process.cc revision 13759
1/* 2 * Copyright (c) 2010, 2012, 2017-2018 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2007-2008 The Florida State University 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Stephen Hines 41 * Ali Saidi 42 */ 43 44#include "arch/arm/process.hh" 45 46#include "arch/arm/isa_traits.hh" 47#include "arch/arm/types.hh" 48#include "base/loader/elf_object.hh" 49#include "base/loader/object_file.hh" 50#include "base/logging.hh" 51#include "cpu/thread_context.hh" 52#include "debug/Stack.hh" 53#include "mem/page_table.hh" 54#include "params/Process.hh" 55#include "sim/aux_vector.hh" 56#include "sim/byteswap.hh" 57#include "sim/process_impl.hh" 58#include "sim/syscall_return.hh" 59#include "sim/system.hh" 60 61using namespace std; 62using namespace ArmISA; 63 64ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile, 65 ObjectFile::Arch _arch) 66 : Process(params, 67 new EmulationPageTable(params->name, params->pid, PageBytes), 68 objFile), 69 arch(_arch) 70{ 71 fatal_if(params->useArchPT, "Arch page tables not implemented."); 72} 73 74ArmProcess32::ArmProcess32(ProcessParams *params, ObjectFile *objFile, 75 ObjectFile::Arch _arch) 76 : ArmProcess(params, objFile, _arch) 77{ 78 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() + 79 objFile->bssSize(), PageBytes); 80 Addr stack_base = 0xbf000000L; 81 Addr max_stack_size = 8 * 1024 * 1024; 82 Addr next_thread_stack_base = stack_base - max_stack_size; 83 Addr mmap_end = 0x40000000L; 84 85 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size, 86 next_thread_stack_base, mmap_end); 87} 88 89ArmProcess64::ArmProcess64(ProcessParams *params, ObjectFile *objFile, 90 ObjectFile::Arch _arch) 91 : ArmProcess(params, objFile, _arch) 92{ 93 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() + 94 objFile->bssSize(), PageBytes); 95 Addr stack_base = 0x7fffff0000L; 96 Addr max_stack_size = 8 * 1024 * 1024; 97 Addr next_thread_stack_base = stack_base - max_stack_size; 98 Addr mmap_end = 0x4000000000L; 99 100 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size, 101 next_thread_stack_base, mmap_end); 102} 103 104void 105ArmProcess32::initState() 106{ 107 Process::initState(); 108 argsInit<uint32_t>(PageBytes, INTREG_SP); 109 for (int i = 0; i < contextIds.size(); i++) { 110 ThreadContext * tc = system->getThreadContext(contextIds[i]); 111 CPACR cpacr = tc->readMiscReg(MISCREG_CPACR); 112 // Enable the floating point coprocessors. 113 cpacr.cp10 = 0x3; 114 cpacr.cp11 = 0x3; 115 tc->setMiscReg(MISCREG_CPACR, cpacr); 116 // Generically enable floating point support. 117 FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC); 118 fpexc.en = 1; 119 tc->setMiscReg(MISCREG_FPEXC, fpexc); 120 } 121} 122 123void 124ArmProcess64::initState() 125{ 126 Process::initState(); 127 argsInit<uint64_t>(PageBytes, INTREG_SP0); 128 for (int i = 0; i < contextIds.size(); i++) { 129 ThreadContext * tc = system->getThreadContext(contextIds[i]); 130 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 131 cpsr.mode = MODE_EL0T; 132 tc->setMiscReg(MISCREG_CPSR, cpsr); 133 CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1); 134 // Enable the floating point coprocessors. 135 cpacr.cp10 = 0x3; 136 cpacr.cp11 = 0x3; 137 // Enable SVE. 138 cpacr.zen = 0x3; 139 tc->setMiscReg(MISCREG_CPACR_EL1, cpacr); 140 // Generically enable floating point support. 141 FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC); 142 fpexc.en = 1; 143 tc->setMiscReg(MISCREG_FPEXC, fpexc); 144 } 145} 146 147uint32_t 148ArmProcess32::armHwcapImpl() const 149{ 150 enum ArmCpuFeature { 151 Arm_Swp = 1 << 0, 152 Arm_Half = 1 << 1, 153 Arm_Thumb = 1 << 2, 154 Arm_26Bit = 1 << 3, 155 Arm_FastMult = 1 << 4, 156 Arm_Fpa = 1 << 5, 157 Arm_Vfp = 1 << 6, 158 Arm_Edsp = 1 << 7, 159 Arm_Java = 1 << 8, 160 Arm_Iwmmxt = 1 << 9, 161 Arm_Crunch = 1 << 10, 162 Arm_ThumbEE = 1 << 11, 163 Arm_Neon = 1 << 12, 164 Arm_Vfpv3 = 1 << 13, 165 Arm_Vfpv3d16 = 1 << 14 166 }; 167 168 return Arm_Swp | Arm_Half | Arm_Thumb | Arm_FastMult | 169 Arm_Vfp | Arm_Edsp | Arm_ThumbEE | Arm_Neon | 170 Arm_Vfpv3 | Arm_Vfpv3d16; 171} 172 173uint32_t 174ArmProcess64::armHwcapImpl() const 175{ 176 // In order to know what these flags mean, please refer to Linux 177 // /Documentation/arm64/elf_hwcaps.txt text file. 178 enum ArmCpuFeature { 179 Arm_Fp = 1 << 0, 180 Arm_Asimd = 1 << 1, 181 Arm_Evtstrm = 1 << 2, 182 Arm_Aes = 1 << 3, 183 Arm_Pmull = 1 << 4, 184 Arm_Sha1 = 1 << 5, 185 Arm_Sha2 = 1 << 6, 186 Arm_Crc32 = 1 << 7, 187 Arm_Atomics = 1 << 8, 188 Arm_Fphp = 1 << 9, 189 Arm_Asimdhp = 1 << 10, 190 Arm_Cpuid = 1 << 11, 191 Arm_Asimdrdm = 1 << 12, 192 Arm_Jscvt = 1 << 13, 193 Arm_Fcma = 1 << 14, 194 Arm_Lrcpc = 1 << 15, 195 Arm_Dcpop = 1 << 16, 196 Arm_Sha3 = 1 << 17, 197 Arm_Sm3 = 1 << 18, 198 Arm_Sm4 = 1 << 19, 199 Arm_Asimddp = 1 << 20, 200 Arm_Sha512 = 1 << 21, 201 Arm_Sve = 1 << 22, 202 Arm_Asimdfhm = 1 << 23, 203 Arm_Dit = 1 << 24, 204 Arm_Uscat = 1 << 25, 205 Arm_Ilrcpc = 1 << 26, 206 Arm_Flagm = 1 << 27 207 }; 208 209 uint32_t hwcap = 0; 210 211 ThreadContext *tc = system->getThreadContext(contextIds[0]); 212 213 const AA64PFR0 pf_r0 = tc->readMiscReg(MISCREG_ID_AA64PFR0_EL1); 214 215 hwcap |= (pf_r0.fp == 0) ? Arm_Fp : 0; 216 hwcap |= (pf_r0.fp == 1) ? Arm_Fphp | Arm_Fp : 0; 217 hwcap |= (pf_r0.advsimd == 0) ? Arm_Asimd : 0; 218 hwcap |= (pf_r0.advsimd == 1) ? Arm_Asimdhp | Arm_Asimd : 0; 219 hwcap |= (pf_r0.sve >= 1) ? Arm_Sve : 0; 220 hwcap |= (pf_r0.dit >= 1) ? Arm_Dit : 0; 221 222 const AA64ISAR0 isa_r0 = tc->readMiscReg(MISCREG_ID_AA64ISAR0_EL1); 223 224 hwcap |= (isa_r0.aes >= 1) ? Arm_Aes : 0; 225 hwcap |= (isa_r0.aes >= 2) ? Arm_Pmull : 0; 226 hwcap |= (isa_r0.sha1 >= 1) ? Arm_Sha1 : 0; 227 hwcap |= (isa_r0.sha2 >= 1) ? Arm_Sha2 : 0; 228 hwcap |= (isa_r0.sha2 >= 2) ? Arm_Sha512 : 0; 229 hwcap |= (isa_r0.crc32 >= 1) ? Arm_Crc32 : 0; 230 hwcap |= (isa_r0.atomic >= 1) ? Arm_Atomics : 0; 231 hwcap |= (isa_r0.rdm >= 1) ? Arm_Asimdrdm : 0; 232 hwcap |= (isa_r0.sha3 >= 1) ? Arm_Sha3 : 0; 233 hwcap |= (isa_r0.sm3 >= 1) ? Arm_Sm3 : 0; 234 hwcap |= (isa_r0.sm4 >= 1) ? Arm_Sm4 : 0; 235 hwcap |= (isa_r0.dp >= 1) ? Arm_Asimddp : 0; 236 hwcap |= (isa_r0.fhm >= 1) ? Arm_Asimdfhm : 0; 237 hwcap |= (isa_r0.ts >= 1) ? Arm_Flagm : 0; 238 239 const AA64ISAR1 isa_r1 = tc->readMiscReg(MISCREG_ID_AA64ISAR1_EL1); 240 241 hwcap |= (isa_r1.dpb >= 1) ? Arm_Dcpop : 0; 242 hwcap |= (isa_r1.jscvt >= 1) ? Arm_Jscvt : 0; 243 hwcap |= (isa_r1.fcma >= 1) ? Arm_Fcma : 0; 244 hwcap |= (isa_r1.lrcpc >= 1) ? Arm_Lrcpc : 0; 245 hwcap |= (isa_r1.lrcpc >= 2) ? Arm_Ilrcpc : 0; 246 247 const AA64MMFR2 mm_fr2 = tc->readMiscReg(MISCREG_ID_AA64MMFR2_EL1); 248 249 hwcap |= (mm_fr2.at >= 1) ? Arm_Uscat : 0; 250 251 return hwcap; 252} 253 254template <class IntType> 255void 256ArmProcess::argsInit(int pageSize, IntRegIndex spIndex) 257{ 258 int intSize = sizeof(IntType); 259 260 typedef AuxVector<IntType> auxv_t; 261 std::vector<auxv_t> auxv; 262 263 string filename; 264 if (argv.size() < 1) 265 filename = ""; 266 else 267 filename = argv[0]; 268 269 //We want 16 byte alignment 270 uint64_t align = 16; 271 272 // Patch the ld_bias for dynamic executables. 273 updateBias(); 274 275 // load object file into target memory 276 objFile->loadSections(initVirtMem); 277 278 //Setup the auxilliary vectors. These will already have endian conversion. 279 //Auxilliary vectors are loaded only for elf formatted executables. 280 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile); 281 if (elfObject) { 282 283 if (objFile->getOpSys() == ObjectFile::Linux) { 284 IntType features = armHwcap<IntType>(); 285 286 //Bits which describe the system hardware capabilities 287 //XXX Figure out what these should be 288 auxv.push_back(auxv_t(M5_AT_HWCAP, features)); 289 //Frequency at which times() increments 290 auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64)); 291 //Whether to enable "secure mode" in the executable 292 auxv.push_back(auxv_t(M5_AT_SECURE, 0)); 293 // Pointer to 16 bytes of random data 294 auxv.push_back(auxv_t(M5_AT_RANDOM, 0)); 295 //The filename of the program 296 auxv.push_back(auxv_t(M5_AT_EXECFN, 0)); 297 //The string "v71" -- ARM v7 architecture 298 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0)); 299 } 300 301 //The system page size 302 auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes)); 303 // For statically linked executables, this is the virtual address of the 304 // program header tables if they appear in the executable image 305 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable())); 306 // This is the size of a program header entry from the elf file. 307 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize())); 308 // This is the number of program headers from the original elf file. 309 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount())); 310 // This is the base address of the ELF interpreter; it should be 311 // zero for static executables or contain the base address for 312 // dynamic executables. 313 auxv.push_back(auxv_t(M5_AT_BASE, getBias())); 314 //XXX Figure out what this should be. 315 auxv.push_back(auxv_t(M5_AT_FLAGS, 0)); 316 //The entry point to the program 317 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint())); 318 //Different user and group IDs 319 auxv.push_back(auxv_t(M5_AT_UID, uid())); 320 auxv.push_back(auxv_t(M5_AT_EUID, euid())); 321 auxv.push_back(auxv_t(M5_AT_GID, gid())); 322 auxv.push_back(auxv_t(M5_AT_EGID, egid())); 323 } 324 325 //Figure out how big the initial stack nedes to be 326 327 // A sentry NULL void pointer at the top of the stack. 328 int sentry_size = intSize; 329 330 string platform = "v71"; 331 int platform_size = platform.size() + 1; 332 333 // Bytes for AT_RANDOM above, we'll just keep them 0 334 int aux_random_size = 16; // as per the specification 335 336 // The aux vectors are put on the stack in two groups. The first group are 337 // the vectors that are generated as the elf is loaded. The second group 338 // are the ones that were computed ahead of time and include the platform 339 // string. 340 int aux_data_size = filename.size() + 1; 341 342 int env_data_size = 0; 343 for (int i = 0; i < envp.size(); ++i) { 344 env_data_size += envp[i].size() + 1; 345 } 346 int arg_data_size = 0; 347 for (int i = 0; i < argv.size(); ++i) { 348 arg_data_size += argv[i].size() + 1; 349 } 350 351 int info_block_size = 352 sentry_size + env_data_size + arg_data_size + 353 aux_data_size + platform_size + aux_random_size; 354 355 //Each auxilliary vector is two 4 byte words 356 int aux_array_size = intSize * 2 * (auxv.size() + 1); 357 358 int envp_array_size = intSize * (envp.size() + 1); 359 int argv_array_size = intSize * (argv.size() + 1); 360 361 int argc_size = intSize; 362 363 //Figure out the size of the contents of the actual initial frame 364 int frame_size = 365 info_block_size + 366 aux_array_size + 367 envp_array_size + 368 argv_array_size + 369 argc_size; 370 371 //There needs to be padding after the auxiliary vector data so that the 372 //very bottom of the stack is aligned properly. 373 int partial_size = frame_size; 374 int aligned_partial_size = roundUp(partial_size, align); 375 int aux_padding = aligned_partial_size - partial_size; 376 377 int space_needed = frame_size + aux_padding; 378 379 memState->setStackMin(memState->getStackBase() - space_needed); 380 memState->setStackMin(roundDown(memState->getStackMin(), align)); 381 memState->setStackSize(memState->getStackBase() - memState->getStackMin()); 382 383 // map memory 384 allocateMem(roundDown(memState->getStackMin(), pageSize), 385 roundUp(memState->getStackSize(), pageSize)); 386 387 // map out initial stack contents 388 IntType sentry_base = memState->getStackBase() - sentry_size; 389 IntType aux_data_base = sentry_base - aux_data_size; 390 IntType env_data_base = aux_data_base - env_data_size; 391 IntType arg_data_base = env_data_base - arg_data_size; 392 IntType platform_base = arg_data_base - platform_size; 393 IntType aux_random_base = platform_base - aux_random_size; 394 IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding; 395 IntType envp_array_base = auxv_array_base - envp_array_size; 396 IntType argv_array_base = envp_array_base - argv_array_size; 397 IntType argc_base = argv_array_base - argc_size; 398 399 DPRINTF(Stack, "The addresses of items on the initial stack:\n"); 400 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base); 401 DPRINTF(Stack, "0x%x - env data\n", env_data_base); 402 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base); 403 DPRINTF(Stack, "0x%x - random data\n", aux_random_base); 404 DPRINTF(Stack, "0x%x - platform base\n", platform_base); 405 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base); 406 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base); 407 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base); 408 DPRINTF(Stack, "0x%x - argc \n", argc_base); 409 DPRINTF(Stack, "0x%x - stack min\n", memState->getStackMin()); 410 411 // write contents to stack 412 413 // figure out argc 414 IntType argc = argv.size(); 415 IntType guestArgc = ArmISA::htog(argc); 416 417 //Write out the sentry void * 418 IntType sentry_NULL = 0; 419 initVirtMem.writeBlob(sentry_base, 420 (uint8_t*)&sentry_NULL, sentry_size); 421 422 //Fix up the aux vectors which point to other data 423 for (int i = auxv.size() - 1; i >= 0; i--) { 424 if (auxv[i].getHostAuxType() == M5_AT_PLATFORM) { 425 auxv[i].setAuxVal(platform_base); 426 initVirtMem.writeString(platform_base, platform.c_str()); 427 } else if (auxv[i].getHostAuxType() == M5_AT_EXECFN) { 428 auxv[i].setAuxVal(aux_data_base); 429 initVirtMem.writeString(aux_data_base, filename.c_str()); 430 } else if (auxv[i].getHostAuxType() == M5_AT_RANDOM) { 431 auxv[i].setAuxVal(aux_random_base); 432 // Just leave the value 0, we don't want randomness 433 } 434 } 435 436 //Copy the aux stuff 437 for (int x = 0; x < auxv.size(); x++) { 438 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize, 439 (uint8_t*)&(auxv[x].getAuxType()), 440 intSize); 441 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize, 442 (uint8_t*)&(auxv[x].getAuxVal()), 443 intSize); 444 } 445 //Write out the terminating zeroed auxilliary vector 446 const uint64_t zero = 0; 447 initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(), 448 (uint8_t*)&zero, 2 * intSize); 449 450 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); 451 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); 452 453 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize); 454 455 ThreadContext *tc = system->getThreadContext(contextIds[0]); 456 //Set the stack pointer register 457 tc->setIntReg(spIndex, memState->getStackMin()); 458 //A pointer to a function to run when the program exits. We'll set this 459 //to zero explicitly to make sure this isn't used. 460 tc->setIntReg(ArgumentReg0, 0); 461 //Set argument regs 1 and 2 to argv[0] and envp[0] respectively 462 if (argv.size() > 0) { 463 tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size - 464 argv[argv.size() - 1].size() - 1); 465 } else { 466 tc->setIntReg(ArgumentReg1, 0); 467 } 468 if (envp.size() > 0) { 469 tc->setIntReg(ArgumentReg2, env_data_base + env_data_size - 470 envp[envp.size() - 1].size() - 1); 471 } else { 472 tc->setIntReg(ArgumentReg2, 0); 473 } 474 475 PCState pc; 476 pc.thumb(arch == ObjectFile::Thumb); 477 pc.nextThumb(pc.thumb()); 478 pc.aarch64(arch == ObjectFile::Arm64); 479 pc.nextAArch64(pc.aarch64()); 480 pc.set(getStartPC() & ~mask(1)); 481 tc->pcState(pc); 482 483 //Align the "stackMin" to a page boundary. 484 memState->setStackMin(roundDown(memState->getStackMin(), pageSize)); 485} 486 487RegVal 488ArmProcess32::getSyscallArg(ThreadContext *tc, int &i) 489{ 490 assert(i < 6); 491 return tc->readIntReg(ArgumentReg0 + i++); 492} 493 494RegVal 495ArmProcess64::getSyscallArg(ThreadContext *tc, int &i) 496{ 497 assert(i < 8); 498 return tc->readIntReg(ArgumentReg0 + i++); 499} 500 501RegVal 502ArmProcess32::getSyscallArg(ThreadContext *tc, int &i, int width) 503{ 504 assert(width == 32 || width == 64); 505 if (width == 32) 506 return getSyscallArg(tc, i); 507 508 // 64 bit arguments are passed starting in an even register 509 if (i % 2 != 0) 510 i++; 511 512 // Registers r0-r6 can be used 513 assert(i < 5); 514 uint64_t val; 515 val = tc->readIntReg(ArgumentReg0 + i++); 516 val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32); 517 return val; 518} 519 520RegVal 521ArmProcess64::getSyscallArg(ThreadContext *tc, int &i, int width) 522{ 523 return getSyscallArg(tc, i); 524} 525 526 527void 528ArmProcess32::setSyscallArg(ThreadContext *tc, int i, RegVal val) 529{ 530 assert(i < 6); 531 tc->setIntReg(ArgumentReg0 + i, val); 532} 533 534void 535ArmProcess64::setSyscallArg(ThreadContext *tc, int i, RegVal val) 536{ 537 assert(i < 8); 538 tc->setIntReg(ArgumentReg0 + i, val); 539} 540 541void 542ArmProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) 543{ 544 545 if (objFile->getOpSys() == ObjectFile::FreeBSD) { 546 // Decode return value 547 if (sysret.encodedValue() >= 0) 548 // FreeBSD checks the carry bit to determine if syscall is succeeded 549 tc->setCCReg(CCREG_C, 0); 550 else { 551 sysret = -sysret.encodedValue(); 552 } 553 } 554 555 tc->setIntReg(ReturnValueReg, sysret.encodedValue()); 556} 557 558void 559ArmProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) 560{ 561 562 if (objFile->getOpSys() == ObjectFile::FreeBSD) { 563 // Decode return value 564 if (sysret.encodedValue() >= 0) 565 // FreeBSD checks the carry bit to determine if syscall is succeeded 566 tc->setCCReg(CCREG_C, 0); 567 else { 568 sysret = -sysret.encodedValue(); 569 } 570 } 571 572 tc->setIntReg(ReturnValueReg, sysret.encodedValue()); 573} 574