isa_parser.py revision 10319:4207f9bfcceb
1# Copyright (c) 2003-2005 The Regents of The University of Michigan
2# Copyright (c) 2013 Advanced Micro Devices, Inc.
3# All rights reserved.
4#
5# Redistribution and use in source and binary forms, with or without
6# modification, are permitted provided that the following conditions are
7# met: redistributions of source code must retain the above copyright
8# notice, this list of conditions and the following disclaimer;
9# redistributions in binary form must reproduce the above copyright
10# notice, this list of conditions and the following disclaimer in the
11# documentation and/or other materials provided with the distribution;
12# neither the name of the copyright holders nor the names of its
13# contributors may be used to endorse or promote products derived from
14# this software without specific prior written permission.
15#
16# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27#
28# Authors: Steve Reinhardt
29
30from __future__ import with_statement
31import os
32import sys
33import re
34import string
35import inspect, traceback
36# get type names
37from types import *
38
39from m5.util.grammar import Grammar
40
41debug=False
42
43###################
44# Utility functions
45
46#
47# Indent every line in string 's' by two spaces
48# (except preprocessor directives).
49# Used to make nested code blocks look pretty.
50#
51def indent(s):
52    return re.sub(r'(?m)^(?!#)', '  ', s)
53
54#
55# Munge a somewhat arbitrarily formatted piece of Python code
56# (e.g. from a format 'let' block) into something whose indentation
57# will get by the Python parser.
58#
59# The two keys here are that Python will give a syntax error if
60# there's any whitespace at the beginning of the first line, and that
61# all lines at the same lexical nesting level must have identical
62# indentation.  Unfortunately the way code literals work, an entire
63# let block tends to have some initial indentation.  Rather than
64# trying to figure out what that is and strip it off, we prepend 'if
65# 1:' to make the let code the nested block inside the if (and have
66# the parser automatically deal with the indentation for us).
67#
68# We don't want to do this if (1) the code block is empty or (2) the
69# first line of the block doesn't have any whitespace at the front.
70
71def fixPythonIndentation(s):
72    # get rid of blank lines first
73    s = re.sub(r'(?m)^\s*\n', '', s);
74    if (s != '' and re.match(r'[ \t]', s[0])):
75        s = 'if 1:\n' + s
76    return s
77
78class ISAParserError(Exception):
79    """Error handler for parser errors"""
80    def __init__(self, first, second=None):
81        if second is None:
82            self.lineno = 0
83            self.string = first
84        else:
85            if hasattr(first, 'lexer'):
86                first = first.lexer.lineno
87            self.lineno = first
88            self.string = second
89
90    def display(self, filename_stack, print_traceback=debug):
91        # Output formatted to work under Emacs compile-mode.  Optional
92        # 'print_traceback' arg, if set to True, prints a Python stack
93        # backtrace too (can be handy when trying to debug the parser
94        # itself).
95
96        spaces = ""
97        for (filename, line) in filename_stack[:-1]:
98            print "%sIn file included from %s:" % (spaces, filename)
99            spaces += "  "
100
101        # Print a Python stack backtrace if requested.
102        if print_traceback or not self.lineno:
103            traceback.print_exc()
104
105        line_str = "%s:" % (filename_stack[-1][0], )
106        if self.lineno:
107            line_str += "%d:" % (self.lineno, )
108
109        return "%s%s %s" % (spaces, line_str, self.string)
110
111    def exit(self, filename_stack, print_traceback=debug):
112        # Just call exit.
113
114        sys.exit(self.display(filename_stack, print_traceback))
115
116def error(*args):
117    raise ISAParserError(*args)
118
119####################
120# Template objects.
121#
122# Template objects are format strings that allow substitution from
123# the attribute spaces of other objects (e.g. InstObjParams instances).
124
125labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
126
127class Template(object):
128    def __init__(self, parser, t):
129        self.parser = parser
130        self.template = t
131
132    def subst(self, d):
133        myDict = None
134
135        # Protect non-Python-dict substitutions (e.g. if there's a printf
136        # in the templated C++ code)
137        template = self.parser.protectNonSubstPercents(self.template)
138        # CPU-model-specific substitutions are handled later (in GenCode).
139        template = self.parser.protectCpuSymbols(template)
140
141        # Build a dict ('myDict') to use for the template substitution.
142        # Start with the template namespace.  Make a copy since we're
143        # going to modify it.
144        myDict = self.parser.templateMap.copy()
145
146        if isinstance(d, InstObjParams):
147            # If we're dealing with an InstObjParams object, we need
148            # to be a little more sophisticated.  The instruction-wide
149            # parameters are already formed, but the parameters which
150            # are only function wide still need to be generated.
151            compositeCode = ''
152
153            myDict.update(d.__dict__)
154            # The "operands" and "snippets" attributes of the InstObjParams
155            # objects are for internal use and not substitution.
156            del myDict['operands']
157            del myDict['snippets']
158
159            snippetLabels = [l for l in labelRE.findall(template)
160                             if d.snippets.has_key(l)]
161
162            snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
163                             for s in snippetLabels])
164
165            myDict.update(snippets)
166
167            compositeCode = ' '.join(map(str, snippets.values()))
168
169            # Add in template itself in case it references any
170            # operands explicitly (like Mem)
171            compositeCode += ' ' + template
172
173            operands = SubOperandList(self.parser, compositeCode, d.operands)
174
175            myDict['op_decl'] = operands.concatAttrStrings('op_decl')
176            if operands.readPC or operands.setPC:
177                myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
178
179            # In case there are predicated register reads and write, declare
180            # the variables for register indicies. It is being assumed that
181            # all the operands in the OperandList are also in the
182            # SubOperandList and in the same order. Otherwise, it is
183            # expected that predication would not be used for the operands.
184            if operands.predRead:
185                myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
186            if operands.predWrite:
187                myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
188
189            is_src = lambda op: op.is_src
190            is_dest = lambda op: op.is_dest
191
192            myDict['op_src_decl'] = \
193                      operands.concatSomeAttrStrings(is_src, 'op_src_decl')
194            myDict['op_dest_decl'] = \
195                      operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
196            if operands.readPC:
197                myDict['op_src_decl'] += \
198                    'TheISA::PCState __parserAutoPCState;\n'
199            if operands.setPC:
200                myDict['op_dest_decl'] += \
201                    'TheISA::PCState __parserAutoPCState;\n'
202
203            myDict['op_rd'] = operands.concatAttrStrings('op_rd')
204            if operands.readPC:
205                myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
206                                  myDict['op_rd']
207
208            # Compose the op_wb string. If we're going to write back the
209            # PC state because we changed some of its elements, we'll need to
210            # do that as early as possible. That allows later uncoordinated
211            # modifications to the PC to layer appropriately.
212            reordered = list(operands.items)
213            reordered.reverse()
214            op_wb_str = ''
215            pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
216            for op_desc in reordered:
217                if op_desc.isPCPart() and op_desc.is_dest:
218                    op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
219                    pcWbStr = ''
220                else:
221                    op_wb_str = op_desc.op_wb + op_wb_str
222            myDict['op_wb'] = op_wb_str
223
224        elif isinstance(d, dict):
225            # if the argument is a dictionary, we just use it.
226            myDict.update(d)
227        elif hasattr(d, '__dict__'):
228            # if the argument is an object, we use its attribute map.
229            myDict.update(d.__dict__)
230        else:
231            raise TypeError, "Template.subst() arg must be or have dictionary"
232        return template % myDict
233
234    # Convert to string.  This handles the case when a template with a
235    # CPU-specific term gets interpolated into another template or into
236    # an output block.
237    def __str__(self):
238        return self.parser.expandCpuSymbolsToString(self.template)
239
240################
241# Format object.
242#
243# A format object encapsulates an instruction format.  It must provide
244# a defineInst() method that generates the code for an instruction
245# definition.
246
247class Format(object):
248    def __init__(self, id, params, code):
249        self.id = id
250        self.params = params
251        label = 'def format ' + id
252        self.user_code = compile(fixPythonIndentation(code), label, 'exec')
253        param_list = string.join(params, ", ")
254        f = '''def defInst(_code, _context, %s):
255                my_locals = vars().copy()
256                exec _code in _context, my_locals
257                return my_locals\n''' % param_list
258        c = compile(f, label + ' wrapper', 'exec')
259        exec c
260        self.func = defInst
261
262    def defineInst(self, parser, name, args, lineno):
263        parser.updateExportContext()
264        context = parser.exportContext.copy()
265        if len(name):
266            Name = name[0].upper()
267            if len(name) > 1:
268                Name += name[1:]
269        context.update({ 'name' : name, 'Name' : Name })
270        try:
271            vars = self.func(self.user_code, context, *args[0], **args[1])
272        except Exception, exc:
273            if debug:
274                raise
275            error(lineno, 'error defining "%s": %s.' % (name, exc))
276        for k in vars.keys():
277            if k not in ('header_output', 'decoder_output',
278                         'exec_output', 'decode_block'):
279                del vars[k]
280        return GenCode(parser, **vars)
281
282# Special null format to catch an implicit-format instruction
283# definition outside of any format block.
284class NoFormat(object):
285    def __init__(self):
286        self.defaultInst = ''
287
288    def defineInst(self, parser, name, args, lineno):
289        error(lineno,
290              'instruction definition "%s" with no active format!' % name)
291
292###############
293# GenCode class
294#
295# The GenCode class encapsulates generated code destined for various
296# output files.  The header_output and decoder_output attributes are
297# strings containing code destined for decoder.hh and decoder.cc
298# respectively.  The decode_block attribute contains code to be
299# incorporated in the decode function itself (that will also end up in
300# decoder.cc).  The exec_output attribute is a dictionary with a key
301# for each CPU model name; the value associated with a particular key
302# is the string of code for that CPU model's exec.cc file.  The
303# has_decode_default attribute is used in the decode block to allow
304# explicit default clauses to override default default clauses.
305
306class GenCode(object):
307    # Constructor.  At this point we substitute out all CPU-specific
308    # symbols.  For the exec output, these go into the per-model
309    # dictionary.  For all other output types they get collapsed into
310    # a single string.
311    def __init__(self, parser,
312                 header_output = '', decoder_output = '', exec_output = '',
313                 decode_block = '', has_decode_default = False):
314        self.parser = parser
315        self.header_output = parser.expandCpuSymbolsToString(header_output)
316        self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
317        self.exec_output = exec_output
318        self.decode_block = decode_block
319        self.has_decode_default = has_decode_default
320
321    # Write these code chunks out to the filesystem.  They will be properly
322    # interwoven by the write_top_level_files().
323    def emit(self):
324        if self.header_output:
325            self.parser.get_file('header').write(self.header_output)
326        if self.decoder_output:
327            self.parser.get_file('decoder').write(self.decoder_output)
328        if self.exec_output:
329            self.parser.get_file('exec').write(self.exec_output)
330        if self.decode_block:
331            self.parser.get_file('decode_block').write(self.decode_block)
332
333    # Override '+' operator: generate a new GenCode object that
334    # concatenates all the individual strings in the operands.
335    def __add__(self, other):
336        return GenCode(self.parser,
337                       self.header_output + other.header_output,
338                       self.decoder_output + other.decoder_output,
339                       self.exec_output + other.exec_output,
340                       self.decode_block + other.decode_block,
341                       self.has_decode_default or other.has_decode_default)
342
343    # Prepend a string (typically a comment) to all the strings.
344    def prepend_all(self, pre):
345        self.header_output = pre + self.header_output
346        self.decoder_output  = pre + self.decoder_output
347        self.decode_block = pre + self.decode_block
348        self.exec_output  = pre + self.exec_output
349
350    # Wrap the decode block in a pair of strings (e.g., 'case foo:'
351    # and 'break;').  Used to build the big nested switch statement.
352    def wrap_decode_block(self, pre, post = ''):
353        self.decode_block = pre + indent(self.decode_block) + post
354
355#####################################################################
356#
357#                      Bitfield Operator Support
358#
359#####################################################################
360
361bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
362
363bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
364bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
365
366def substBitOps(code):
367    # first convert single-bit selectors to two-index form
368    # i.e., <n> --> <n:n>
369    code = bitOp1ArgRE.sub(r'<\1:\1>', code)
370    # simple case: selector applied to ID (name)
371    # i.e., foo<a:b> --> bits(foo, a, b)
372    code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
373    # if selector is applied to expression (ending in ')'),
374    # we need to search backward for matching '('
375    match = bitOpExprRE.search(code)
376    while match:
377        exprEnd = match.start()
378        here = exprEnd - 1
379        nestLevel = 1
380        while nestLevel > 0:
381            if code[here] == '(':
382                nestLevel -= 1
383            elif code[here] == ')':
384                nestLevel += 1
385            here -= 1
386            if here < 0:
387                sys.exit("Didn't find '('!")
388        exprStart = here+1
389        newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
390                                         match.group(1), match.group(2))
391        code = code[:exprStart] + newExpr + code[match.end():]
392        match = bitOpExprRE.search(code)
393    return code
394
395
396#####################################################################
397#
398#                             Code Parser
399#
400# The remaining code is the support for automatically extracting
401# instruction characteristics from pseudocode.
402#
403#####################################################################
404
405# Force the argument to be a list.  Useful for flags, where a caller
406# can specify a singleton flag or a list of flags.  Also usful for
407# converting tuples to lists so they can be modified.
408def makeList(arg):
409    if isinstance(arg, list):
410        return arg
411    elif isinstance(arg, tuple):
412        return list(arg)
413    elif not arg:
414        return []
415    else:
416        return [ arg ]
417
418class Operand(object):
419    '''Base class for operand descriptors.  An instance of this class
420    (or actually a class derived from this one) represents a specific
421    operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
422    derived classes encapsulates the traits of a particular operand
423    type (e.g., "32-bit integer register").'''
424
425    def buildReadCode(self, func = None):
426        subst_dict = {"name": self.base_name,
427                      "func": func,
428                      "reg_idx": self.reg_spec,
429                      "ctype": self.ctype}
430        if hasattr(self, 'src_reg_idx'):
431            subst_dict['op_idx'] = self.src_reg_idx
432        code = self.read_code % subst_dict
433        return '%s = %s;\n' % (self.base_name, code)
434
435    def buildWriteCode(self, func = None):
436        subst_dict = {"name": self.base_name,
437                      "func": func,
438                      "reg_idx": self.reg_spec,
439                      "ctype": self.ctype,
440                      "final_val": self.base_name}
441        if hasattr(self, 'dest_reg_idx'):
442            subst_dict['op_idx'] = self.dest_reg_idx
443        code = self.write_code % subst_dict
444        return '''
445        {
446            %s final_val = %s;
447            %s;
448            if (traceData) { traceData->setData(final_val); }
449        }''' % (self.dflt_ctype, self.base_name, code)
450
451    def __init__(self, parser, full_name, ext, is_src, is_dest):
452        self.full_name = full_name
453        self.ext = ext
454        self.is_src = is_src
455        self.is_dest = is_dest
456        # The 'effective extension' (eff_ext) is either the actual
457        # extension, if one was explicitly provided, or the default.
458        if ext:
459            self.eff_ext = ext
460        elif hasattr(self, 'dflt_ext'):
461            self.eff_ext = self.dflt_ext
462
463        if hasattr(self, 'eff_ext'):
464            self.ctype = parser.operandTypeMap[self.eff_ext]
465
466    # Finalize additional fields (primarily code fields).  This step
467    # is done separately since some of these fields may depend on the
468    # register index enumeration that hasn't been performed yet at the
469    # time of __init__(). The register index enumeration is affected
470    # by predicated register reads/writes. Hence, we forward the flags
471    # that indicate whether or not predication is in use.
472    def finalize(self, predRead, predWrite):
473        self.flags = self.getFlags()
474        self.constructor = self.makeConstructor(predRead, predWrite)
475        self.op_decl = self.makeDecl()
476
477        if self.is_src:
478            self.op_rd = self.makeRead(predRead)
479            self.op_src_decl = self.makeDecl()
480        else:
481            self.op_rd = ''
482            self.op_src_decl = ''
483
484        if self.is_dest:
485            self.op_wb = self.makeWrite(predWrite)
486            self.op_dest_decl = self.makeDecl()
487        else:
488            self.op_wb = ''
489            self.op_dest_decl = ''
490
491    def isMem(self):
492        return 0
493
494    def isReg(self):
495        return 0
496
497    def isFloatReg(self):
498        return 0
499
500    def isIntReg(self):
501        return 0
502
503    def isCCReg(self):
504        return 0
505
506    def isControlReg(self):
507        return 0
508
509    def isPCState(self):
510        return 0
511
512    def isPCPart(self):
513        return self.isPCState() and self.reg_spec
514
515    def hasReadPred(self):
516        return self.read_predicate != None
517
518    def hasWritePred(self):
519        return self.write_predicate != None
520
521    def getFlags(self):
522        # note the empty slice '[:]' gives us a copy of self.flags[0]
523        # instead of a reference to it
524        my_flags = self.flags[0][:]
525        if self.is_src:
526            my_flags += self.flags[1]
527        if self.is_dest:
528            my_flags += self.flags[2]
529        return my_flags
530
531    def makeDecl(self):
532        # Note that initializations in the declarations are solely
533        # to avoid 'uninitialized variable' errors from the compiler.
534        return self.ctype + ' ' + self.base_name + ' = 0;\n';
535
536class IntRegOperand(Operand):
537    def isReg(self):
538        return 1
539
540    def isIntReg(self):
541        return 1
542
543    def makeConstructor(self, predRead, predWrite):
544        c_src = ''
545        c_dest = ''
546
547        if self.is_src:
548            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
549            if self.hasReadPred():
550                c_src = '\n\tif (%s) {%s\n\t}' % \
551                        (self.read_predicate, c_src)
552
553        if self.is_dest:
554            c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
555                    (self.reg_spec)
556            c_dest += '\n\t_numIntDestRegs++;'
557            if self.hasWritePred():
558                c_dest = '\n\tif (%s) {%s\n\t}' % \
559                         (self.write_predicate, c_dest)
560
561        return c_src + c_dest
562
563    def makeRead(self, predRead):
564        if (self.ctype == 'float' or self.ctype == 'double'):
565            error('Attempt to read integer register as FP')
566        if self.read_code != None:
567            return self.buildReadCode('readIntRegOperand')
568
569        int_reg_val = ''
570        if predRead:
571            int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
572            if self.hasReadPred():
573                int_reg_val = '(%s) ? %s : 0' % \
574                              (self.read_predicate, int_reg_val)
575        else:
576            int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
577
578        return '%s = %s;\n' % (self.base_name, int_reg_val)
579
580    def makeWrite(self, predWrite):
581        if (self.ctype == 'float' or self.ctype == 'double'):
582            error('Attempt to write integer register as FP')
583        if self.write_code != None:
584            return self.buildWriteCode('setIntRegOperand')
585
586        if predWrite:
587            wp = 'true'
588            if self.hasWritePred():
589                wp = self.write_predicate
590
591            wcond = 'if (%s)' % (wp)
592            windex = '_destIndex++'
593        else:
594            wcond = ''
595            windex = '%d' % self.dest_reg_idx
596
597        wb = '''
598        %s
599        {
600            %s final_val = %s;
601            xc->setIntRegOperand(this, %s, final_val);\n
602            if (traceData) { traceData->setData(final_val); }
603        }''' % (wcond, self.ctype, self.base_name, windex)
604
605        return wb
606
607class FloatRegOperand(Operand):
608    def isReg(self):
609        return 1
610
611    def isFloatReg(self):
612        return 1
613
614    def makeConstructor(self, predRead, predWrite):
615        c_src = ''
616        c_dest = ''
617
618        if self.is_src:
619            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
620                    (self.reg_spec)
621
622        if self.is_dest:
623            c_dest = \
624              '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
625              (self.reg_spec)
626            c_dest += '\n\t_numFPDestRegs++;'
627
628        return c_src + c_dest
629
630    def makeRead(self, predRead):
631        bit_select = 0
632        if (self.ctype == 'float' or self.ctype == 'double'):
633            func = 'readFloatRegOperand'
634        else:
635            func = 'readFloatRegOperandBits'
636        if self.read_code != None:
637            return self.buildReadCode(func)
638
639        if predRead:
640            rindex = '_sourceIndex++'
641        else:
642            rindex = '%d' % self.src_reg_idx
643
644        return '%s = xc->%s(this, %s);\n' % \
645            (self.base_name, func, rindex)
646
647    def makeWrite(self, predWrite):
648        if (self.ctype == 'float' or self.ctype == 'double'):
649            func = 'setFloatRegOperand'
650        else:
651            func = 'setFloatRegOperandBits'
652        if self.write_code != None:
653            return self.buildWriteCode(func)
654
655        if predWrite:
656            wp = '_destIndex++'
657        else:
658            wp = '%d' % self.dest_reg_idx
659        wp = 'xc->%s(this, %s, final_val);' % (func, wp)
660
661        wb = '''
662        {
663            %s final_val = %s;
664            %s\n
665            if (traceData) { traceData->setData(final_val); }
666        }''' % (self.ctype, self.base_name, wp)
667        return wb
668
669class CCRegOperand(Operand):
670    def isReg(self):
671        return 1
672
673    def isCCReg(self):
674        return 1
675
676    def makeConstructor(self, predRead, predWrite):
677        c_src = ''
678        c_dest = ''
679
680        if self.is_src:
681            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
682                     (self.reg_spec)
683            if self.hasReadPred():
684                c_src = '\n\tif (%s) {%s\n\t}' % \
685                        (self.read_predicate, c_src)
686
687        if self.is_dest:
688            c_dest = \
689              '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
690              (self.reg_spec)
691            c_dest += '\n\t_numCCDestRegs++;'
692            if self.hasWritePred():
693                c_dest = '\n\tif (%s) {%s\n\t}' % \
694                         (self.write_predicate, c_dest)
695
696        return c_src + c_dest
697
698    def makeRead(self, predRead):
699        if (self.ctype == 'float' or self.ctype == 'double'):
700            error('Attempt to read condition-code register as FP')
701        if self.read_code != None:
702            return self.buildReadCode('readCCRegOperand')
703
704        int_reg_val = ''
705        if predRead:
706            int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
707            if self.hasReadPred():
708                int_reg_val = '(%s) ? %s : 0' % \
709                              (self.read_predicate, int_reg_val)
710        else:
711            int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
712
713        return '%s = %s;\n' % (self.base_name, int_reg_val)
714
715    def makeWrite(self, predWrite):
716        if (self.ctype == 'float' or self.ctype == 'double'):
717            error('Attempt to write condition-code register as FP')
718        if self.write_code != None:
719            return self.buildWriteCode('setCCRegOperand')
720
721        if predWrite:
722            wp = 'true'
723            if self.hasWritePred():
724                wp = self.write_predicate
725
726            wcond = 'if (%s)' % (wp)
727            windex = '_destIndex++'
728        else:
729            wcond = ''
730            windex = '%d' % self.dest_reg_idx
731
732        wb = '''
733        %s
734        {
735            %s final_val = %s;
736            xc->setCCRegOperand(this, %s, final_val);\n
737            if (traceData) { traceData->setData(final_val); }
738        }''' % (wcond, self.ctype, self.base_name, windex)
739
740        return wb
741
742class ControlRegOperand(Operand):
743    def isReg(self):
744        return 1
745
746    def isControlReg(self):
747        return 1
748
749    def makeConstructor(self, predRead, predWrite):
750        c_src = ''
751        c_dest = ''
752
753        if self.is_src:
754            c_src = \
755              '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
756              (self.reg_spec)
757
758        if self.is_dest:
759            c_dest = \
760              '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
761              (self.reg_spec)
762
763        return c_src + c_dest
764
765    def makeRead(self, predRead):
766        bit_select = 0
767        if (self.ctype == 'float' or self.ctype == 'double'):
768            error('Attempt to read control register as FP')
769        if self.read_code != None:
770            return self.buildReadCode('readMiscRegOperand')
771
772        if predRead:
773            rindex = '_sourceIndex++'
774        else:
775            rindex = '%d' % self.src_reg_idx
776
777        return '%s = xc->readMiscRegOperand(this, %s);\n' % \
778            (self.base_name, rindex)
779
780    def makeWrite(self, predWrite):
781        if (self.ctype == 'float' or self.ctype == 'double'):
782            error('Attempt to write control register as FP')
783        if self.write_code != None:
784            return self.buildWriteCode('setMiscRegOperand')
785
786        if predWrite:
787            windex = '_destIndex++'
788        else:
789            windex = '%d' % self.dest_reg_idx
790
791        wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
792             (windex, self.base_name)
793        wb += 'if (traceData) { traceData->setData(%s); }' % \
794              self.base_name
795
796        return wb
797
798class MemOperand(Operand):
799    def isMem(self):
800        return 1
801
802    def makeConstructor(self, predRead, predWrite):
803        return ''
804
805    def makeDecl(self):
806        # Note that initializations in the declarations are solely
807        # to avoid 'uninitialized variable' errors from the compiler.
808        # Declare memory data variable.
809        return '%s %s = 0;\n' % (self.ctype, self.base_name)
810
811    def makeRead(self, predRead):
812        if self.read_code != None:
813            return self.buildReadCode()
814        return ''
815
816    def makeWrite(self, predWrite):
817        if self.write_code != None:
818            return self.buildWriteCode()
819        return ''
820
821class PCStateOperand(Operand):
822    def makeConstructor(self, predRead, predWrite):
823        return ''
824
825    def makeRead(self, predRead):
826        if self.reg_spec:
827            # A component of the PC state.
828            return '%s = __parserAutoPCState.%s();\n' % \
829                (self.base_name, self.reg_spec)
830        else:
831            # The whole PC state itself.
832            return '%s = xc->pcState();\n' % self.base_name
833
834    def makeWrite(self, predWrite):
835        if self.reg_spec:
836            # A component of the PC state.
837            return '__parserAutoPCState.%s(%s);\n' % \
838                (self.reg_spec, self.base_name)
839        else:
840            # The whole PC state itself.
841            return 'xc->pcState(%s);\n' % self.base_name
842
843    def makeDecl(self):
844        ctype = 'TheISA::PCState'
845        if self.isPCPart():
846            ctype = self.ctype
847        return "%s %s;\n" % (ctype, self.base_name)
848
849    def isPCState(self):
850        return 1
851
852class OperandList(object):
853    '''Find all the operands in the given code block.  Returns an operand
854    descriptor list (instance of class OperandList).'''
855    def __init__(self, parser, code):
856        self.items = []
857        self.bases = {}
858        # delete strings and comments so we don't match on operands inside
859        for regEx in (stringRE, commentRE):
860            code = regEx.sub('', code)
861        # search for operands
862        next_pos = 0
863        while 1:
864            match = parser.operandsRE.search(code, next_pos)
865            if not match:
866                # no more matches: we're done
867                break
868            op = match.groups()
869            # regexp groups are operand full name, base, and extension
870            (op_full, op_base, op_ext) = op
871            # if the token following the operand is an assignment, this is
872            # a destination (LHS), else it's a source (RHS)
873            is_dest = (assignRE.match(code, match.end()) != None)
874            is_src = not is_dest
875            # see if we've already seen this one
876            op_desc = self.find_base(op_base)
877            if op_desc:
878                if op_desc.ext != op_ext:
879                    error('Inconsistent extensions for operand %s' % \
880                          op_base)
881                op_desc.is_src = op_desc.is_src or is_src
882                op_desc.is_dest = op_desc.is_dest or is_dest
883            else:
884                # new operand: create new descriptor
885                op_desc = parser.operandNameMap[op_base](parser,
886                    op_full, op_ext, is_src, is_dest)
887                self.append(op_desc)
888            # start next search after end of current match
889            next_pos = match.end()
890        self.sort()
891        # enumerate source & dest register operands... used in building
892        # constructor later
893        self.numSrcRegs = 0
894        self.numDestRegs = 0
895        self.numFPDestRegs = 0
896        self.numIntDestRegs = 0
897        self.numCCDestRegs = 0
898        self.numMiscDestRegs = 0
899        self.memOperand = None
900
901        # Flags to keep track if one or more operands are to be read/written
902        # conditionally.
903        self.predRead = False
904        self.predWrite = False
905
906        for op_desc in self.items:
907            if op_desc.isReg():
908                if op_desc.is_src:
909                    op_desc.src_reg_idx = self.numSrcRegs
910                    self.numSrcRegs += 1
911                if op_desc.is_dest:
912                    op_desc.dest_reg_idx = self.numDestRegs
913                    self.numDestRegs += 1
914                    if op_desc.isFloatReg():
915                        self.numFPDestRegs += 1
916                    elif op_desc.isIntReg():
917                        self.numIntDestRegs += 1
918                    elif op_desc.isCCReg():
919                        self.numCCDestRegs += 1
920                    elif op_desc.isControlReg():
921                        self.numMiscDestRegs += 1
922            elif op_desc.isMem():
923                if self.memOperand:
924                    error("Code block has more than one memory operand.")
925                self.memOperand = op_desc
926
927            # Check if this operand has read/write predication. If true, then
928            # the microop will dynamically index source/dest registers.
929            self.predRead = self.predRead or op_desc.hasReadPred()
930            self.predWrite = self.predWrite or op_desc.hasWritePred()
931
932        if parser.maxInstSrcRegs < self.numSrcRegs:
933            parser.maxInstSrcRegs = self.numSrcRegs
934        if parser.maxInstDestRegs < self.numDestRegs:
935            parser.maxInstDestRegs = self.numDestRegs
936        if parser.maxMiscDestRegs < self.numMiscDestRegs:
937            parser.maxMiscDestRegs = self.numMiscDestRegs
938
939        # now make a final pass to finalize op_desc fields that may depend
940        # on the register enumeration
941        for op_desc in self.items:
942            op_desc.finalize(self.predRead, self.predWrite)
943
944    def __len__(self):
945        return len(self.items)
946
947    def __getitem__(self, index):
948        return self.items[index]
949
950    def append(self, op_desc):
951        self.items.append(op_desc)
952        self.bases[op_desc.base_name] = op_desc
953
954    def find_base(self, base_name):
955        # like self.bases[base_name], but returns None if not found
956        # (rather than raising exception)
957        return self.bases.get(base_name)
958
959    # internal helper function for concat[Some]Attr{Strings|Lists}
960    def __internalConcatAttrs(self, attr_name, filter, result):
961        for op_desc in self.items:
962            if filter(op_desc):
963                result += getattr(op_desc, attr_name)
964        return result
965
966    # return a single string that is the concatenation of the (string)
967    # values of the specified attribute for all operands
968    def concatAttrStrings(self, attr_name):
969        return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
970
971    # like concatAttrStrings, but only include the values for the operands
972    # for which the provided filter function returns true
973    def concatSomeAttrStrings(self, filter, attr_name):
974        return self.__internalConcatAttrs(attr_name, filter, '')
975
976    # return a single list that is the concatenation of the (list)
977    # values of the specified attribute for all operands
978    def concatAttrLists(self, attr_name):
979        return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
980
981    # like concatAttrLists, but only include the values for the operands
982    # for which the provided filter function returns true
983    def concatSomeAttrLists(self, filter, attr_name):
984        return self.__internalConcatAttrs(attr_name, filter, [])
985
986    def sort(self):
987        self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
988
989class SubOperandList(OperandList):
990    '''Find all the operands in the given code block.  Returns an operand
991    descriptor list (instance of class OperandList).'''
992    def __init__(self, parser, code, master_list):
993        self.items = []
994        self.bases = {}
995        # delete strings and comments so we don't match on operands inside
996        for regEx in (stringRE, commentRE):
997            code = regEx.sub('', code)
998        # search for operands
999        next_pos = 0
1000        while 1:
1001            match = parser.operandsRE.search(code, next_pos)
1002            if not match:
1003                # no more matches: we're done
1004                break
1005            op = match.groups()
1006            # regexp groups are operand full name, base, and extension
1007            (op_full, op_base, op_ext) = op
1008            # find this op in the master list
1009            op_desc = master_list.find_base(op_base)
1010            if not op_desc:
1011                error('Found operand %s which is not in the master list!' \
1012                      ' This is an internal error' % op_base)
1013            else:
1014                # See if we've already found this operand
1015                op_desc = self.find_base(op_base)
1016                if not op_desc:
1017                    # if not, add a reference to it to this sub list
1018                    self.append(master_list.bases[op_base])
1019
1020            # start next search after end of current match
1021            next_pos = match.end()
1022        self.sort()
1023        self.memOperand = None
1024        # Whether the whole PC needs to be read so parts of it can be accessed
1025        self.readPC = False
1026        # Whether the whole PC needs to be written after parts of it were
1027        # changed
1028        self.setPC = False
1029        # Whether this instruction manipulates the whole PC or parts of it.
1030        # Mixing the two is a bad idea and flagged as an error.
1031        self.pcPart = None
1032
1033        # Flags to keep track if one or more operands are to be read/written
1034        # conditionally.
1035        self.predRead = False
1036        self.predWrite = False
1037
1038        for op_desc in self.items:
1039            if op_desc.isPCPart():
1040                self.readPC = True
1041                if op_desc.is_dest:
1042                    self.setPC = True
1043
1044            if op_desc.isPCState():
1045                if self.pcPart is not None:
1046                    if self.pcPart and not op_desc.isPCPart() or \
1047                            not self.pcPart and op_desc.isPCPart():
1048                        error("Mixed whole and partial PC state operands.")
1049                self.pcPart = op_desc.isPCPart()
1050
1051            if op_desc.isMem():
1052                if self.memOperand:
1053                    error("Code block has more than one memory operand.")
1054                self.memOperand = op_desc
1055
1056            # Check if this operand has read/write predication. If true, then
1057            # the microop will dynamically index source/dest registers.
1058            self.predRead = self.predRead or op_desc.hasReadPred()
1059            self.predWrite = self.predWrite or op_desc.hasWritePred()
1060
1061# Regular expression object to match C++ strings
1062stringRE = re.compile(r'"([^"\\]|\\.)*"')
1063
1064# Regular expression object to match C++ comments
1065# (used in findOperands())
1066commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1067        re.DOTALL | re.MULTILINE)
1068
1069# Regular expression object to match assignment statements
1070# (used in findOperands())
1071assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1072
1073def makeFlagConstructor(flag_list):
1074    if len(flag_list) == 0:
1075        return ''
1076    # filter out repeated flags
1077    flag_list.sort()
1078    i = 1
1079    while i < len(flag_list):
1080        if flag_list[i] == flag_list[i-1]:
1081            del flag_list[i]
1082        else:
1083            i += 1
1084    pre = '\n\tflags['
1085    post = '] = true;'
1086    code = pre + string.join(flag_list, post + pre) + post
1087    return code
1088
1089# Assume all instruction flags are of the form 'IsFoo'
1090instFlagRE = re.compile(r'Is.*')
1091
1092# OpClass constants end in 'Op' except No_OpClass
1093opClassRE = re.compile(r'.*Op|No_OpClass')
1094
1095class InstObjParams(object):
1096    def __init__(self, parser, mnem, class_name, base_class = '',
1097                 snippets = {}, opt_args = []):
1098        self.mnemonic = mnem
1099        self.class_name = class_name
1100        self.base_class = base_class
1101        if not isinstance(snippets, dict):
1102            snippets = {'code' : snippets}
1103        compositeCode = ' '.join(map(str, snippets.values()))
1104        self.snippets = snippets
1105
1106        self.operands = OperandList(parser, compositeCode)
1107
1108        # The header of the constructor declares the variables to be used
1109        # in the body of the constructor.
1110        header = ''
1111        header += '\n\t_numSrcRegs = 0;'
1112        header += '\n\t_numDestRegs = 0;'
1113        header += '\n\t_numFPDestRegs = 0;'
1114        header += '\n\t_numIntDestRegs = 0;'
1115        header += '\n\t_numCCDestRegs = 0;'
1116
1117        self.constructor = header + \
1118                           self.operands.concatAttrStrings('constructor')
1119
1120        self.flags = self.operands.concatAttrLists('flags')
1121
1122        # Make a basic guess on the operand class (function unit type).
1123        # These are good enough for most cases, and can be overridden
1124        # later otherwise.
1125        if 'IsStore' in self.flags:
1126            self.op_class = 'MemWriteOp'
1127        elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1128            self.op_class = 'MemReadOp'
1129        elif 'IsFloating' in self.flags:
1130            self.op_class = 'FloatAddOp'
1131        else:
1132            self.op_class = 'IntAluOp'
1133
1134        # Optional arguments are assumed to be either StaticInst flags
1135        # or an OpClass value.  To avoid having to import a complete
1136        # list of these values to match against, we do it ad-hoc
1137        # with regexps.
1138        for oa in opt_args:
1139            if instFlagRE.match(oa):
1140                self.flags.append(oa)
1141            elif opClassRE.match(oa):
1142                self.op_class = oa
1143            else:
1144                error('InstObjParams: optional arg "%s" not recognized '
1145                      'as StaticInst::Flag or OpClass.' % oa)
1146
1147        # add flag initialization to contructor here to include
1148        # any flags added via opt_args
1149        self.constructor += makeFlagConstructor(self.flags)
1150
1151        # if 'IsFloating' is set, add call to the FP enable check
1152        # function (which should be provided by isa_desc via a declare)
1153        if 'IsFloating' in self.flags:
1154            self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1155        else:
1156            self.fp_enable_check = ''
1157
1158##############
1159# Stack: a simple stack object.  Used for both formats (formatStack)
1160# and default cases (defaultStack).  Simply wraps a list to give more
1161# stack-like syntax and enable initialization with an argument list
1162# (as opposed to an argument that's a list).
1163
1164class Stack(list):
1165    def __init__(self, *items):
1166        list.__init__(self, items)
1167
1168    def push(self, item):
1169        self.append(item);
1170
1171    def top(self):
1172        return self[-1]
1173
1174#######################
1175#
1176# ISA Parser
1177#   parses ISA DSL and emits C++ headers and source
1178#
1179
1180class ISAParser(Grammar):
1181    class CpuModel(object):
1182        def __init__(self, name, filename, includes, strings):
1183            self.name = name
1184            self.filename = filename
1185            self.includes = includes
1186            self.strings = strings
1187
1188    def __init__(self, output_dir):
1189        super(ISAParser, self).__init__()
1190        self.output_dir = output_dir
1191
1192        self.filename = None # for output file watermarking/scaremongering
1193
1194        self.cpuModels = [
1195            ISAParser.CpuModel('ExecContext',
1196                               'generic_cpu_exec.cc',
1197                               '#include "cpu/exec_context.hh"',
1198                               { "CPU_exec_context" : "ExecContext" }),
1199            ]
1200
1201        # variable to hold templates
1202        self.templateMap = {}
1203
1204        # This dictionary maps format name strings to Format objects.
1205        self.formatMap = {}
1206
1207        # Track open files and, if applicable, how many chunks it has been
1208        # split into so far.
1209        self.files = {}
1210        self.splits = {}
1211
1212        # isa_name / namespace identifier from namespace declaration.
1213        # before the namespace declaration, None.
1214        self.isa_name = None
1215        self.namespace = None
1216
1217        # The format stack.
1218        self.formatStack = Stack(NoFormat())
1219
1220        # The default case stack.
1221        self.defaultStack = Stack(None)
1222
1223        # Stack that tracks current file and line number.  Each
1224        # element is a tuple (filename, lineno) that records the
1225        # *current* filename and the line number in the *previous*
1226        # file where it was included.
1227        self.fileNameStack = Stack()
1228
1229        symbols = ('makeList', 're', 'string')
1230        self.exportContext = dict([(s, eval(s)) for s in symbols])
1231
1232        self.maxInstSrcRegs = 0
1233        self.maxInstDestRegs = 0
1234        self.maxMiscDestRegs = 0
1235
1236    def __getitem__(self, i):    # Allow object (self) to be
1237        return getattr(self, i)  # passed to %-substitutions
1238
1239    # Change the file suffix of a base filename:
1240    #   (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1241    def suffixize(self, s, sec):
1242        extn = re.compile('(\.[^\.]+)$') # isolate extension
1243        if self.namespace:
1244            return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1245        else:
1246            return extn.sub(r'-g\1.inc', s)
1247
1248    # Get the file object for emitting code into the specified section
1249    # (header, decoder, exec, decode_block).
1250    def get_file(self, section):
1251        if section == 'decode_block':
1252            filename = 'decode-method.cc.inc'
1253        else:
1254            if section == 'header':
1255                file = 'decoder.hh'
1256            else:
1257                file = '%s.cc' % section
1258            filename = self.suffixize(file, section)
1259        try:
1260            return self.files[filename]
1261        except KeyError: pass
1262
1263        f = self.open(filename)
1264        self.files[filename] = f
1265
1266        # The splittable files are the ones with many independent
1267        # per-instruction functions - the decoder's instruction constructors
1268        # and the instruction execution (execute()) methods. These both have
1269        # the suffix -ns.cc.inc, meaning they are within the namespace part
1270        # of the ISA, contain object-emitting C++ source, and are included
1271        # into other top-level files. These are the files that need special
1272        # #define's to allow parts of them to be compiled separately. Rather
1273        # than splitting the emissions into separate files, the monolithic
1274        # output of the ISA parser is maintained, but the value (or lack
1275        # thereof) of the __SPLIT definition during C preprocessing will
1276        # select the different chunks. If no 'split' directives are used,
1277        # the cpp emissions have no effect.
1278        if re.search('-ns.cc.inc$', filename):
1279            print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1280            self.splits[f] = 1
1281        # ensure requisite #include's
1282        elif filename in ['decoder-g.cc.inc', 'exec-g.cc.inc']:
1283            print >>f, '#include "decoder.hh"'
1284        elif filename == 'decoder-g.hh.inc':
1285            print >>f, '#include "base/bitfield.hh"'
1286
1287        return f
1288
1289    # Weave together the parts of the different output sections by
1290    # #include'ing them into some very short top-level .cc/.hh files.
1291    # These small files make it much clearer how this tool works, since
1292    # you directly see the chunks emitted as files that are #include'd.
1293    def write_top_level_files(self):
1294        dep = self.open('inc.d', bare=True)
1295
1296        # decoder header - everything depends on this
1297        file = 'decoder.hh'
1298        with self.open(file) as f:
1299            inc = []
1300
1301            fn = 'decoder-g.hh.inc'
1302            assert(fn in self.files)
1303            f.write('#include "%s"\n' % fn)
1304            inc.append(fn)
1305
1306            fn = 'decoder-ns.hh.inc'
1307            assert(fn in self.files)
1308            f.write('namespace %s {\n#include "%s"\n}\n'
1309                    % (self.namespace, fn))
1310            inc.append(fn)
1311
1312            print >>dep, file+':', ' '.join(inc)
1313
1314        # decoder method - cannot be split
1315        file = 'decoder.cc'
1316        with self.open(file) as f:
1317            inc = []
1318
1319            fn = 'decoder-g.cc.inc'
1320            assert(fn in self.files)
1321            f.write('#include "%s"\n' % fn)
1322            inc.append(fn)
1323
1324            fn = 'decode-method.cc.inc'
1325            # is guaranteed to have been written for parse to complete
1326            f.write('#include "%s"\n' % fn)
1327            inc.append(fn)
1328
1329            inc.append("decoder.hh")
1330            print >>dep, file+':', ' '.join(inc)
1331
1332        extn = re.compile('(\.[^\.]+)$')
1333
1334        # instruction constructors
1335        splits = self.splits[self.get_file('decoder')]
1336        file_ = 'inst-constrs.cc'
1337        for i in range(1, splits+1):
1338            if splits > 1:
1339                file = extn.sub(r'-%d\1' % i, file_)
1340            else:
1341                file = file_
1342            with self.open(file) as f:
1343                inc = []
1344
1345                fn = 'decoder-g.cc.inc'
1346                assert(fn in self.files)
1347                f.write('#include "%s"\n' % fn)
1348                inc.append(fn)
1349
1350                fn = 'decoder-ns.cc.inc'
1351                assert(fn in self.files)
1352                print >>f, 'namespace %s {' % self.namespace
1353                if splits > 1:
1354                    print >>f, '#define __SPLIT %u' % i
1355                print >>f, '#include "%s"' % fn
1356                print >>f, '}'
1357                inc.append(fn)
1358
1359                inc.append("decoder.hh")
1360                print >>dep, file+':', ' '.join(inc)
1361
1362        # instruction execution per-CPU model
1363        splits = self.splits[self.get_file('exec')]
1364        for cpu in self.cpuModels:
1365            for i in range(1, splits+1):
1366                if splits > 1:
1367                    file = extn.sub(r'_%d\1' % i, cpu.filename)
1368                else:
1369                    file = cpu.filename
1370                with self.open(file) as f:
1371                    inc = []
1372
1373                    fn = 'exec-g.cc.inc'
1374                    assert(fn in self.files)
1375                    f.write('#include "%s"\n' % fn)
1376                    inc.append(fn)
1377
1378                    f.write(cpu.includes+"\n")
1379
1380                    fn = 'exec-ns.cc.inc'
1381                    assert(fn in self.files)
1382                    print >>f, 'namespace %s {' % self.namespace
1383                    print >>f, '#define CPU_EXEC_CONTEXT %s' \
1384                               % cpu.strings['CPU_exec_context']
1385                    if splits > 1:
1386                        print >>f, '#define __SPLIT %u' % i
1387                    print >>f, '#include "%s"' % fn
1388                    print >>f, '}'
1389                    inc.append(fn)
1390
1391                    inc.append("decoder.hh")
1392                    print >>dep, file+':', ' '.join(inc)
1393
1394        # max_inst_regs.hh
1395        self.update('max_inst_regs.hh',
1396                    '''namespace %(namespace)s {
1397    const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1398    const int MaxInstDestRegs = %(maxInstDestRegs)d;
1399    const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1400        print >>dep, 'max_inst_regs.hh:'
1401
1402        dep.close()
1403
1404
1405    scaremonger_template ='''// DO NOT EDIT
1406// This file was automatically generated from an ISA description:
1407//   %(filename)s
1408
1409''';
1410
1411    #####################################################################
1412    #
1413    #                                Lexer
1414    #
1415    # The PLY lexer module takes two things as input:
1416    # - A list of token names (the string list 'tokens')
1417    # - A regular expression describing a match for each token.  The
1418    #   regexp for token FOO can be provided in two ways:
1419    #   - as a string variable named t_FOO
1420    #   - as the doc string for a function named t_FOO.  In this case,
1421    #     the function is also executed, allowing an action to be
1422    #     associated with each token match.
1423    #
1424    #####################################################################
1425
1426    # Reserved words.  These are listed separately as they are matched
1427    # using the same regexp as generic IDs, but distinguished in the
1428    # t_ID() function.  The PLY documentation suggests this approach.
1429    reserved = (
1430        'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1431        'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1432        'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1433        )
1434
1435    # List of tokens.  The lex module requires this.
1436    tokens = reserved + (
1437        # identifier
1438        'ID',
1439
1440        # integer literal
1441        'INTLIT',
1442
1443        # string literal
1444        'STRLIT',
1445
1446        # code literal
1447        'CODELIT',
1448
1449        # ( ) [ ] { } < > , ; . : :: *
1450        'LPAREN', 'RPAREN',
1451        'LBRACKET', 'RBRACKET',
1452        'LBRACE', 'RBRACE',
1453        'LESS', 'GREATER', 'EQUALS',
1454        'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1455        'ASTERISK',
1456
1457        # C preprocessor directives
1458        'CPPDIRECTIVE'
1459
1460    # The following are matched but never returned. commented out to
1461    # suppress PLY warning
1462        # newfile directive
1463    #    'NEWFILE',
1464
1465        # endfile directive
1466    #    'ENDFILE'
1467    )
1468
1469    # Regular expressions for token matching
1470    t_LPAREN           = r'\('
1471    t_RPAREN           = r'\)'
1472    t_LBRACKET         = r'\['
1473    t_RBRACKET         = r'\]'
1474    t_LBRACE           = r'\{'
1475    t_RBRACE           = r'\}'
1476    t_LESS             = r'\<'
1477    t_GREATER          = r'\>'
1478    t_EQUALS           = r'='
1479    t_COMMA            = r','
1480    t_SEMI             = r';'
1481    t_DOT              = r'\.'
1482    t_COLON            = r':'
1483    t_DBLCOLON         = r'::'
1484    t_ASTERISK         = r'\*'
1485
1486    # Identifiers and reserved words
1487    reserved_map = { }
1488    for r in reserved:
1489        reserved_map[r.lower()] = r
1490
1491    def t_ID(self, t):
1492        r'[A-Za-z_]\w*'
1493        t.type = self.reserved_map.get(t.value, 'ID')
1494        return t
1495
1496    # Integer literal
1497    def t_INTLIT(self, t):
1498        r'-?(0x[\da-fA-F]+)|\d+'
1499        try:
1500            t.value = int(t.value,0)
1501        except ValueError:
1502            error(t, 'Integer value "%s" too large' % t.value)
1503            t.value = 0
1504        return t
1505
1506    # String literal.  Note that these use only single quotes, and
1507    # can span multiple lines.
1508    def t_STRLIT(self, t):
1509        r"(?m)'([^'])+'"
1510        # strip off quotes
1511        t.value = t.value[1:-1]
1512        t.lexer.lineno += t.value.count('\n')
1513        return t
1514
1515
1516    # "Code literal"... like a string literal, but delimiters are
1517    # '{{' and '}}' so they get formatted nicely under emacs c-mode
1518    def t_CODELIT(self, t):
1519        r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1520        # strip off {{ & }}
1521        t.value = t.value[2:-2]
1522        t.lexer.lineno += t.value.count('\n')
1523        return t
1524
1525    def t_CPPDIRECTIVE(self, t):
1526        r'^\#[^\#].*\n'
1527        t.lexer.lineno += t.value.count('\n')
1528        return t
1529
1530    def t_NEWFILE(self, t):
1531        r'^\#\#newfile\s+"[^"]*"'
1532        self.fileNameStack.push((t.value[11:-1], t.lexer.lineno))
1533        t.lexer.lineno = 0
1534
1535    def t_ENDFILE(self, t):
1536        r'^\#\#endfile'
1537        (old_filename, t.lexer.lineno) = self.fileNameStack.pop()
1538
1539    #
1540    # The functions t_NEWLINE, t_ignore, and t_error are
1541    # special for the lex module.
1542    #
1543
1544    # Newlines
1545    def t_NEWLINE(self, t):
1546        r'\n+'
1547        t.lexer.lineno += t.value.count('\n')
1548
1549    # Comments
1550    def t_comment(self, t):
1551        r'//.*'
1552
1553    # Completely ignored characters
1554    t_ignore = ' \t\x0c'
1555
1556    # Error handler
1557    def t_error(self, t):
1558        error(t, "illegal character '%s'" % t.value[0])
1559        t.skip(1)
1560
1561    #####################################################################
1562    #
1563    #                                Parser
1564    #
1565    # Every function whose name starts with 'p_' defines a grammar
1566    # rule.  The rule is encoded in the function's doc string, while
1567    # the function body provides the action taken when the rule is
1568    # matched.  The argument to each function is a list of the values
1569    # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1570    # symbols on the RHS.  For tokens, the value is copied from the
1571    # t.value attribute provided by the lexer.  For non-terminals, the
1572    # value is assigned by the producing rule; i.e., the job of the
1573    # grammar rule function is to set the value for the non-terminal
1574    # on the LHS (by assigning to t[0]).
1575    #####################################################################
1576
1577    # The LHS of the first grammar rule is used as the start symbol
1578    # (in this case, 'specification').  Note that this rule enforces
1579    # that there will be exactly one namespace declaration, with 0 or
1580    # more global defs/decls before and after it.  The defs & decls
1581    # before the namespace decl will be outside the namespace; those
1582    # after will be inside.  The decoder function is always inside the
1583    # namespace.
1584    def p_specification(self, t):
1585        'specification : opt_defs_and_outputs top_level_decode_block'
1586
1587        for f in self.splits.iterkeys():
1588            f.write('\n#endif\n')
1589
1590        for f in self.files.itervalues(): # close ALL the files;
1591            f.close() # not doing so can cause compilation to fail
1592
1593        self.write_top_level_files()
1594
1595        t[0] = True
1596
1597    # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1598    # output statements. Its productions do the hard work of eventually
1599    # instantiating a GenCode, which are generally emitted (written to disk)
1600    # as soon as possible, except for the decode_block, which has to be
1601    # accumulated into one large function of nested switch/case blocks.
1602    def p_opt_defs_and_outputs_0(self, t):
1603        'opt_defs_and_outputs : empty'
1604
1605    def p_opt_defs_and_outputs_1(self, t):
1606        'opt_defs_and_outputs : defs_and_outputs'
1607
1608    def p_defs_and_outputs_0(self, t):
1609        'defs_and_outputs : def_or_output'
1610
1611    def p_defs_and_outputs_1(self, t):
1612        'defs_and_outputs : defs_and_outputs def_or_output'
1613
1614    # The list of possible definition/output statements.
1615    # They are all processed as they are seen.
1616    def p_def_or_output(self, t):
1617        '''def_or_output : name_decl
1618                         | def_format
1619                         | def_bitfield
1620                         | def_bitfield_struct
1621                         | def_template
1622                         | def_operand_types
1623                         | def_operands
1624                         | output
1625                         | global_let
1626                         | split'''
1627
1628    # Utility function used by both invocations of splitting - explicit
1629    # 'split' keyword and split() function inside "let {{ }};" blocks.
1630    def split(self, sec, write=False):
1631        assert(sec != 'header' and "header cannot be split")
1632
1633        f = self.get_file(sec)
1634        self.splits[f] += 1
1635        s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1636        if write:
1637            f.write(s)
1638        else:
1639            return s
1640
1641    # split output file to reduce compilation time
1642    def p_split(self, t):
1643        'split : SPLIT output_type SEMI'
1644        assert(self.isa_name and "'split' not allowed before namespace decl")
1645
1646        self.split(t[2], True)
1647
1648    def p_output_type(self, t):
1649        '''output_type : DECODER
1650                       | HEADER
1651                       | EXEC'''
1652        t[0] = t[1]
1653
1654    # ISA name declaration looks like "namespace <foo>;"
1655    def p_name_decl(self, t):
1656        'name_decl : NAMESPACE ID SEMI'
1657        assert(self.isa_name == None and "Only 1 namespace decl permitted")
1658        self.isa_name = t[2]
1659        self.namespace = t[2] + 'Inst'
1660
1661    # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1662    # directly to the appropriate output section.
1663
1664    # Massage output block by substituting in template definitions and
1665    # bit operators.  We handle '%'s embedded in the string that don't
1666    # indicate template substitutions (or CPU-specific symbols, which
1667    # get handled in GenCode) by doubling them first so that the
1668    # format operation will reduce them back to single '%'s.
1669    def process_output(self, s):
1670        s = self.protectNonSubstPercents(s)
1671        # protects cpu-specific symbols too
1672        s = self.protectCpuSymbols(s)
1673        return substBitOps(s % self.templateMap)
1674
1675    def p_output(self, t):
1676        'output : OUTPUT output_type CODELIT SEMI'
1677        kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1678        GenCode(self, **kwargs).emit()
1679
1680    # global let blocks 'let {{...}}' (Python code blocks) are
1681    # executed directly when seen.  Note that these execute in a
1682    # special variable context 'exportContext' to prevent the code
1683    # from polluting this script's namespace.
1684    def p_global_let(self, t):
1685        'global_let : LET CODELIT SEMI'
1686        def _split(sec):
1687            return self.split(sec)
1688        self.updateExportContext()
1689        self.exportContext["header_output"] = ''
1690        self.exportContext["decoder_output"] = ''
1691        self.exportContext["exec_output"] = ''
1692        self.exportContext["decode_block"] = ''
1693        self.exportContext["split"] = _split
1694        split_setup = '''
1695def wrap(func):
1696    def split(sec):
1697        globals()[sec + '_output'] += func(sec)
1698    return split
1699split = wrap(split)
1700del wrap
1701'''
1702        # This tricky setup (immediately above) allows us to just write
1703        # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1704        # will automatically be added to the exec_output variable. The inner
1705        # Python execution environment doesn't know about the split points,
1706        # so we carefully inject and wrap a closure that can retrieve the
1707        # next split's #define from the parser and add it to the current
1708        # emission-in-progress.
1709        try:
1710            exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1711        except Exception, exc:
1712            if debug:
1713                raise
1714            error(t, 'error: %s in global let block "%s".' % (exc, t[2]))
1715        GenCode(self,
1716                header_output=self.exportContext["header_output"],
1717                decoder_output=self.exportContext["decoder_output"],
1718                exec_output=self.exportContext["exec_output"],
1719                decode_block=self.exportContext["decode_block"]).emit()
1720
1721    # Define the mapping from operand type extensions to C++ types and
1722    # bit widths (stored in operandTypeMap).
1723    def p_def_operand_types(self, t):
1724        'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1725        try:
1726            self.operandTypeMap = eval('{' + t[3] + '}')
1727        except Exception, exc:
1728            if debug:
1729                raise
1730            error(t,
1731                  'error: %s in def operand_types block "%s".' % (exc, t[3]))
1732
1733    # Define the mapping from operand names to operand classes and
1734    # other traits.  Stored in operandNameMap.
1735    def p_def_operands(self, t):
1736        'def_operands : DEF OPERANDS CODELIT SEMI'
1737        if not hasattr(self, 'operandTypeMap'):
1738            error(t, 'error: operand types must be defined before operands')
1739        try:
1740            user_dict = eval('{' + t[3] + '}', self.exportContext)
1741        except Exception, exc:
1742            if debug:
1743                raise
1744            error(t, 'error: %s in def operands block "%s".' % (exc, t[3]))
1745        self.buildOperandNameMap(user_dict, t.lexer.lineno)
1746
1747    # A bitfield definition looks like:
1748    # 'def [signed] bitfield <ID> [<first>:<last>]'
1749    # This generates a preprocessor macro in the output file.
1750    def p_def_bitfield_0(self, t):
1751        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1752        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1753        if (t[2] == 'signed'):
1754            expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1755        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1756        GenCode(self, header_output=hash_define).emit()
1757
1758    # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1759    def p_def_bitfield_1(self, t):
1760        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1761        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1762        if (t[2] == 'signed'):
1763            expr = 'sext<%d>(%s)' % (1, expr)
1764        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1765        GenCode(self, header_output=hash_define).emit()
1766
1767    # alternate form for structure member: 'def bitfield <ID> <ID>'
1768    def p_def_bitfield_struct(self, t):
1769        'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1770        if (t[2] != ''):
1771            error(t, 'error: structure bitfields are always unsigned.')
1772        expr = 'machInst.%s' % t[5]
1773        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1774        GenCode(self, header_output=hash_define).emit()
1775
1776    def p_id_with_dot_0(self, t):
1777        'id_with_dot : ID'
1778        t[0] = t[1]
1779
1780    def p_id_with_dot_1(self, t):
1781        'id_with_dot : ID DOT id_with_dot'
1782        t[0] = t[1] + t[2] + t[3]
1783
1784    def p_opt_signed_0(self, t):
1785        'opt_signed : SIGNED'
1786        t[0] = t[1]
1787
1788    def p_opt_signed_1(self, t):
1789        'opt_signed : empty'
1790        t[0] = ''
1791
1792    def p_def_template(self, t):
1793        'def_template : DEF TEMPLATE ID CODELIT SEMI'
1794        if t[3] in self.templateMap:
1795            print "warning: template %s already defined" % t[3]
1796        self.templateMap[t[3]] = Template(self, t[4])
1797
1798    # An instruction format definition looks like
1799    # "def format <fmt>(<params>) {{...}};"
1800    def p_def_format(self, t):
1801        'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1802        (id, params, code) = (t[3], t[5], t[7])
1803        self.defFormat(id, params, code, t.lexer.lineno)
1804
1805    # The formal parameter list for an instruction format is a
1806    # possibly empty list of comma-separated parameters.  Positional
1807    # (standard, non-keyword) parameters must come first, followed by
1808    # keyword parameters, followed by a '*foo' parameter that gets
1809    # excess positional arguments (as in Python).  Each of these three
1810    # parameter categories is optional.
1811    #
1812    # Note that we do not support the '**foo' parameter for collecting
1813    # otherwise undefined keyword args.  Otherwise the parameter list
1814    # is (I believe) identical to what is supported in Python.
1815    #
1816    # The param list generates a tuple, where the first element is a
1817    # list of the positional params and the second element is a dict
1818    # containing the keyword params.
1819    def p_param_list_0(self, t):
1820        'param_list : positional_param_list COMMA nonpositional_param_list'
1821        t[0] = t[1] + t[3]
1822
1823    def p_param_list_1(self, t):
1824        '''param_list : positional_param_list
1825                      | nonpositional_param_list'''
1826        t[0] = t[1]
1827
1828    def p_positional_param_list_0(self, t):
1829        'positional_param_list : empty'
1830        t[0] = []
1831
1832    def p_positional_param_list_1(self, t):
1833        'positional_param_list : ID'
1834        t[0] = [t[1]]
1835
1836    def p_positional_param_list_2(self, t):
1837        'positional_param_list : positional_param_list COMMA ID'
1838        t[0] = t[1] + [t[3]]
1839
1840    def p_nonpositional_param_list_0(self, t):
1841        'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1842        t[0] = t[1] + t[3]
1843
1844    def p_nonpositional_param_list_1(self, t):
1845        '''nonpositional_param_list : keyword_param_list
1846                                    | excess_args_param'''
1847        t[0] = t[1]
1848
1849    def p_keyword_param_list_0(self, t):
1850        'keyword_param_list : keyword_param'
1851        t[0] = [t[1]]
1852
1853    def p_keyword_param_list_1(self, t):
1854        'keyword_param_list : keyword_param_list COMMA keyword_param'
1855        t[0] = t[1] + [t[3]]
1856
1857    def p_keyword_param(self, t):
1858        'keyword_param : ID EQUALS expr'
1859        t[0] = t[1] + ' = ' + t[3].__repr__()
1860
1861    def p_excess_args_param(self, t):
1862        'excess_args_param : ASTERISK ID'
1863        # Just concatenate them: '*ID'.  Wrap in list to be consistent
1864        # with positional_param_list and keyword_param_list.
1865        t[0] = [t[1] + t[2]]
1866
1867    # End of format definition-related rules.
1868    ##############
1869
1870    #
1871    # A decode block looks like:
1872    #       decode <field1> [, <field2>]* [default <inst>] { ... }
1873    #
1874    def p_top_level_decode_block(self, t):
1875        'top_level_decode_block : decode_block'
1876        codeObj = t[1]
1877        codeObj.wrap_decode_block('''
1878StaticInstPtr
1879%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1880{
1881    using namespace %(namespace)s;
1882''' % self, '}')
1883
1884        codeObj.emit()
1885
1886    def p_decode_block(self, t):
1887        'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1888        default_defaults = self.defaultStack.pop()
1889        codeObj = t[5]
1890        # use the "default defaults" only if there was no explicit
1891        # default statement in decode_stmt_list
1892        if not codeObj.has_decode_default:
1893            codeObj += default_defaults
1894        codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1895        t[0] = codeObj
1896
1897    # The opt_default statement serves only to push the "default
1898    # defaults" onto defaultStack.  This value will be used by nested
1899    # decode blocks, and used and popped off when the current
1900    # decode_block is processed (in p_decode_block() above).
1901    def p_opt_default_0(self, t):
1902        'opt_default : empty'
1903        # no default specified: reuse the one currently at the top of
1904        # the stack
1905        self.defaultStack.push(self.defaultStack.top())
1906        # no meaningful value returned
1907        t[0] = None
1908
1909    def p_opt_default_1(self, t):
1910        'opt_default : DEFAULT inst'
1911        # push the new default
1912        codeObj = t[2]
1913        codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1914        self.defaultStack.push(codeObj)
1915        # no meaningful value returned
1916        t[0] = None
1917
1918    def p_decode_stmt_list_0(self, t):
1919        'decode_stmt_list : decode_stmt'
1920        t[0] = t[1]
1921
1922    def p_decode_stmt_list_1(self, t):
1923        'decode_stmt_list : decode_stmt decode_stmt_list'
1924        if (t[1].has_decode_default and t[2].has_decode_default):
1925            error(t, 'Two default cases in decode block')
1926        t[0] = t[1] + t[2]
1927
1928    #
1929    # Decode statement rules
1930    #
1931    # There are four types of statements allowed in a decode block:
1932    # 1. Format blocks 'format <foo> { ... }'
1933    # 2. Nested decode blocks
1934    # 3. Instruction definitions.
1935    # 4. C preprocessor directives.
1936
1937
1938    # Preprocessor directives found in a decode statement list are
1939    # passed through to the output, replicated to all of the output
1940    # code streams.  This works well for ifdefs, so we can ifdef out
1941    # both the declarations and the decode cases generated by an
1942    # instruction definition.  Handling them as part of the grammar
1943    # makes it easy to keep them in the right place with respect to
1944    # the code generated by the other statements.
1945    def p_decode_stmt_cpp(self, t):
1946        'decode_stmt : CPPDIRECTIVE'
1947        t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1948
1949    # A format block 'format <foo> { ... }' sets the default
1950    # instruction format used to handle instruction definitions inside
1951    # the block.  This format can be overridden by using an explicit
1952    # format on the instruction definition or with a nested format
1953    # block.
1954    def p_decode_stmt_format(self, t):
1955        'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
1956        # The format will be pushed on the stack when 'push_format_id'
1957        # is processed (see below).  Once the parser has recognized
1958        # the full production (though the right brace), we're done
1959        # with the format, so now we can pop it.
1960        self.formatStack.pop()
1961        t[0] = t[4]
1962
1963    # This rule exists so we can set the current format (& push the
1964    # stack) when we recognize the format name part of the format
1965    # block.
1966    def p_push_format_id(self, t):
1967        'push_format_id : ID'
1968        try:
1969            self.formatStack.push(self.formatMap[t[1]])
1970            t[0] = ('', '// format %s' % t[1])
1971        except KeyError:
1972            error(t, 'instruction format "%s" not defined.' % t[1])
1973
1974    # Nested decode block: if the value of the current field matches
1975    # the specified constant, do a nested decode on some other field.
1976    def p_decode_stmt_decode(self, t):
1977        'decode_stmt : case_label COLON decode_block'
1978        label = t[1]
1979        codeObj = t[3]
1980        # just wrap the decoding code from the block as a case in the
1981        # outer switch statement.
1982        codeObj.wrap_decode_block('\n%s:\n' % label)
1983        codeObj.has_decode_default = (label == 'default')
1984        t[0] = codeObj
1985
1986    # Instruction definition (finally!).
1987    def p_decode_stmt_inst(self, t):
1988        'decode_stmt : case_label COLON inst SEMI'
1989        label = t[1]
1990        codeObj = t[3]
1991        codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
1992        codeObj.has_decode_default = (label == 'default')
1993        t[0] = codeObj
1994
1995    # The case label is either a list of one or more constants or
1996    # 'default'
1997    def p_case_label_0(self, t):
1998        'case_label : intlit_list'
1999        def make_case(intlit):
2000            if intlit >= 2**32:
2001                return 'case ULL(%#x)' % intlit
2002            else:
2003                return 'case %#x' % intlit
2004        t[0] = ': '.join(map(make_case, t[1]))
2005
2006    def p_case_label_1(self, t):
2007        'case_label : DEFAULT'
2008        t[0] = 'default'
2009
2010    #
2011    # The constant list for a decode case label must be non-empty, but
2012    # may have one or more comma-separated integer literals in it.
2013    #
2014    def p_intlit_list_0(self, t):
2015        'intlit_list : INTLIT'
2016        t[0] = [t[1]]
2017
2018    def p_intlit_list_1(self, t):
2019        'intlit_list : intlit_list COMMA INTLIT'
2020        t[0] = t[1]
2021        t[0].append(t[3])
2022
2023    # Define an instruction using the current instruction format
2024    # (specified by an enclosing format block).
2025    # "<mnemonic>(<args>)"
2026    def p_inst_0(self, t):
2027        'inst : ID LPAREN arg_list RPAREN'
2028        # Pass the ID and arg list to the current format class to deal with.
2029        currentFormat = self.formatStack.top()
2030        codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2031        args = ','.join(map(str, t[3]))
2032        args = re.sub('(?m)^', '//', args)
2033        args = re.sub('^//', '', args)
2034        comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2035        codeObj.prepend_all(comment)
2036        t[0] = codeObj
2037
2038    # Define an instruction using an explicitly specified format:
2039    # "<fmt>::<mnemonic>(<args>)"
2040    def p_inst_1(self, t):
2041        'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2042        try:
2043            format = self.formatMap[t[1]]
2044        except KeyError:
2045            error(t, 'instruction format "%s" not defined.' % t[1])
2046
2047        codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2048        comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2049        codeObj.prepend_all(comment)
2050        t[0] = codeObj
2051
2052    # The arg list generates a tuple, where the first element is a
2053    # list of the positional args and the second element is a dict
2054    # containing the keyword args.
2055    def p_arg_list_0(self, t):
2056        'arg_list : positional_arg_list COMMA keyword_arg_list'
2057        t[0] = ( t[1], t[3] )
2058
2059    def p_arg_list_1(self, t):
2060        'arg_list : positional_arg_list'
2061        t[0] = ( t[1], {} )
2062
2063    def p_arg_list_2(self, t):
2064        'arg_list : keyword_arg_list'
2065        t[0] = ( [], t[1] )
2066
2067    def p_positional_arg_list_0(self, t):
2068        'positional_arg_list : empty'
2069        t[0] = []
2070
2071    def p_positional_arg_list_1(self, t):
2072        'positional_arg_list : expr'
2073        t[0] = [t[1]]
2074
2075    def p_positional_arg_list_2(self, t):
2076        'positional_arg_list : positional_arg_list COMMA expr'
2077        t[0] = t[1] + [t[3]]
2078
2079    def p_keyword_arg_list_0(self, t):
2080        'keyword_arg_list : keyword_arg'
2081        t[0] = t[1]
2082
2083    def p_keyword_arg_list_1(self, t):
2084        'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2085        t[0] = t[1]
2086        t[0].update(t[3])
2087
2088    def p_keyword_arg(self, t):
2089        'keyword_arg : ID EQUALS expr'
2090        t[0] = { t[1] : t[3] }
2091
2092    #
2093    # Basic expressions.  These constitute the argument values of
2094    # "function calls" (i.e. instruction definitions in the decode
2095    # block) and default values for formal parameters of format
2096    # functions.
2097    #
2098    # Right now, these are either strings, integers, or (recursively)
2099    # lists of exprs (using Python square-bracket list syntax).  Note
2100    # that bare identifiers are trated as string constants here (since
2101    # there isn't really a variable namespace to refer to).
2102    #
2103    def p_expr_0(self, t):
2104        '''expr : ID
2105                | INTLIT
2106                | STRLIT
2107                | CODELIT'''
2108        t[0] = t[1]
2109
2110    def p_expr_1(self, t):
2111        '''expr : LBRACKET list_expr RBRACKET'''
2112        t[0] = t[2]
2113
2114    def p_list_expr_0(self, t):
2115        'list_expr : expr'
2116        t[0] = [t[1]]
2117
2118    def p_list_expr_1(self, t):
2119        'list_expr : list_expr COMMA expr'
2120        t[0] = t[1] + [t[3]]
2121
2122    def p_list_expr_2(self, t):
2123        'list_expr : empty'
2124        t[0] = []
2125
2126    #
2127    # Empty production... use in other rules for readability.
2128    #
2129    def p_empty(self, t):
2130        'empty :'
2131        pass
2132
2133    # Parse error handler.  Note that the argument here is the
2134    # offending *token*, not a grammar symbol (hence the need to use
2135    # t.value)
2136    def p_error(self, t):
2137        if t:
2138            error(t, "syntax error at '%s'" % t.value)
2139        else:
2140            error("unknown syntax error")
2141
2142    # END OF GRAMMAR RULES
2143
2144    def updateExportContext(self):
2145
2146        # create a continuation that allows us to grab the current parser
2147        def wrapInstObjParams(*args):
2148            return InstObjParams(self, *args)
2149        self.exportContext['InstObjParams'] = wrapInstObjParams
2150        self.exportContext.update(self.templateMap)
2151
2152    def defFormat(self, id, params, code, lineno):
2153        '''Define a new format'''
2154
2155        # make sure we haven't already defined this one
2156        if id in self.formatMap:
2157            error(lineno, 'format %s redefined.' % id)
2158
2159        # create new object and store in global map
2160        self.formatMap[id] = Format(id, params, code)
2161
2162    def expandCpuSymbolsToDict(self, template):
2163        '''Expand template with CPU-specific references into a
2164        dictionary with an entry for each CPU model name.  The entry
2165        key is the model name and the corresponding value is the
2166        template with the CPU-specific refs substituted for that
2167        model.'''
2168
2169        # Protect '%'s that don't go with CPU-specific terms
2170        t = re.sub(r'%(?!\(CPU_)', '%%', template)
2171        result = {}
2172        for cpu in self.cpuModels:
2173            result[cpu.name] = t % cpu.strings
2174        return result
2175
2176    def expandCpuSymbolsToString(self, template):
2177        '''*If* the template has CPU-specific references, return a
2178        single string containing a copy of the template for each CPU
2179        model with the corresponding values substituted in.  If the
2180        template has no CPU-specific references, it is returned
2181        unmodified.'''
2182
2183        if template.find('%(CPU_') != -1:
2184            return reduce(lambda x,y: x+y,
2185                          self.expandCpuSymbolsToDict(template).values())
2186        else:
2187            return template
2188
2189    def protectCpuSymbols(self, template):
2190        '''Protect CPU-specific references by doubling the
2191        corresponding '%'s (in preparation for substituting a different
2192        set of references into the template).'''
2193
2194        return re.sub(r'%(?=\(CPU_)', '%%', template)
2195
2196    def protectNonSubstPercents(self, s):
2197        '''Protect any non-dict-substitution '%'s in a format string
2198        (i.e. those not followed by '(')'''
2199
2200        return re.sub(r'%(?!\()', '%%', s)
2201
2202    def buildOperandNameMap(self, user_dict, lineno):
2203        operand_name = {}
2204        for op_name, val in user_dict.iteritems():
2205
2206            # Check if extra attributes have been specified.
2207            if len(val) > 9:
2208                error(lineno, 'error: too many attributes for operand "%s"' %
2209                      base_cls_name)
2210
2211            # Pad val with None in case optional args are missing
2212            val += (None, None, None, None)
2213            base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2214            read_code, write_code, read_predicate, write_predicate = val[:9]
2215
2216            # Canonical flag structure is a triple of lists, where each list
2217            # indicates the set of flags implied by this operand always, when
2218            # used as a source, and when used as a dest, respectively.
2219            # For simplicity this can be initialized using a variety of fairly
2220            # obvious shortcuts; we convert these to canonical form here.
2221            if not flags:
2222                # no flags specified (e.g., 'None')
2223                flags = ( [], [], [] )
2224            elif isinstance(flags, str):
2225                # a single flag: assumed to be unconditional
2226                flags = ( [ flags ], [], [] )
2227            elif isinstance(flags, list):
2228                # a list of flags: also assumed to be unconditional
2229                flags = ( flags, [], [] )
2230            elif isinstance(flags, tuple):
2231                # it's a tuple: it should be a triple,
2232                # but each item could be a single string or a list
2233                (uncond_flags, src_flags, dest_flags) = flags
2234                flags = (makeList(uncond_flags),
2235                         makeList(src_flags), makeList(dest_flags))
2236
2237            # Accumulate attributes of new operand class in tmp_dict
2238            tmp_dict = {}
2239            attrList = ['reg_spec', 'flags', 'sort_pri',
2240                        'read_code', 'write_code',
2241                        'read_predicate', 'write_predicate']
2242            if dflt_ext:
2243                dflt_ctype = self.operandTypeMap[dflt_ext]
2244                attrList.extend(['dflt_ctype', 'dflt_ext'])
2245            for attr in attrList:
2246                tmp_dict[attr] = eval(attr)
2247            tmp_dict['base_name'] = op_name
2248
2249            # New class name will be e.g. "IntReg_Ra"
2250            cls_name = base_cls_name + '_' + op_name
2251            # Evaluate string arg to get class object.  Note that the
2252            # actual base class for "IntReg" is "IntRegOperand", i.e. we
2253            # have to append "Operand".
2254            try:
2255                base_cls = eval(base_cls_name + 'Operand')
2256            except NameError:
2257                error(lineno,
2258                      'error: unknown operand base class "%s"' % base_cls_name)
2259            # The following statement creates a new class called
2260            # <cls_name> as a subclass of <base_cls> with the attributes
2261            # in tmp_dict, just as if we evaluated a class declaration.
2262            operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2263
2264        self.operandNameMap = operand_name
2265
2266        # Define operand variables.
2267        operands = user_dict.keys()
2268        extensions = self.operandTypeMap.keys()
2269
2270        operandsREString = r'''
2271        (?<!\w)      # neg. lookbehind assertion: prevent partial matches
2272        ((%s)(?:_(%s))?)   # match: operand with optional '_' then suffix
2273        (?!\w)       # neg. lookahead assertion: prevent partial matches
2274        ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2275
2276        self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2277
2278        # Same as operandsREString, but extension is mandatory, and only two
2279        # groups are returned (base and ext, not full name as above).
2280        # Used for subtituting '_' for '.' to make C++ identifiers.
2281        operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2282            % (string.join(operands, '|'), string.join(extensions, '|'))
2283
2284        self.operandsWithExtRE = \
2285            re.compile(operandsWithExtREString, re.MULTILINE)
2286
2287    def substMungedOpNames(self, code):
2288        '''Munge operand names in code string to make legal C++
2289        variable names.  This means getting rid of the type extension
2290        if any.  Will match base_name attribute of Operand object.)'''
2291        return self.operandsWithExtRE.sub(r'\1', code)
2292
2293    def mungeSnippet(self, s):
2294        '''Fix up code snippets for final substitution in templates.'''
2295        if isinstance(s, str):
2296            return self.substMungedOpNames(substBitOps(s))
2297        else:
2298            return s
2299
2300    def open(self, name, bare=False):
2301        '''Open the output file for writing and include scary warning.'''
2302        filename = os.path.join(self.output_dir, name)
2303        f = open(filename, 'w')
2304        if f:
2305            if not bare:
2306                f.write(ISAParser.scaremonger_template % self)
2307        return f
2308
2309    def update(self, file, contents):
2310        '''Update the output file only.  Scons should handle the case when
2311        the new contents are unchanged using its built-in hash feature.'''
2312        f = self.open(file)
2313        f.write(contents)
2314        f.close()
2315
2316    # This regular expression matches '##include' directives
2317    includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2318                           re.MULTILINE)
2319
2320    def replace_include(self, matchobj, dirname):
2321        """Function to replace a matched '##include' directive with the
2322        contents of the specified file (with nested ##includes
2323        replaced recursively).  'matchobj' is an re match object
2324        (from a match of includeRE) and 'dirname' is the directory
2325        relative to which the file path should be resolved."""
2326
2327        fname = matchobj.group('filename')
2328        full_fname = os.path.normpath(os.path.join(dirname, fname))
2329        contents = '##newfile "%s"\n%s\n##endfile\n' % \
2330                   (full_fname, self.read_and_flatten(full_fname))
2331        return contents
2332
2333    def read_and_flatten(self, filename):
2334        """Read a file and recursively flatten nested '##include' files."""
2335
2336        current_dir = os.path.dirname(filename)
2337        try:
2338            contents = open(filename).read()
2339        except IOError:
2340            error('Error including file "%s"' % filename)
2341
2342        self.fileNameStack.push((filename, 0))
2343
2344        # Find any includes and include them
2345        def replace(matchobj):
2346            return self.replace_include(matchobj, current_dir)
2347        contents = self.includeRE.sub(replace, contents)
2348
2349        self.fileNameStack.pop()
2350        return contents
2351
2352    AlreadyGenerated = {}
2353
2354    def _parse_isa_desc(self, isa_desc_file):
2355        '''Read in and parse the ISA description.'''
2356
2357        # The build system can end up running the ISA parser twice: once to
2358        # finalize the build dependencies, and then to actually generate
2359        # the files it expects (in src/arch/$ARCH/generated). This code
2360        # doesn't do anything different either time, however; the SCons
2361        # invocations just expect different things. Since this code runs
2362        # within SCons, we can just remember that we've already run and
2363        # not perform a completely unnecessary run, since the ISA parser's
2364        # effect is idempotent.
2365        if isa_desc_file in ISAParser.AlreadyGenerated:
2366            return
2367
2368        # grab the last three path components of isa_desc_file
2369        self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2370
2371        # Read file and (recursively) all included files into a string.
2372        # PLY requires that the input be in a single string so we have to
2373        # do this up front.
2374        isa_desc = self.read_and_flatten(isa_desc_file)
2375
2376        # Initialize filename stack with outer file.
2377        self.fileNameStack.push((isa_desc_file, 0))
2378
2379        # Parse.
2380        self.parse_string(isa_desc)
2381
2382        ISAParser.AlreadyGenerated[isa_desc_file] = None
2383
2384    def parse_isa_desc(self, *args, **kwargs):
2385        try:
2386            self._parse_isa_desc(*args, **kwargs)
2387        except ISAParserError, e:
2388            e.exit(self.fileNameStack)
2389
2390# Called as script: get args from command line.
2391# Args are: <isa desc file> <output dir>
2392if __name__ == '__main__':
2393    ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
2394