
1330        # decoder method - cannot be split
1331        file = 'decoder.cc'
1332        with self.open(file) as f:
1333            inc = []
1334
1335            fn = 'decoder-g.cc.inc'
1336            assert(fn in self.files)
1337            f.write('#include "%s"\n' % fn)
1338            inc.append(fn)
1339
1340            fn = 'decode-method.cc.inc'
1341            # is guaranteed to have been written for parse to complete
1342            f.write('#include "%s"\n' % fn)
1343            inc.append(fn)
1344
1345            inc.append("decoder.hh")
1346            print >>dep, file+':', ' '.join(inc)
1347
1348        extn = re.compile('(\.[^\.]+)$')
1349
1350        # instruction constructors
1351        splits = self.splits[self.get_file('decoder')]
1352        file_ = 'inst-constrs.cc'
1353        for i in range(1, splits+1):
1354            if splits > 1:
1355                file = extn.sub(r'-%d\1' % i, file_)
1356            else:
1357                file = file_
1358            with self.open(file) as f:
1359                inc = []
1360
1361                fn = 'decoder-g.cc.inc'
1362                assert(fn in self.files)
1363                f.write('#include "%s"\n' % fn)
1364                inc.append(fn)
1365
1366                fn = 'decoder-ns.cc.inc'
1367                assert(fn in self.files)
1368                print >>f, 'namespace %s {' % self.namespace
1369                if splits > 1:
1370                    print >>f, '#define __SPLIT %u' % i
1371                print >>f, '#include "%s"' % fn
1372                print >>f, '}'
1373                inc.append(fn)
1374
1375                inc.append("decoder.hh")
1376                print >>dep, file+':', ' '.join(inc)
1377
1378        # instruction execution per-CPU model
1379        splits = self.splits[self.get_file('exec')]
1380        for cpu in self.cpuModels:
1381            for i in range(1, splits+1):
1382                if splits > 1:
1383                    file = extn.sub(r'_%d\1' % i, cpu.filename)
1384                else:
1385                    file = cpu.filename
1386                with self.open(file) as f:
1387                    inc = []
1388
1389                    fn = 'exec-g.cc.inc'
1390                    assert(fn in self.files)
1391                    f.write('#include "%s"\n' % fn)
1392                    inc.append(fn)
1393
1394                    f.write(cpu.includes+"\n")
1395
1396                    fn = 'exec-ns.cc.inc'
1397                    assert(fn in self.files)
1398                    print >>f, 'namespace %s {' % self.namespace
1399                    print >>f, '#define CPU_EXEC_CONTEXT %s' \
1400                               % cpu.strings['CPU_exec_context']
1401                    if splits > 1:
1402                        print >>f, '#define __SPLIT %u' % i
1403                    print >>f, '#include "%s"' % fn
1404                    print >>f, '}'
1405                    inc.append(fn)
1406
1407                    inc.append("decoder.hh")
1408                    print >>dep, file+':', ' '.join(inc)
1409
1410        # max_inst_regs.hh
1411        self.update('max_inst_regs.hh',
1412                    '''namespace %(namespace)s {
1413    const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1414    const int MaxInstDestRegs = %(maxInstDestRegs)d;
1415    const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1416        print >>dep, 'max_inst_regs.hh:'
1417
1418        dep.close()
1419
1420
1421    scaremonger_template ='''// DO NOT EDIT
1422// This file was automatically generated from an ISA description:
1423//   %(filename)s
1424
1425''';
1426
1427    #####################################################################
1428    #
1429    #                                Lexer
1430    #
1431    # The PLY lexer module takes two things as input:
1432    # - A list of token names (the string list 'tokens')
1433    # - A regular expression describing a match for each token.  The
1434    #   regexp for token FOO can be provided in two ways:
1435    #   - as a string variable named t_FOO
1436    #   - as the doc string for a function named t_FOO.  In this case,
1437    #     the function is also executed, allowing an action to be
1438    #     associated with each token match.
1439    #
1440    #####################################################################
1441
1442    # Reserved words.  These are listed separately as they are matched
1443    # using the same regexp as generic IDs, but distinguished in the
1444    # t_ID() function.  The PLY documentation suggests this approach.
1445    reserved = (
1446        'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1447        'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1448        'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1449        )
1450
1451    # List of tokens.  The lex module requires this.
1452    tokens = reserved + (
1453        # identifier
1454        'ID',
1455
1456        # integer literal
1457        'INTLIT',
1458
1459        # string literal
1460        'STRLIT',
1461
1462        # code literal
1463        'CODELIT',
1464
1465        # ( ) [ ] { } < > , ; . : :: *
1466        'LPAREN', 'RPAREN',
1467        'LBRACKET', 'RBRACKET',
1468        'LBRACE', 'RBRACE',
1469        'LESS', 'GREATER', 'EQUALS',
1470        'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1471        'ASTERISK',
1472
1473        # C preprocessor directives
1474        'CPPDIRECTIVE'
1475
1476    # The following are matched but never returned. commented out to
1477    # suppress PLY warning
1478        # newfile directive
1479    #    'NEWFILE',
1480
1481        # endfile directive
1482    #    'ENDFILE'
1483    )
1484
1485    # Regular expressions for token matching
1486    t_LPAREN           = r'\('
1487    t_RPAREN           = r'\)'
1488    t_LBRACKET         = r'\['
1489    t_RBRACKET         = r'\]'
1490    t_LBRACE           = r'\{'
1491    t_RBRACE           = r'\}'
1492    t_LESS             = r'\<'
1493    t_GREATER          = r'\>'
1494    t_EQUALS           = r'='
1495    t_COMMA            = r','
1496    t_SEMI             = r';'
1497    t_DOT              = r'\.'
1498    t_COLON            = r':'
1499    t_DBLCOLON         = r'::'
1500    t_ASTERISK         = r'\*'
1501
1502    # Identifiers and reserved words
1503    reserved_map = { }
1504    for r in reserved:
1505        reserved_map[r.lower()] = r
1506
1507    def t_ID(self, t):
1508        r'[A-Za-z_]\w*'
1509        t.type = self.reserved_map.get(t.value, 'ID')
1510        return t
1511
1512    # Integer literal
1513    def t_INTLIT(self, t):
1514        r'-?(0x[\da-fA-F]+)|\d+'
1515        try:
1516            t.value = int(t.value,0)
1517        except ValueError:
1518            error(t, 'Integer value "%s" too large' % t.value)
1519            t.value = 0
1520        return t
1521
1522    # String literal.  Note that these use only single quotes, and
1523    # can span multiple lines.
1524    def t_STRLIT(self, t):
1525        r"(?m)'([^'])+'"
1526        # strip off quotes
1527        t.value = t.value[1:-1]
1528        t.lexer.lineno += t.value.count('\n')
1529        return t
1530
1531
1532    # "Code literal"... like a string literal, but delimiters are
1533    # '{{' and '}}' so they get formatted nicely under emacs c-mode
1534    def t_CODELIT(self, t):
1535        r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1536        # strip off {{ & }}
1537        t.value = t.value[2:-2]
1538        t.lexer.lineno += t.value.count('\n')
1539        return t
1540
1541    def t_CPPDIRECTIVE(self, t):
1542        r'^\#[^\#].*\n'
1543        t.lexer.lineno += t.value.count('\n')
1544        return t
1545
1546    def t_NEWFILE(self, t):
1547        r'^\#\#newfile\s+"[^"]*"'
1548        self.fileNameStack.push((t.value[11:-1], t.lexer.lineno))
1549        t.lexer.lineno = 0
1550
1551    def t_ENDFILE(self, t):
1552        r'^\#\#endfile'
1553        (old_filename, t.lexer.lineno) = self.fileNameStack.pop()
1554
1555    #
1556    # The functions t_NEWLINE, t_ignore, and t_error are
1557    # special for the lex module.
1558    #
1559
1560    # Newlines
1561    def t_NEWLINE(self, t):
1562        r'\n+'
1563        t.lexer.lineno += t.value.count('\n')
1564
1565    # Comments
1566    def t_comment(self, t):
1567        r'//.*'
1568
1569    # Completely ignored characters
1570    t_ignore = ' \t\x0c'
1571
1572    # Error handler
1573    def t_error(self, t):
1574        error(t, "illegal character '%s'" % t.value[0])
1575        t.skip(1)
1576
1577    #####################################################################
1578    #
1579    #                                Parser
1580    #
1581    # Every function whose name starts with 'p_' defines a grammar
1582    # rule.  The rule is encoded in the function's doc string, while
1583    # the function body provides the action taken when the rule is
1584    # matched.  The argument to each function is a list of the values
1585    # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1586    # symbols on the RHS.  For tokens, the value is copied from the
1587    # t.value attribute provided by the lexer.  For non-terminals, the
1588    # value is assigned by the producing rule; i.e., the job of the
1589    # grammar rule function is to set the value for the non-terminal
1590    # on the LHS (by assigning to t[0]).
1591    #####################################################################
1592
1593    # The LHS of the first grammar rule is used as the start symbol
1594    # (in this case, 'specification').  Note that this rule enforces
1595    # that there will be exactly one namespace declaration, with 0 or
1596    # more global defs/decls before and after it.  The defs & decls
1597    # before the namespace decl will be outside the namespace; those
1598    # after will be inside.  The decoder function is always inside the
1599    # namespace.
1600    def p_specification(self, t):
1601        'specification : opt_defs_and_outputs top_level_decode_block'
1602
1603        for f in self.splits.iterkeys():
1604            f.write('\n#endif\n')
1605
1606        for f in self.files.itervalues(): # close ALL the files;
1607            f.close() # not doing so can cause compilation to fail
1608
1609        self.write_top_level_files()
1610
1611        t[0] = True
1612
1613    # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1614    # output statements. Its productions do the hard work of eventually
1615    # instantiating a GenCode, which are generally emitted (written to disk)
1616    # as soon as possible, except for the decode_block, which has to be
1617    # accumulated into one large function of nested switch/case blocks.
1618    def p_opt_defs_and_outputs_0(self, t):
1619        'opt_defs_and_outputs : empty'
1620
1621    def p_opt_defs_and_outputs_1(self, t):
1622        'opt_defs_and_outputs : defs_and_outputs'
1623
1624    def p_defs_and_outputs_0(self, t):
1625        'defs_and_outputs : def_or_output'
1626
1627    def p_defs_and_outputs_1(self, t):
1628        'defs_and_outputs : defs_and_outputs def_or_output'
1629
1630    # The list of possible definition/output statements.
1631    # They are all processed as they are seen.
1632    def p_def_or_output(self, t):
1633        '''def_or_output : name_decl
1634                         | def_format
1635                         | def_bitfield
1636                         | def_bitfield_struct
1637                         | def_template
1638                         | def_operand_types
1639                         | def_operands
1640                         | output
1641                         | global_let
1642                         | split'''
1643
1644    # Utility function used by both invocations of splitting - explicit
1645    # 'split' keyword and split() function inside "let {{ }};" blocks.
1646    def split(self, sec, write=False):
1647        assert(sec != 'header' and "header cannot be split")
1648
1649        f = self.get_file(sec)
1650        self.splits[f] += 1
1651        s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1652        if write:
1653            f.write(s)
1654        else:
1655            return s
1656
1657    # split output file to reduce compilation time
1658    def p_split(self, t):
1659        'split : SPLIT output_type SEMI'
1660        assert(self.isa_name and "'split' not allowed before namespace decl")
1661
1662        self.split(t[2], True)
1663
1664    def p_output_type(self, t):
1665        '''output_type : DECODER
1666                       | HEADER
1667                       | EXEC'''
1668        t[0] = t[1]
1669
1670    # ISA name declaration looks like "namespace <foo>;"
1671    def p_name_decl(self, t):
1672        'name_decl : NAMESPACE ID SEMI'
1673        assert(self.isa_name == None and "Only 1 namespace decl permitted")
1674        self.isa_name = t[2]
1675        self.namespace = t[2] + 'Inst'
1676
1677    # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1678    # directly to the appropriate output section.
1679
1680    # Massage output block by substituting in template definitions and
1681    # bit operators.  We handle '%'s embedded in the string that don't
1682    # indicate template substitutions (or CPU-specific symbols, which
1683    # get handled in GenCode) by doubling them first so that the
1684    # format operation will reduce them back to single '%'s.
1685    def process_output(self, s):
1686        s = self.protectNonSubstPercents(s)
1687        # protects cpu-specific symbols too
1688        s = self.protectCpuSymbols(s)
1689        return substBitOps(s % self.templateMap)
1690
1691    def p_output(self, t):
1692        'output : OUTPUT output_type CODELIT SEMI'
1693        kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1694        GenCode(self, **kwargs).emit()
1695
1696    # global let blocks 'let {{...}}' (Python code blocks) are
1697    # executed directly when seen.  Note that these execute in a
1698    # special variable context 'exportContext' to prevent the code
1699    # from polluting this script's namespace.
1700    def p_global_let(self, t):
1701        'global_let : LET CODELIT SEMI'
1702        def _split(sec):
1703            return self.split(sec)
1704        self.updateExportContext()
1705        self.exportContext["header_output"] = ''
1706        self.exportContext["decoder_output"] = ''
1707        self.exportContext["exec_output"] = ''
1708        self.exportContext["decode_block"] = ''
1709        self.exportContext["split"] = _split
1710        split_setup = '''
1711def wrap(func):
1712    def split(sec):
1713        globals()[sec + '_output'] += func(sec)
1714    return split
1715split = wrap(split)
1716del wrap
1717'''
1718        # This tricky setup (immediately above) allows us to just write
1719        # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1720        # will automatically be added to the exec_output variable. The inner
1721        # Python execution environment doesn't know about the split points,
1722        # so we carefully inject and wrap a closure that can retrieve the
1723        # next split's #define from the parser and add it to the current
1724        # emission-in-progress.
1725        try:
1726            exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1727        except Exception, exc:
1728            if debug:
1729                raise
1730            error(t, 'error: %s in global let block "%s".' % (exc, t[2]))
1731        GenCode(self,
1732                header_output=self.exportContext["header_output"],
1733                decoder_output=self.exportContext["decoder_output"],
1734                exec_output=self.exportContext["exec_output"],
1735                decode_block=self.exportContext["decode_block"]).emit()
1736
1737    # Define the mapping from operand type extensions to C++ types and
1738    # bit widths (stored in operandTypeMap).
1739    def p_def_operand_types(self, t):
1740        'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1741        try:
1742            self.operandTypeMap = eval('{' + t[3] + '}')
1743        except Exception, exc:
1744            if debug:
1745                raise
1746            error(t,
1747                  'error: %s in def operand_types block "%s".' % (exc, t[3]))
1748
1749    # Define the mapping from operand names to operand classes and
1750    # other traits.  Stored in operandNameMap.
1751    def p_def_operands(self, t):
1752        'def_operands : DEF OPERANDS CODELIT SEMI'
1753        if not hasattr(self, 'operandTypeMap'):
1754            error(t, 'error: operand types must be defined before operands')
1755        try:
1756            user_dict = eval('{' + t[3] + '}', self.exportContext)
1757        except Exception, exc:
1758            if debug:
1759                raise
1760            error(t, 'error: %s in def operands block "%s".' % (exc, t[3]))
1761        self.buildOperandNameMap(user_dict, t.lexer.lineno)
1762
1763    # A bitfield definition looks like:
1764    # 'def [signed] bitfield <ID> [<first>:<last>]'
1765    # This generates a preprocessor macro in the output file.
1766    def p_def_bitfield_0(self, t):
1767        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1768        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1769        if (t[2] == 'signed'):
1770            expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1771        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1772        GenCode(self, header_output=hash_define).emit()
1773
1774    # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1775    def p_def_bitfield_1(self, t):
1776        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1777        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1778        if (t[2] == 'signed'):
1779            expr = 'sext<%d>(%s)' % (1, expr)
1780        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1781        GenCode(self, header_output=hash_define).emit()
1782
1783    # alternate form for structure member: 'def bitfield <ID> <ID>'
1784    def p_def_bitfield_struct(self, t):
1785        'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1786        if (t[2] != ''):
1787            error(t, 'error: structure bitfields are always unsigned.')
1788        expr = 'machInst.%s' % t[5]
1789        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1790        GenCode(self, header_output=hash_define).emit()
1791
1792    def p_id_with_dot_0(self, t):
1793        'id_with_dot : ID'
1794        t[0] = t[1]
1795
1796    def p_id_with_dot_1(self, t):
1797        'id_with_dot : ID DOT id_with_dot'
1798        t[0] = t[1] + t[2] + t[3]
1799
1800    def p_opt_signed_0(self, t):
1801        'opt_signed : SIGNED'
1802        t[0] = t[1]
1803
1804    def p_opt_signed_1(self, t):
1805        'opt_signed : empty'
1806        t[0] = ''
1807
1808    def p_def_template(self, t):
1809        'def_template : DEF TEMPLATE ID CODELIT SEMI'
1810        if t[3] in self.templateMap:
1811            print "warning: template %s already defined" % t[3]
1812        self.templateMap[t[3]] = Template(self, t[4])
1813
1814    # An instruction format definition looks like
1815    # "def format <fmt>(<params>) {{...}};"
1816    def p_def_format(self, t):
1817        'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1818        (id, params, code) = (t[3], t[5], t[7])
1819        self.defFormat(id, params, code, t.lexer.lineno)
1820
1821    # The formal parameter list for an instruction format is a
1822    # possibly empty list of comma-separated parameters.  Positional
1823    # (standard, non-keyword) parameters must come first, followed by
1824    # keyword parameters, followed by a '*foo' parameter that gets
1825    # excess positional arguments (as in Python).  Each of these three
1826    # parameter categories is optional.
1827    #
1828    # Note that we do not support the '**foo' parameter for collecting
1829    # otherwise undefined keyword args.  Otherwise the parameter list
1830    # is (I believe) identical to what is supported in Python.
1831    #
1832    # The param list generates a tuple, where the first element is a
1833    # list of the positional params and the second element is a dict
1834    # containing the keyword params.
1835    def p_param_list_0(self, t):
1836        'param_list : positional_param_list COMMA nonpositional_param_list'
1837        t[0] = t[1] + t[3]
1838
1839    def p_param_list_1(self, t):
1840        '''param_list : positional_param_list
1841                      | nonpositional_param_list'''
1842        t[0] = t[1]
1843
1844    def p_positional_param_list_0(self, t):
1845        'positional_param_list : empty'
1846        t[0] = []
1847
1848    def p_positional_param_list_1(self, t):
1849        'positional_param_list : ID'
1850        t[0] = [t[1]]
1851
1852    def p_positional_param_list_2(self, t):
1853        'positional_param_list : positional_param_list COMMA ID'
1854        t[0] = t[1] + [t[3]]
1855
1856    def p_nonpositional_param_list_0(self, t):
1857        'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1858        t[0] = t[1] + t[3]
1859
1860    def p_nonpositional_param_list_1(self, t):
1861        '''nonpositional_param_list : keyword_param_list
1862                                    | excess_args_param'''
1863        t[0] = t[1]
1864
1865    def p_keyword_param_list_0(self, t):
1866        'keyword_param_list : keyword_param'
1867        t[0] = [t[1]]
1868
1869    def p_keyword_param_list_1(self, t):
1870        'keyword_param_list : keyword_param_list COMMA keyword_param'
1871        t[0] = t[1] + [t[3]]
1872
1873    def p_keyword_param(self, t):
1874        'keyword_param : ID EQUALS expr'
1875        t[0] = t[1] + ' = ' + t[3].__repr__()
1876
1877    def p_excess_args_param(self, t):
1878        'excess_args_param : ASTERISK ID'
1879        # Just concatenate them: '*ID'.  Wrap in list to be consistent
1880        # with positional_param_list and keyword_param_list.
1881        t[0] = [t[1] + t[2]]
1882
1883    # End of format definition-related rules.
1884    ##############
1885
1886    #
1887    # A decode block looks like:
1888    #       decode <field1> [, <field2>]* [default <inst>] { ... }
1889    #
1890    def p_top_level_decode_block(self, t):
1891        'top_level_decode_block : decode_block'
1892        codeObj = t[1]
1893        codeObj.wrap_decode_block('''
1894StaticInstPtr
1895%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1896{
1897    using namespace %(namespace)s;
1898''' % self, '}')
1899
1900        codeObj.emit()
1901
1902    def p_decode_block(self, t):
1903        'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1904        default_defaults = self.defaultStack.pop()
1905        codeObj = t[5]
1906        # use the "default defaults" only if there was no explicit
1907        # default statement in decode_stmt_list
1908        if not codeObj.has_decode_default:
1909            codeObj += default_defaults
1910        codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1911        t[0] = codeObj
1912
1913    # The opt_default statement serves only to push the "default
1914    # defaults" onto defaultStack.  This value will be used by nested
1915    # decode blocks, and used and popped off when the current
1916    # decode_block is processed (in p_decode_block() above).
1917    def p_opt_default_0(self, t):
1918        'opt_default : empty'
1919        # no default specified: reuse the one currently at the top of
1920        # the stack
1921        self.defaultStack.push(self.defaultStack.top())
1922        # no meaningful value returned
1923        t[0] = None
1924
1925    def p_opt_default_1(self, t):
1926        'opt_default : DEFAULT inst'
1927        # push the new default
1928        codeObj = t[2]
1929        codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1930        self.defaultStack.push(codeObj)
1931        # no meaningful value returned
1932        t[0] = None
1933
1934    def p_decode_stmt_list_0(self, t):
1935        'decode_stmt_list : decode_stmt'
1936        t[0] = t[1]
1937
1938    def p_decode_stmt_list_1(self, t):
1939        'decode_stmt_list : decode_stmt decode_stmt_list'
1940        if (t[1].has_decode_default and t[2].has_decode_default):
1941            error(t, 'Two default cases in decode block')
1942        t[0] = t[1] + t[2]
1943
1944    #
1945    # Decode statement rules
1946    #
1947    # There are four types of statements allowed in a decode block:
1948    # 1. Format blocks 'format <foo> { ... }'
1949    # 2. Nested decode blocks
1950    # 3. Instruction definitions.
1951    # 4. C preprocessor directives.
1952
1953
1954    # Preprocessor directives found in a decode statement list are
1955    # passed through to the output, replicated to all of the output
1956    # code streams.  This works well for ifdefs, so we can ifdef out
1957    # both the declarations and the decode cases generated by an
1958    # instruction definition.  Handling them as part of the grammar
1959    # makes it easy to keep them in the right place with respect to
1960    # the code generated by the other statements.
1961    def p_decode_stmt_cpp(self, t):
1962        'decode_stmt : CPPDIRECTIVE'
1963        t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1964
1965    # A format block 'format <foo> { ... }' sets the default
1966    # instruction format used to handle instruction definitions inside
1967    # the block.  This format can be overridden by using an explicit
1968    # format on the instruction definition or with a nested format
1969    # block.
1970    def p_decode_stmt_format(self, t):
1971        'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
1972        # The format will be pushed on the stack when 'push_format_id'
1973        # is processed (see below).  Once the parser has recognized
1974        # the full production (though the right brace), we're done
1975        # with the format, so now we can pop it.
1976        self.formatStack.pop()
1977        t[0] = t[4]
1978
1979    # This rule exists so we can set the current format (& push the
1980    # stack) when we recognize the format name part of the format
1981    # block.
1982    def p_push_format_id(self, t):
1983        'push_format_id : ID'
1984        try:
1985            self.formatStack.push(self.formatMap[t[1]])
1986            t[0] = ('', '// format %s' % t[1])
1987        except KeyError:
1988            error(t, 'instruction format "%s" not defined.' % t[1])
1989
1990    # Nested decode block: if the value of the current field matches
1991    # the specified constant(s), do a nested decode on some other field.
1992    def p_decode_stmt_decode(self, t):
1993        'decode_stmt : case_list COLON decode_block'
1994        case_list = t[1]
1995        codeObj = t[3]
1996        # just wrap the decoding code from the block as a case in the
1997        # outer switch statement.
1998        codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
1999        codeObj.has_decode_default = (case_list == ['default:'])
2000        t[0] = codeObj
2001
2002    # Instruction definition (finally!).
2003    def p_decode_stmt_inst(self, t):
2004        'decode_stmt : case_list COLON inst SEMI'
2005        case_list = t[1]
2006        codeObj = t[3]
2007        codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2008        codeObj.has_decode_default = (case_list == ['default:'])
2009        t[0] = codeObj
2010
2011    # The constant list for a decode case label must be non-empty, and must
2012    # either be the keyword 'default', or made up of one or more
2013    # comma-separated integer literals or strings which evaluate to
2014    # constants when compiled as C++.
2015    def p_case_list_0(self, t):
2016        'case_list : DEFAULT'
2017        t[0] = ['default:']
2018
2019    def prep_int_lit_case_label(self, lit):
2020        if lit >= 2**32:
2021            return 'case ULL(%#x): ' % lit
2022        else:
2023            return 'case %#x: ' % lit
2024
2025    def prep_str_lit_case_label(self, lit):
2026        return 'case %s: ' % lit
2027
2028    def p_case_list_1(self, t):
2029        'case_list : INTLIT'
2030        t[0] = [self.prep_int_lit_case_label(t[1])]
2031
2032    def p_case_list_2(self, t):
2033        'case_list : STRLIT'
2034        t[0] = [self.prep_str_lit_case_label(t[1])]
2035
2036    def p_case_list_3(self, t):
2037        'case_list : case_list COMMA INTLIT'
2038        t[0] = t[1]
2039        t[0].append(self.prep_int_lit_case_label(t[3]))
2040
2041    def p_case_list_4(self, t):
2042        'case_list : case_list COMMA STRLIT'
2043        t[0] = t[1]
2044        t[0].append(self.prep_str_lit_case_label(t[3]))
2045
2046    # Define an instruction using the current instruction format
2047    # (specified by an enclosing format block).
2048    # "<mnemonic>(<args>)"
2049    def p_inst_0(self, t):
2050        'inst : ID LPAREN arg_list RPAREN'
2051        # Pass the ID and arg list to the current format class to deal with.
2052        currentFormat = self.formatStack.top()
2053        codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2054        args = ','.join(map(str, t[3]))
2055        args = re.sub('(?m)^', '//', args)
2056        args = re.sub('^//', '', args)
2057        comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2058        codeObj.prepend_all(comment)
2059        t[0] = codeObj
2060
2061    # Define an instruction using an explicitly specified format:
2062    # "<fmt>::<mnemonic>(<args>)"
2063    def p_inst_1(self, t):
2064        'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2065        try:
2066            format = self.formatMap[t[1]]
2067        except KeyError:
2068            error(t, 'instruction format "%s" not defined.' % t[1])
2069
2070        codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2071        comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2072        codeObj.prepend_all(comment)
2073        t[0] = codeObj
2074
2075    # The arg list generates a tuple, where the first element is a
2076    # list of the positional args and the second element is a dict
2077    # containing the keyword args.
2078    def p_arg_list_0(self, t):
2079        'arg_list : positional_arg_list COMMA keyword_arg_list'
2080        t[0] = ( t[1], t[3] )
2081
2082    def p_arg_list_1(self, t):
2083        'arg_list : positional_arg_list'
2084        t[0] = ( t[1], {} )
2085
2086    def p_arg_list_2(self, t):
2087        'arg_list : keyword_arg_list'
2088        t[0] = ( [], t[1] )
2089
2090    def p_positional_arg_list_0(self, t):
2091        'positional_arg_list : empty'
2092        t[0] = []
2093
2094    def p_positional_arg_list_1(self, t):
2095        'positional_arg_list : expr'
2096        t[0] = [t[1]]
2097
2098    def p_positional_arg_list_2(self, t):
2099        'positional_arg_list : positional_arg_list COMMA expr'
2100        t[0] = t[1] + [t[3]]
2101
2102    def p_keyword_arg_list_0(self, t):
2103        'keyword_arg_list : keyword_arg'
2104        t[0] = t[1]
2105
2106    def p_keyword_arg_list_1(self, t):
2107        'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2108        t[0] = t[1]
2109        t[0].update(t[3])
2110
2111    def p_keyword_arg(self, t):
2112        'keyword_arg : ID EQUALS expr'
2113        t[0] = { t[1] : t[3] }
2114
2115    #
2116    # Basic expressions.  These constitute the argument values of
2117    # "function calls" (i.e. instruction definitions in the decode
2118    # block) and default values for formal parameters of format
2119    # functions.
2120    #
2121    # Right now, these are either strings, integers, or (recursively)
2122    # lists of exprs (using Python square-bracket list syntax).  Note
2123    # that bare identifiers are trated as string constants here (since
2124    # there isn't really a variable namespace to refer to).
2125    #
2126    def p_expr_0(self, t):
2127        '''expr : ID
2128                | INTLIT
2129                | STRLIT
2130                | CODELIT'''
2131        t[0] = t[1]
2132
2133    def p_expr_1(self, t):
2134        '''expr : LBRACKET list_expr RBRACKET'''
2135        t[0] = t[2]
2136
2137    def p_list_expr_0(self, t):
2138        'list_expr : expr'
2139        t[0] = [t[1]]
2140
2141    def p_list_expr_1(self, t):
2142        'list_expr : list_expr COMMA expr'
2143        t[0] = t[1] + [t[3]]
2144
2145    def p_list_expr_2(self, t):
2146        'list_expr : empty'
2147        t[0] = []
2148
2149    #
2150    # Empty production... use in other rules for readability.
2151    #
2152    def p_empty(self, t):
2153        'empty :'
2154        pass
2155
2156    # Parse error handler.  Note that the argument here is the
2157    # offending *token*, not a grammar symbol (hence the need to use
2158    # t.value)
2159    def p_error(self, t):
2160        if t:
2161            error(t, "syntax error at '%s'" % t.value)
2162        else:
2163            error("unknown syntax error")
2164
2165    # END OF GRAMMAR RULES
2166
2167    def updateExportContext(self):
2168
2169        # create a continuation that allows us to grab the current parser
2170        def wrapInstObjParams(*args):
2171            return InstObjParams(self, *args)
2172        self.exportContext['InstObjParams'] = wrapInstObjParams
2173        self.exportContext.update(self.templateMap)
2174
2175    def defFormat(self, id, params, code, lineno):
2176        '''Define a new format'''
2177
2178        # make sure we haven't already defined this one
2179        if id in self.formatMap:
2180            error(lineno, 'format %s redefined.' % id)
2181
2182        # create new object and store in global map
2183        self.formatMap[id] = Format(id, params, code)
2184
2185    def expandCpuSymbolsToDict(self, template):
2186        '''Expand template with CPU-specific references into a
2187        dictionary with an entry for each CPU model name.  The entry
2188        key is the model name and the corresponding value is the
2189        template with the CPU-specific refs substituted for that
2190        model.'''
2191
2192        # Protect '%'s that don't go with CPU-specific terms
2193        t = re.sub(r'%(?!\(CPU_)', '%%', template)
2194        result = {}
2195        for cpu in self.cpuModels:
2196            result[cpu.name] = t % cpu.strings
2197        return result
2198
2199    def expandCpuSymbolsToString(self, template):
2200        '''*If* the template has CPU-specific references, return a
2201        single string containing a copy of the template for each CPU
2202        model with the corresponding values substituted in.  If the
2203        template has no CPU-specific references, it is returned
2204        unmodified.'''
2205
2206        if template.find('%(CPU_') != -1:
2207            return reduce(lambda x,y: x+y,
2208                          self.expandCpuSymbolsToDict(template).values())
2209        else:
2210            return template
2211
2212    def protectCpuSymbols(self, template):
2213        '''Protect CPU-specific references by doubling the
2214        corresponding '%'s (in preparation for substituting a different
2215        set of references into the template).'''
2216
2217        return re.sub(r'%(?=\(CPU_)', '%%', template)
2218
2219    def protectNonSubstPercents(self, s):
2220        '''Protect any non-dict-substitution '%'s in a format string
2221        (i.e. those not followed by '(')'''
2222
2223        return re.sub(r'%(?!\()', '%%', s)
2224
2225    def buildOperandNameMap(self, user_dict, lineno):
2226        operand_name = {}
2227        for op_name, val in user_dict.iteritems():
2228
2229            # Check if extra attributes have been specified.
2230            if len(val) > 9:
2231                error(lineno, 'error: too many attributes for operand "%s"' %
2232                      base_cls_name)
2233
2234            # Pad val with None in case optional args are missing
2235            val += (None, None, None, None)
2236            base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2237            read_code, write_code, read_predicate, write_predicate = val[:9]
2238
2239            # Canonical flag structure is a triple of lists, where each list
2240            # indicates the set of flags implied by this operand always, when
2241            # used as a source, and when used as a dest, respectively.
2242            # For simplicity this can be initialized using a variety of fairly
2243            # obvious shortcuts; we convert these to canonical form here.
2244            if not flags:
2245                # no flags specified (e.g., 'None')
2246                flags = ( [], [], [] )
2247            elif isinstance(flags, str):
2248                # a single flag: assumed to be unconditional
2249                flags = ( [ flags ], [], [] )
2250            elif isinstance(flags, list):
2251                # a list of flags: also assumed to be unconditional
2252                flags = ( flags, [], [] )
2253            elif isinstance(flags, tuple):
2254                # it's a tuple: it should be a triple,
2255                # but each item could be a single string or a list
2256                (uncond_flags, src_flags, dest_flags) = flags
2257                flags = (makeList(uncond_flags),
2258                         makeList(src_flags), makeList(dest_flags))
2259
2260            # Accumulate attributes of new operand class in tmp_dict
2261            tmp_dict = {}
2262            attrList = ['reg_spec', 'flags', 'sort_pri',
2263                        'read_code', 'write_code',
2264                        'read_predicate', 'write_predicate']
2265            if dflt_ext:
2266                dflt_ctype = self.operandTypeMap[dflt_ext]
2267                attrList.extend(['dflt_ctype', 'dflt_ext'])
2268            for attr in attrList:
2269                tmp_dict[attr] = eval(attr)
2270            tmp_dict['base_name'] = op_name
2271
2272            # New class name will be e.g. "IntReg_Ra"
2273            cls_name = base_cls_name + '_' + op_name
2274            # Evaluate string arg to get class object.  Note that the
2275            # actual base class for "IntReg" is "IntRegOperand", i.e. we
2276            # have to append "Operand".
2277            try:
2278                base_cls = eval(base_cls_name + 'Operand')
2279            except NameError:
2280                error(lineno,
2281                      'error: unknown operand base class "%s"' % base_cls_name)
2282            # The following statement creates a new class called
2283            # <cls_name> as a subclass of <base_cls> with the attributes
2284            # in tmp_dict, just as if we evaluated a class declaration.
2285            operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2286
2287        self.operandNameMap = operand_name
2288
2289        # Define operand variables.
2290        operands = user_dict.keys()
2291        extensions = self.operandTypeMap.keys()
2292
2293        operandsREString = r'''
2294        (?<!\w)      # neg. lookbehind assertion: prevent partial matches
2295        ((%s)(?:_(%s))?)   # match: operand with optional '_' then suffix
2296        (?!\w)       # neg. lookahead assertion: prevent partial matches
2297        ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2298
2299        self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2300
2301        # Same as operandsREString, but extension is mandatory, and only two
2302        # groups are returned (base and ext, not full name as above).
2303        # Used for subtituting '_' for '.' to make C++ identifiers.
2304        operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2305            % (string.join(operands, '|'), string.join(extensions, '|'))
2306
2307        self.operandsWithExtRE = \
2308            re.compile(operandsWithExtREString, re.MULTILINE)
2309
2310    def substMungedOpNames(self, code):
2311        '''Munge operand names in code string to make legal C++
2312        variable names.  This means getting rid of the type extension
2313        if any.  Will match base_name attribute of Operand object.)'''
2314        return self.operandsWithExtRE.sub(r'\1', code)
2315
2316    def mungeSnippet(self, s):
2317        '''Fix up code snippets for final substitution in templates.'''
2318        if isinstance(s, str):
2319            return self.substMungedOpNames(substBitOps(s))
2320        else:
2321            return s
2322
2323    def open(self, name, bare=False):
2324        '''Open the output file for writing and include scary warning.'''
2325        filename = os.path.join(self.output_dir, name)
2326        f = open(filename, 'w')
2327        if f:
2328            if not bare:
2329                f.write(ISAParser.scaremonger_template % self)
2330        return f
2331
2332    def update(self, file, contents):
2333        '''Update the output file only.  Scons should handle the case when
2334        the new contents are unchanged using its built-in hash feature.'''
2335        f = self.open(file)
2336        f.write(contents)
2337        f.close()
2338
2339    # This regular expression matches '##include' directives
2340    includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2341                           re.MULTILINE)
2342
2343    def replace_include(self, matchobj, dirname):
2344        """Function to replace a matched '##include' directive with the
2345        contents of the specified file (with nested ##includes
2346        replaced recursively).  'matchobj' is an re match object
2347        (from a match of includeRE) and 'dirname' is the directory
2348        relative to which the file path should be resolved."""
2349
2350        fname = matchobj.group('filename')
2351        full_fname = os.path.normpath(os.path.join(dirname, fname))
2352        contents = '##newfile "%s"\n%s\n##endfile\n' % \
2353                   (full_fname, self.read_and_flatten(full_fname))
2354        return contents
2355
2356    def read_and_flatten(self, filename):
2357        """Read a file and recursively flatten nested '##include' files."""
2358
2359        current_dir = os.path.dirname(filename)
2360        try:
2361            contents = open(filename).read()
2362        except IOError:
2363            error('Error including file "%s"' % filename)
2364
2365        self.fileNameStack.push((filename, 0))
2366
2367        # Find any includes and include them
2368        def replace(matchobj):
2369            return self.replace_include(matchobj, current_dir)
2370        contents = self.includeRE.sub(replace, contents)
2371
2372        self.fileNameStack.pop()
2373        return contents
2374
2375    AlreadyGenerated = {}
2376
2377    def _parse_isa_desc(self, isa_desc_file):
2378        '''Read in and parse the ISA description.'''
2379
2380        # The build system can end up running the ISA parser twice: once to
2381        # finalize the build dependencies, and then to actually generate
2382        # the files it expects (in src/arch/$ARCH/generated). This code
2383        # doesn't do anything different either time, however; the SCons
2384        # invocations just expect different things. Since this code runs
2385        # within SCons, we can just remember that we've already run and
2386        # not perform a completely unnecessary run, since the ISA parser's
2387        # effect is idempotent.
2388        if isa_desc_file in ISAParser.AlreadyGenerated:
2389            return
2390
2391        # grab the last three path components of isa_desc_file
2392        self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2393
2394        # Read file and (recursively) all included files into a string.
2395        # PLY requires that the input be in a single string so we have to
2396        # do this up front.
2397        isa_desc = self.read_and_flatten(isa_desc_file)
2398
2399        # Initialize filename stack with outer file.
2400        self.fileNameStack.push((isa_desc_file, 0))
2401
2402        # Parse.
2403        self.parse_string(isa_desc)
2404
2405        ISAParser.AlreadyGenerated[isa_desc_file] = None
2406
2407    def parse_isa_desc(self, *args, **kwargs):
2408        try:
2409            self._parse_isa_desc(*args, **kwargs)
2410        except ISAParserError, e:
2411            e.exit(self.fileNameStack)
2412
2413# Called as script: get args from command line.
2414# Args are: <isa desc file> <output dir>
2415if __name__ == '__main__':
2416    ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
2417