fp.isa revision 7377:ce388054b481
1// -*- mode:c++ -*-
2
3// Copyright (c) 2010 ARM Limited
4// All rights reserved
5//
6// The license below extends only to copyright in the software and shall
7// not be construed as granting a license to any other intellectual
8// property including but not limited to intellectual property relating
9// to a hardware implementation of the functionality of the software
10// licensed hereunder.  You may use the software subject to the license
11// terms below provided that you ensure that this notice is replicated
12// unmodified and in its entirety in all distributions of the software,
13// modified or unmodified, in source code or in binary form.
14//
15// Copyright (c) 2007-2008 The Florida State University
16// All rights reserved.
17//
18// Redistribution and use in source and binary forms, with or without
19// modification, are permitted provided that the following conditions are
20// met: redistributions of source code must retain the above copyright
21// notice, this list of conditions and the following disclaimer;
22// redistributions in binary form must reproduce the above copyright
23// notice, this list of conditions and the following disclaimer in the
24// documentation and/or other materials provided with the distribution;
25// neither the name of the copyright holders nor the names of its
26// contributors may be used to endorse or promote products derived from
27// this software without specific prior written permission.
28//
29// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40//
41// Authors: Stephen Hines
42
43////////////////////////////////////////////////////////////////////
44//
45// Floating Point operate instructions
46//
47
48def template FPAExecute {{
49        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
50        {
51                Fault fault = NoFault;
52
53                %(fp_enable_check)s;
54
55                %(op_decl)s;
56                %(op_rd)s;
57
58                if (%(predicate_test)s) {
59                    %(code)s;
60                    if (fault == NoFault) {
61                        %(op_wb)s;
62                    }
63                }
64
65                return fault;
66        }
67}};
68
69def template FloatDoubleDecode {{
70    {
71        ArmStaticInst *i = NULL;
72        switch (OPCODE_19 << 1 | OPCODE_7)
73        {
74            case 0:
75                i = (ArmStaticInst *)new %(class_name)sS(machInst);
76                break;
77            case 1:
78                i = (ArmStaticInst *)new %(class_name)sD(machInst);
79                break;
80            case 2:
81            case 3:
82            default:
83                panic("Cannot decode float/double nature of the instruction");
84        }
85        return i;
86    }
87}};
88
89// Primary format for float point operate instructions:
90def format FloatOp(code, *flags) {{
91        orig_code = code
92
93        cblk = code
94        iop = InstObjParams(name, Name, 'PredOp',
95                            {"code": cblk,
96                             "predicate_test": predicateTest},
97                            flags)
98        header_output = BasicDeclare.subst(iop)
99        decoder_output = BasicConstructor.subst(iop)
100        exec_output = FPAExecute.subst(iop)
101
102        sng_cblk = code
103        sng_iop = InstObjParams(name, Name+'S', 'PredOp',
104                                {"code": sng_cblk,
105                                 "predicate_test": predicateTest},
106                                flags)
107        header_output += BasicDeclare.subst(sng_iop)
108        decoder_output += BasicConstructor.subst(sng_iop)
109        exec_output += FPAExecute.subst(sng_iop)
110
111        dbl_code = re.sub(r'\.sf', '.df', orig_code)
112
113        dbl_cblk = dbl_code
114        dbl_iop = InstObjParams(name, Name+'D', 'PredOp',
115                                {"code": dbl_cblk,
116                                 "predicate_test": predicateTest},
117                                flags)
118        header_output += BasicDeclare.subst(dbl_iop)
119        decoder_output += BasicConstructor.subst(dbl_iop)
120        exec_output += FPAExecute.subst(dbl_iop)
121
122        decode_block = FloatDoubleDecode.subst(iop)
123}};
124
125let {{
126        calcFPCcCode = '''
127        uint16_t _in, _iz, _ic, _iv;
128
129        _in = %(fReg1)s < %(fReg2)s;
130        _iz = %(fReg1)s == %(fReg2)s;
131        _ic = %(fReg1)s >= %(fReg2)s;
132        _iv = (isnan(%(fReg1)s) || isnan(%(fReg2)s)) & 1;
133
134        CondCodes = _in << 31 | _iz << 30 | _ic << 29 | _iv << 28 |
135            (CondCodes & 0x0FFFFFFF);
136        '''
137}};
138
139def format FloatCmp(fReg1, fReg2, *flags) {{
140        code = calcFPCcCode % vars()
141        iop = InstObjParams(name, Name, 'PredOp',
142                            {"code": code,
143                             "predicate_test": predicateTest},
144                             flags)
145        header_output = BasicDeclare.subst(iop)
146        decoder_output = BasicConstructor.subst(iop)
147        decode_block = BasicDecode.subst(iop)
148        exec_output = FPAExecute.subst(iop)
149}};
150
151let {{
152    header_output = '''
153    StaticInstPtr
154    decodeExtensionRegLoadStore(ExtMachInst machInst);
155    '''
156    decoder_output = '''
157    StaticInstPtr
158    decodeExtensionRegLoadStore(ExtMachInst machInst)
159    {
160        const uint32_t opcode = bits(machInst, 24, 20);
161        const uint32_t offset = bits(machInst, 7, 0);
162        const bool single = (bits(machInst, 8) == 0);
163        const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
164        RegIndex vd;
165        if (single) {
166            vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
167                                      bits(machInst, 22));
168        } else {
169            vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
170                                      (bits(machInst, 22) << 5));
171        }
172        switch (bits(opcode, 4, 3)) {
173          case 0x0:
174            if (bits(opcode, 4, 1) == 0x2 &&
175                    !(machInst.thumb == 1 && bits(machInst, 28) == 1) &&
176                    !(machInst.thumb == 0 && machInst.condCode == 0xf)) {
177                if ((bits(machInst, 7, 4) & 0xd) != 1) {
178                    break;
179                }
180                const IntRegIndex rt =
181                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
182                const IntRegIndex rt2 =
183                    (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
184                const bool op = bits(machInst, 20);
185                uint32_t vm;
186                if (single) {
187                    vm = (bits(machInst, 3, 0) << 1) | bits(machInst, 5);
188                } else {
189                    vm = (bits(machInst, 3, 0) << 1) |
190                         (bits(machInst, 5) << 5);
191                }
192                if (op) {
193                    return new Vmov2Core2Reg(machInst, rt, rt2,
194                                             (IntRegIndex)vm);
195                } else {
196                    return new Vmov2Reg2Core(machInst, (IntRegIndex)vm,
197                                             rt, rt2);
198                }
199            }
200            break;
201          case 0x1:
202            switch (bits(opcode, 1, 0)) {
203              case 0x0:
204                return new VLdmStm(machInst, rn, vd, single,
205                                   true, false, false, offset);
206              case 0x1:
207                return new VLdmStm(machInst, rn, vd, single,
208                                   true, false, true, offset);
209              case 0x2:
210                return new VLdmStm(machInst, rn, vd, single,
211                                   true, true, false, offset);
212              case 0x3:
213                // If rn == sp, then this is called vpop.
214                return new VLdmStm(machInst, rn, vd, single,
215                                   true, true, true, offset);
216            }
217          case 0x2:
218            if (bits(opcode, 1, 0) == 0x2) {
219                // If rn == sp, then this is called vpush.
220                return new VLdmStm(machInst, rn, vd, single,
221                                   false, true, false, offset);
222            } else if (bits(opcode, 1, 0) == 0x3) {
223                return new VLdmStm(machInst, rn, vd, single,
224                                   false, true, true, offset);
225            }
226            // Fall through on purpose
227          case 0x3:
228            const bool up = (bits(machInst, 23) == 1);
229            const uint32_t imm = bits(machInst, 7, 0) << 2;
230            RegIndex vd;
231            if (single) {
232                vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
233                                          (bits(machInst, 22)));
234            } else {
235                vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
236                                          (bits(machInst, 22) << 5));
237            }
238            if (bits(opcode, 1, 0) == 0x0) {
239                if (single) {
240                    if (up) {
241                        return new %(vstr_us)s(machInst, vd, rn, up, imm);
242                    } else {
243                        return new %(vstr_s)s(machInst, vd, rn, up, imm);
244                    }
245                } else {
246                    if (up) {
247                        return new %(vstr_ud)s(machInst, vd, vd + 1,
248                                               rn, up, imm);
249                    } else {
250                        return new %(vstr_d)s(machInst, vd, vd + 1,
251                                              rn, up, imm);
252                    }
253                }
254            } else if (bits(opcode, 1, 0) == 0x1) {
255                if (single) {
256                    if (up) {
257                        return new %(vldr_us)s(machInst, vd, rn, up, imm);
258                    } else {
259                        return new %(vldr_s)s(machInst, vd, rn, up, imm);
260                    }
261                } else {
262                    if (up) {
263                        return new %(vldr_ud)s(machInst, vd, vd + 1,
264                                               rn, up, imm);
265                    } else {
266                        return new %(vldr_d)s(machInst, vd, vd + 1,
267                                              rn, up, imm);
268                    }
269                }
270            }
271        }
272        return new Unknown(machInst);
273    }
274    ''' % {
275        "vldr_us" : "VLDR_" + loadImmClassName(False, True, False),
276        "vldr_s" : "VLDR_" + loadImmClassName(False, False, False),
277        "vldr_ud" : "VLDR_" + loadDoubleImmClassName(False, True, False),
278        "vldr_d" : "VLDR_" + loadDoubleImmClassName(False, False, False),
279        "vstr_us" : "VSTR_" + storeImmClassName(False, True, False),
280        "vstr_s" : "VSTR_" + storeImmClassName(False, False, False),
281        "vstr_ud" : "VSTR_" + storeDoubleImmClassName(False, True, False),
282        "vstr_d" : "VSTR_" + storeDoubleImmClassName(False, False, False)
283    }
284}};
285
286def format ExtensionRegLoadStore() {{
287    decode_block = '''
288    return decodeExtensionRegLoadStore(machInst);
289    '''
290}};
291
292let {{
293    header_output = '''
294    StaticInstPtr
295    decodeShortFpTransfer(ExtMachInst machInst);
296    '''
297    decoder_output = '''
298    StaticInstPtr
299    decodeShortFpTransfer(ExtMachInst machInst)
300    {
301        const uint32_t l = bits(machInst, 20);
302        const uint32_t c = bits(machInst, 8);
303        const uint32_t a = bits(machInst, 23, 21);
304        const uint32_t b = bits(machInst, 6, 5);
305        if ((machInst.thumb == 1 && bits(machInst, 28) == 1) ||
306            (machInst.thumb == 0 && machInst.condCode == 0xf)) {
307            return new Unknown(machInst);
308        }
309        if (l == 0 && c == 0) {
310            if (a == 0) {
311                const uint32_t vn = (bits(machInst, 19, 16) << 1) |
312                                    bits(machInst, 7);
313                const IntRegIndex rt =
314                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
315                if (bits(machInst, 20) == 1) {
316                    return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
317                } else {
318                    return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
319                }
320            } else if (a == 0x7) {
321                const IntRegIndex rt =
322                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
323                uint32_t specReg = bits(machInst, 19, 16);
324                switch (specReg) {
325                  case 0:
326                    specReg = MISCREG_FPSID;
327                    break;
328                  case 1:
329                    specReg = MISCREG_FPSCR;
330                    break;
331                  case 8:
332                    specReg = MISCREG_FPEXC;
333                    break;
334                  default:
335                    return new Unknown(machInst);
336                }
337                return new Vmsr(machInst, (IntRegIndex)specReg, rt);
338            }
339        } else if (l == 0 && c == 1) {
340            if (bits(a, 2) == 0) {
341                uint32_t vd = (bits(machInst, 7) << 5) |
342                              (bits(machInst, 19, 16) << 1);
343                uint32_t index, size;
344                const IntRegIndex rt =
345                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
346                if (bits(machInst, 22) == 1) {
347                    size = 8;
348                    index = (bits(machInst, 21) << 2) |
349                            bits(machInst, 6, 5);
350                } else if (bits(machInst, 5) == 1) {
351                    size = 16;
352                    index = (bits(machInst, 21) << 1) |
353                            bits(machInst, 6);
354                } else if (bits(machInst, 6) == 0) {
355                    size = 32;
356                    index = bits(machInst, 21);
357                } else {
358                    return new Unknown(machInst);
359                }
360                if (index >= (32 / size)) {
361                    index -= (32 / size);
362                    vd++;
363                }
364                switch (size) {
365                  case 8:
366                    return new VmovCoreRegB(machInst, (IntRegIndex)vd,
367                                            rt, index);
368                  case 16:
369                    return new VmovCoreRegH(machInst, (IntRegIndex)vd,
370                                            rt, index);
371                  case 32:
372                    return new VmovCoreRegW(machInst, (IntRegIndex)vd, rt);
373                }
374            } else if (bits(b, 1) == 0) {
375                // A8-594
376                return new WarnUnimplemented("vdup", machInst);
377            }
378        } else if (l == 1 && c == 0) {
379            if (a == 0) {
380                const uint32_t vn = (bits(machInst, 19, 16) << 1) |
381                                    bits(machInst, 7);
382                const IntRegIndex rt =
383                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
384                if (bits(machInst, 20) == 1) {
385                    return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
386                } else {
387                    return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
388                }
389            } else if (a == 7) {
390                const IntRegIndex rt =
391                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
392                uint32_t specReg = bits(machInst, 19, 16);
393                switch (specReg) {
394                  case 0:
395                    specReg = MISCREG_FPSID;
396                    break;
397                  case 1:
398                    specReg = MISCREG_FPSCR;
399                    break;
400                  case 6:
401                    specReg = MISCREG_MVFR1;
402                    break;
403                  case 7:
404                    specReg = MISCREG_MVFR0;
405                    break;
406                  case 8:
407                    specReg = MISCREG_FPEXC;
408                    break;
409                  default:
410                    return new Unknown(machInst);
411                }
412                return new Vmrs(machInst, rt, (IntRegIndex)specReg);
413            }
414        } else {
415            uint32_t vd = (bits(machInst, 7) << 5) |
416                          (bits(machInst, 19, 16) << 1);
417            uint32_t index, size;
418            const IntRegIndex rt =
419                (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
420            const bool u = (bits(machInst, 23) == 1);
421            if (bits(machInst, 22) == 1) {
422                size = 8;
423                index = (bits(machInst, 21) << 2) |
424                        bits(machInst, 6, 5);
425            } else if (bits(machInst, 5) == 1) {
426                size = 16;
427                index = (bits(machInst, 21) << 1) |
428                        bits(machInst, 6);
429            } else if (bits(machInst, 6) == 0 && !u) {
430                size = 32;
431                index = bits(machInst, 21);
432            } else {
433                return new Unknown(machInst);
434            }
435            if (index >= (32 / size)) {
436                index -= (32 / size);
437                vd++;
438            }
439            switch (size) {
440              case 8:
441                if (u) {
442                    return new VmovRegCoreUB(machInst, rt,
443                                             (IntRegIndex)vd, index);
444                } else {
445                    return new VmovRegCoreSB(machInst, rt,
446                                             (IntRegIndex)vd, index);
447                }
448              case 16:
449                if (u) {
450                    return new VmovRegCoreUH(machInst, rt,
451                                             (IntRegIndex)vd, index);
452                } else {
453                    return new VmovRegCoreSH(machInst, rt,
454                                             (IntRegIndex)vd, index);
455                }
456              case 32:
457                return new VmovRegCoreW(machInst, rt, (IntRegIndex)vd);
458            }
459        }
460        return new Unknown(machInst);
461    }
462    '''
463}};
464
465def format ShortFpTransfer() {{
466    decode_block = '''
467    return decodeShortFpTransfer(machInst);
468    '''
469}};
470
471let {{
472    header_output = '''
473    StaticInstPtr
474    decodeVfpData(ExtMachInst machInst);
475    '''
476    decoder_output = '''
477    StaticInstPtr
478    decodeVfpData(ExtMachInst machInst)
479    {
480        const uint32_t opc1 = bits(machInst, 23, 20);
481        const uint32_t opc2 = bits(machInst, 19, 16);
482        const uint32_t opc3 = bits(machInst, 7, 6);
483        //const uint32_t opc4 = bits(machInst, 3, 0);
484        const bool single = (bits(machInst, 8) == 0);
485        IntRegIndex vd;
486        IntRegIndex vm;
487        IntRegIndex vn;
488        if (single) {
489            vd = (IntRegIndex)(bits(machInst, 22) |
490                    (bits(machInst, 15, 12) << 1));
491            vm = (IntRegIndex)(bits(machInst, 5) |
492                    (bits(machInst, 3, 0) << 1));
493            vn = (IntRegIndex)(bits(machInst, 7) |
494                    (bits(machInst, 19, 16) << 1));
495        } else {
496            vd = (IntRegIndex)((bits(machInst, 22) << 5) |
497                    (bits(machInst, 15, 12) << 1));
498            vm = (IntRegIndex)((bits(machInst, 5) << 5) |
499                    (bits(machInst, 3, 0) << 1));
500            vn = (IntRegIndex)((bits(machInst, 7) << 5) |
501                    (bits(machInst, 19, 16) << 1));
502        }
503        switch (opc1 & 0xb /* 1011 */) {
504          case 0x0:
505            if (bits(machInst, 6) == 0) {
506                if (single) {
507                    return decodeVfpRegRegRegOp<VmlaS>(
508                            machInst, vd, vn, vm, false);
509                } else {
510                    return decodeVfpRegRegRegOp<VmlaD>(
511                            machInst, vd, vn, vm, true);
512                }
513            } else {
514                if (single) {
515                    return decodeVfpRegRegRegOp<VmlsS>(
516                            machInst, vd, vn, vm, false);
517                } else {
518                    return decodeVfpRegRegRegOp<VmlsD>(
519                            machInst, vd, vn, vm, true);
520                }
521            }
522          case 0x1:
523            if (bits(machInst, 6) == 1) {
524                if (single) {
525                    return decodeVfpRegRegRegOp<VnmlaS>(
526                            machInst, vd, vn, vm, false);
527                } else {
528                    return decodeVfpRegRegRegOp<VnmlaD>(
529                            machInst, vd, vn, vm, true);
530                }
531            } else {
532                if (single) {
533                    return decodeVfpRegRegRegOp<VnmlsS>(
534                            machInst, vd, vn, vm, false);
535                } else {
536                    return decodeVfpRegRegRegOp<VnmlsD>(
537                            machInst, vd, vn, vm, true);
538                }
539            }
540          case 0x2:
541            if ((opc3 & 0x1) == 0) {
542                if (single) {
543                    return decodeVfpRegRegRegOp<VmulS>(
544                            machInst, vd, vn, vm, false);
545                } else {
546                    return decodeVfpRegRegRegOp<VmulD>(
547                            machInst, vd, vn, vm, true);
548                }
549            } else {
550                if (single) {
551                    return decodeVfpRegRegRegOp<VnmulS>(
552                            machInst, vd, vn, vm, false);
553                } else {
554                    return decodeVfpRegRegRegOp<VnmulD>(
555                            machInst, vd, vn, vm, true);
556                }
557            }
558          case 0x3:
559            if ((opc3 & 0x1) == 0) {
560                if (single) {
561                    return decodeVfpRegRegRegOp<VaddS>(
562                            machInst, vd, vn, vm, false);
563                } else {
564                    return decodeVfpRegRegRegOp<VaddD>(
565                            machInst, vd, vn, vm, true);
566                }
567            } else {
568                if (single) {
569                    return decodeVfpRegRegRegOp<VsubS>(
570                            machInst, vd, vn, vm, false);
571                } else {
572                    return decodeVfpRegRegRegOp<VsubD>(
573                            machInst, vd, vn, vm, true);
574                }
575            }
576          case 0x8:
577            if ((opc3 & 0x1) == 0) {
578                if (single) {
579                    return decodeVfpRegRegRegOp<VdivS>(
580                            machInst, vd, vn, vm, false);
581                } else {
582                    return decodeVfpRegRegRegOp<VdivD>(
583                            machInst, vd, vn, vm, true);
584                }
585            }
586            break;
587          case 0xb:
588            if ((opc3 & 0x1) == 0) {
589                const uint32_t baseImm =
590                    bits(machInst, 3, 0) | (bits(machInst, 19, 16) << 4);
591                if (single) {
592                    uint32_t imm = vfp_modified_imm(baseImm, false);
593                    return decodeVfpRegImmOp<VmovImmS>(
594                            machInst, vd, imm, false);
595                } else {
596                    uint64_t imm = vfp_modified_imm(baseImm, true);
597                    return decodeVfpRegImmOp<VmovImmD>(
598                            machInst, vd, imm, true);
599                }
600            }
601            switch (opc2) {
602              case 0x0:
603                if (opc3 == 1) {
604                    if (single) {
605                        return decodeVfpRegRegOp<VmovRegS>(
606                                machInst, vd, vm, false);
607                    } else {
608                        return decodeVfpRegRegOp<VmovRegD>(
609                                machInst, vd, vm, true);
610                    }
611                } else {
612                    if (single) {
613                        return decodeVfpRegRegOp<VabsS>(
614                                machInst, vd, vm, false);
615                    } else {
616                        return decodeVfpRegRegOp<VabsD>(
617                                machInst, vd, vm, true);
618                    }
619                }
620              case 0x1:
621                if (opc3 == 1) {
622                    if (single) {
623                        return decodeVfpRegRegOp<VnegS>(
624                                machInst, vd, vm, false);
625                    } else {
626                        return decodeVfpRegRegOp<VnegD>(
627                                machInst, vd, vm, true);
628                    }
629                } else {
630                    if (single) {
631                        return decodeVfpRegRegOp<VsqrtS>(
632                                machInst, vd, vm, false);
633                    } else {
634                        return decodeVfpRegRegOp<VsqrtD>(
635                                machInst, vd, vm, true);
636                    }
637                }
638              case 0x2:
639              case 0x3:
640                // Between half and single precision.
641                return new WarnUnimplemented("vcvtb, vcvtt", machInst);
642              case 0x4:
643                if (single) {
644                    return new VcmpS(machInst, vd, vm);
645                } else {
646                    return new VcmpD(machInst, vd, vm);
647                }
648              case 0x5:
649                if (single) {
650                    return new VcmpZeroS(machInst, vd, 0);
651                } else {
652                    return new VcmpZeroD(machInst, vd, 0);
653                }
654              case 0x7:
655                if (opc3 == 0x3) {
656                    if (single) {
657                        vm = (IntRegIndex)(bits(machInst, 5) |
658                                (bits(machInst, 3, 0) << 1));
659                        return new VcvtFpSFpD(machInst, vd, vm);
660                    } else {
661                        vd = (IntRegIndex)(bits(machInst, 22) |
662                                (bits(machInst, 15, 12) << 1));
663                        return new VcvtFpDFpS(machInst, vd, vm);
664                    }
665                }
666                break;
667              case 0x8:
668                if (bits(machInst, 7) == 0) {
669                    if (single) {
670                        return new VcvtUIntFpS(machInst, vd, vm);
671                    } else {
672                        vm = (IntRegIndex)(bits(machInst, 5) |
673                                (bits(machInst, 3, 0) << 1));
674                        return new VcvtUIntFpD(machInst, vd, vm);
675                    }
676                } else {
677                    if (single) {
678                        return new VcvtSIntFpS(machInst, vd, vm);
679                    } else {
680                        vm = (IntRegIndex)(bits(machInst, 5) |
681                                (bits(machInst, 3, 0) << 1));
682                        return new VcvtSIntFpD(machInst, vd, vm);
683                    }
684                }
685              case 0xa:
686              case 0xb:
687                // Between FP and fixed point.
688                return new WarnUnimplemented("vcvt", machInst);
689              case 0xc:
690                if (single) {
691                    return new VcvtFpUIntS(machInst, vd, vm);
692                } else {
693                    vd = (IntRegIndex)(bits(machInst, 22) |
694                            (bits(machInst, 15, 12) << 1));
695                    return new VcvtFpUIntD(machInst, vd, vm);
696                }
697              case 0xd:
698                if (single) {
699                    return new VcvtFpSIntS(machInst, vd, vm);
700                } else {
701                    vd = (IntRegIndex)(bits(machInst, 22) |
702                            (bits(machInst, 15, 12) << 1));
703                    return new VcvtFpSIntD(machInst, vd, vm);
704                }
705              case 0xe:
706              case 0xf:
707                // Between FP and fixed point.
708                return new WarnUnimplemented("vcvt", machInst);
709            }
710            break;
711        }
712        return new Unknown(machInst);
713    }
714    '''
715}};
716
717def format VfpData() {{
718    decode_block = '''
719    return decodeVfpData(machInst);
720    '''
721}};
722