fp.isa revision 7374:9a80d013b955
1// -*- mode:c++ -*-
2
3// Copyright (c) 2010 ARM Limited
4// All rights reserved
5//
6// The license below extends only to copyright in the software and shall
7// not be construed as granting a license to any other intellectual
8// property including but not limited to intellectual property relating
9// to a hardware implementation of the functionality of the software
10// licensed hereunder.  You may use the software subject to the license
11// terms below provided that you ensure that this notice is replicated
12// unmodified and in its entirety in all distributions of the software,
13// modified or unmodified, in source code or in binary form.
14//
15// Copyright (c) 2007-2008 The Florida State University
16// All rights reserved.
17//
18// Redistribution and use in source and binary forms, with or without
19// modification, are permitted provided that the following conditions are
20// met: redistributions of source code must retain the above copyright
21// notice, this list of conditions and the following disclaimer;
22// redistributions in binary form must reproduce the above copyright
23// notice, this list of conditions and the following disclaimer in the
24// documentation and/or other materials provided with the distribution;
25// neither the name of the copyright holders nor the names of its
26// contributors may be used to endorse or promote products derived from
27// this software without specific prior written permission.
28//
29// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40//
41// Authors: Stephen Hines
42
43////////////////////////////////////////////////////////////////////
44//
45// Floating Point operate instructions
46//
47
48def template FPAExecute {{
49        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
50        {
51                Fault fault = NoFault;
52
53                %(fp_enable_check)s;
54
55                %(op_decl)s;
56                %(op_rd)s;
57
58                if (%(predicate_test)s) {
59                    %(code)s;
60                    if (fault == NoFault) {
61                        %(op_wb)s;
62                    }
63                }
64
65                return fault;
66        }
67}};
68
69def template FloatDoubleDecode {{
70    {
71        ArmStaticInst *i = NULL;
72        switch (OPCODE_19 << 1 | OPCODE_7)
73        {
74            case 0:
75                i = (ArmStaticInst *)new %(class_name)sS(machInst);
76                break;
77            case 1:
78                i = (ArmStaticInst *)new %(class_name)sD(machInst);
79                break;
80            case 2:
81            case 3:
82            default:
83                panic("Cannot decode float/double nature of the instruction");
84        }
85        return i;
86    }
87}};
88
89// Primary format for float point operate instructions:
90def format FloatOp(code, *flags) {{
91        orig_code = code
92
93        cblk = code
94        iop = InstObjParams(name, Name, 'PredOp',
95                            {"code": cblk,
96                             "predicate_test": predicateTest},
97                            flags)
98        header_output = BasicDeclare.subst(iop)
99        decoder_output = BasicConstructor.subst(iop)
100        exec_output = FPAExecute.subst(iop)
101
102        sng_cblk = code
103        sng_iop = InstObjParams(name, Name+'S', 'PredOp',
104                                {"code": sng_cblk,
105                                 "predicate_test": predicateTest},
106                                flags)
107        header_output += BasicDeclare.subst(sng_iop)
108        decoder_output += BasicConstructor.subst(sng_iop)
109        exec_output += FPAExecute.subst(sng_iop)
110
111        dbl_code = re.sub(r'\.sf', '.df', orig_code)
112
113        dbl_cblk = dbl_code
114        dbl_iop = InstObjParams(name, Name+'D', 'PredOp',
115                                {"code": dbl_cblk,
116                                 "predicate_test": predicateTest},
117                                flags)
118        header_output += BasicDeclare.subst(dbl_iop)
119        decoder_output += BasicConstructor.subst(dbl_iop)
120        exec_output += FPAExecute.subst(dbl_iop)
121
122        decode_block = FloatDoubleDecode.subst(iop)
123}};
124
125let {{
126        calcFPCcCode = '''
127        uint16_t _in, _iz, _ic, _iv;
128
129        _in = %(fReg1)s < %(fReg2)s;
130        _iz = %(fReg1)s == %(fReg2)s;
131        _ic = %(fReg1)s >= %(fReg2)s;
132        _iv = (isnan(%(fReg1)s) || isnan(%(fReg2)s)) & 1;
133
134        CondCodes = _in << 31 | _iz << 30 | _ic << 29 | _iv << 28 |
135            (CondCodes & 0x0FFFFFFF);
136        '''
137}};
138
139def format FloatCmp(fReg1, fReg2, *flags) {{
140        code = calcFPCcCode % vars()
141        iop = InstObjParams(name, Name, 'PredOp',
142                            {"code": code,
143                             "predicate_test": predicateTest},
144                             flags)
145        header_output = BasicDeclare.subst(iop)
146        decoder_output = BasicConstructor.subst(iop)
147        decode_block = BasicDecode.subst(iop)
148        exec_output = FPAExecute.subst(iop)
149}};
150
151let {{
152    header_output = '''
153    StaticInstPtr
154    decodeExtensionRegLoadStore(ExtMachInst machInst);
155    '''
156    decoder_output = '''
157    StaticInstPtr
158    decodeExtensionRegLoadStore(ExtMachInst machInst)
159    {
160        const uint32_t opcode = bits(machInst, 24, 20);
161        const uint32_t offset = bits(machInst, 7, 0);
162        const bool single = (bits(machInst, 8) == 0);
163        const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
164        RegIndex vd;
165        if (single) {
166            vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
167                                      bits(machInst, 22));
168        } else {
169            vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
170                                      (bits(machInst, 22) << 5));
171        }
172        switch (bits(opcode, 4, 3)) {
173          case 0x0:
174            if (bits(opcode, 4, 1) == 0x2 &&
175                    !(machInst.thumb == 1 && bits(machInst, 28) == 1) &&
176                    !(machInst.thumb == 0 && machInst.condCode == 0xf)) {
177                if ((bits(machInst, 7, 4) & 0xd) != 1) {
178                    break;
179                }
180                const IntRegIndex rt =
181                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
182                const IntRegIndex rt2 =
183                    (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
184                const bool op = bits(machInst, 20);
185                uint32_t vm;
186                if (single) {
187                    vm = (bits(machInst, 3, 0) << 1) | bits(machInst, 5);
188                } else {
189                    vm = (bits(machInst, 3, 0) << 1) |
190                         (bits(machInst, 5) << 5);
191                }
192                if (op) {
193                    return new Vmov2Core2Reg(machInst, rt, rt2,
194                                             (IntRegIndex)vm);
195                } else {
196                    return new Vmov2Reg2Core(machInst, (IntRegIndex)vm,
197                                             rt, rt2);
198                }
199            }
200            break;
201          case 0x1:
202            switch (bits(opcode, 1, 0)) {
203              case 0x0:
204                return new VLdmStm(machInst, rn, vd, single,
205                                   true, false, false, offset);
206              case 0x1:
207                return new VLdmStm(machInst, rn, vd, single,
208                                   true, false, true, offset);
209              case 0x2:
210                return new VLdmStm(machInst, rn, vd, single,
211                                   true, true, false, offset);
212              case 0x3:
213                // If rn == sp, then this is called vpop.
214                return new VLdmStm(machInst, rn, vd, single,
215                                   true, true, true, offset);
216            }
217          case 0x2:
218            if (bits(opcode, 1, 0) == 0x2) {
219                // If rn == sp, then this is called vpush.
220                return new VLdmStm(machInst, rn, vd, single,
221                                   false, true, false, offset);
222            } else if (bits(opcode, 1, 0) == 0x3) {
223                return new VLdmStm(machInst, rn, vd, single,
224                                   false, true, true, offset);
225            }
226            // Fall through on purpose
227          case 0x3:
228            const bool up = (bits(machInst, 23) == 1);
229            const uint32_t imm = bits(machInst, 7, 0) << 2;
230            RegIndex vd;
231            if (single) {
232                vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
233                                          (bits(machInst, 22)));
234            } else {
235                vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
236                                          (bits(machInst, 22) << 5));
237            }
238            if (bits(opcode, 1, 0) == 0x0) {
239                if (single) {
240                    if (up) {
241                        return new %(vstr_us)s(machInst, vd, rn, up, imm);
242                    } else {
243                        return new %(vstr_s)s(machInst, vd, rn, up, imm);
244                    }
245                } else {
246                    if (up) {
247                        return new %(vstr_ud)s(machInst, vd, vd + 1,
248                                               rn, up, imm);
249                    } else {
250                        return new %(vstr_d)s(machInst, vd, vd + 1,
251                                              rn, up, imm);
252                    }
253                }
254            } else if (bits(opcode, 1, 0) == 0x1) {
255                if (single) {
256                    if (up) {
257                        return new %(vldr_us)s(machInst, vd, rn, up, imm);
258                    } else {
259                        return new %(vldr_s)s(machInst, vd, rn, up, imm);
260                    }
261                } else {
262                    if (up) {
263                        return new %(vldr_ud)s(machInst, vd, vd + 1,
264                                               rn, up, imm);
265                    } else {
266                        return new %(vldr_d)s(machInst, vd, vd + 1,
267                                              rn, up, imm);
268                    }
269                }
270            }
271        }
272        return new Unknown(machInst);
273    }
274    ''' % {
275        "vldr_us" : "VLDR_" + loadImmClassName(False, True, False),
276        "vldr_s" : "VLDR_" + loadImmClassName(False, False, False),
277        "vldr_ud" : "VLDR_" + loadDoubleImmClassName(False, True, False),
278        "vldr_d" : "VLDR_" + loadDoubleImmClassName(False, False, False),
279        "vstr_us" : "VSTR_" + storeImmClassName(False, True, False),
280        "vstr_s" : "VSTR_" + storeImmClassName(False, False, False),
281        "vstr_ud" : "VSTR_" + storeDoubleImmClassName(False, True, False),
282        "vstr_d" : "VSTR_" + storeDoubleImmClassName(False, False, False)
283    }
284}};
285
286def format ExtensionRegLoadStore() {{
287    decode_block = '''
288    return decodeExtensionRegLoadStore(machInst);
289    '''
290}};
291
292let {{
293    header_output = '''
294    StaticInstPtr
295    decodeShortFpTransfer(ExtMachInst machInst);
296    '''
297    decoder_output = '''
298    StaticInstPtr
299    decodeShortFpTransfer(ExtMachInst machInst)
300    {
301        const uint32_t l = bits(machInst, 20);
302        const uint32_t c = bits(machInst, 8);
303        const uint32_t a = bits(machInst, 23, 21);
304        const uint32_t b = bits(machInst, 6, 5);
305        if ((machInst.thumb == 1 && bits(machInst, 28) == 1) ||
306            (machInst.thumb == 0 && machInst.condCode == 0xf)) {
307            return new Unknown(machInst);
308        }
309        if (l == 0 && c == 0) {
310            if (a == 0) {
311                const uint32_t vn = (bits(machInst, 19, 16) << 1) |
312                                    bits(machInst, 7);
313                const IntRegIndex rt =
314                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
315                if (bits(machInst, 20) == 1) {
316                    return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
317                } else {
318                    return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
319                }
320            } else if (a == 0x7) {
321                const IntRegIndex rt =
322                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
323                uint32_t specReg = bits(machInst, 19, 16);
324                switch (specReg) {
325                  case 0:
326                    specReg = MISCREG_FPSID;
327                    break;
328                  case 1:
329                    specReg = MISCREG_FPSCR;
330                    break;
331                  case 8:
332                    specReg = MISCREG_FPEXC;
333                    break;
334                  default:
335                    return new Unknown(machInst);
336                }
337                return new Vmsr(machInst, (IntRegIndex)specReg, rt);
338            }
339        } else if (l == 0 && c == 1) {
340            if (bits(a, 2) == 0) {
341                uint32_t vd = (bits(machInst, 7) << 5) |
342                              (bits(machInst, 19, 16) << 1);
343                uint32_t index, size;
344                const IntRegIndex rt =
345                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
346                if (bits(machInst, 22) == 1) {
347                    size = 8;
348                    index = (bits(machInst, 21) << 2) |
349                            bits(machInst, 6, 5);
350                } else if (bits(machInst, 5) == 1) {
351                    size = 16;
352                    index = (bits(machInst, 21) << 1) |
353                            bits(machInst, 6);
354                } else if (bits(machInst, 6) == 0) {
355                    size = 32;
356                    index = bits(machInst, 21);
357                } else {
358                    return new Unknown(machInst);
359                }
360                if (index >= (32 / size)) {
361                    index -= (32 / size);
362                    vd++;
363                }
364                switch (size) {
365                  case 8:
366                    return new VmovCoreRegB(machInst, (IntRegIndex)vd,
367                                            rt, index);
368                  case 16:
369                    return new VmovCoreRegH(machInst, (IntRegIndex)vd,
370                                            rt, index);
371                  case 32:
372                    return new VmovCoreRegW(machInst, (IntRegIndex)vd, rt);
373                }
374            } else if (bits(b, 1) == 0) {
375                // A8-594
376                return new WarnUnimplemented("vdup", machInst);
377            }
378        } else if (l == 1 && c == 0) {
379            if (a == 0) {
380                const uint32_t vn = (bits(machInst, 19, 16) << 1) |
381                                    bits(machInst, 7);
382                const IntRegIndex rt =
383                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
384                if (bits(machInst, 20) == 1) {
385                    return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
386                } else {
387                    return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
388                }
389            } else if (a == 7) {
390                const IntRegIndex rt =
391                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
392                uint32_t specReg = bits(machInst, 19, 16);
393                switch (specReg) {
394                  case 0:
395                    specReg = MISCREG_FPSID;
396                    break;
397                  case 1:
398                    specReg = MISCREG_FPSCR;
399                    break;
400                  case 6:
401                    specReg = MISCREG_MVFR1;
402                    break;
403                  case 7:
404                    specReg = MISCREG_MVFR0;
405                    break;
406                  case 8:
407                    specReg = MISCREG_FPEXC;
408                    break;
409                  default:
410                    return new Unknown(machInst);
411                }
412                return new Vmrs(machInst, rt, (IntRegIndex)specReg);
413            }
414        } else {
415            uint32_t vd = (bits(machInst, 7) << 5) |
416                          (bits(machInst, 19, 16) << 1);
417            uint32_t index, size;
418            const IntRegIndex rt =
419                (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
420            const bool u = (bits(machInst, 23) == 1);
421            if (bits(machInst, 22) == 1) {
422                size = 8;
423                index = (bits(machInst, 21) << 2) |
424                        bits(machInst, 6, 5);
425            } else if (bits(machInst, 5) == 1) {
426                size = 16;
427                index = (bits(machInst, 21) << 1) |
428                        bits(machInst, 6);
429            } else if (bits(machInst, 6) == 0 && !u) {
430                size = 32;
431                index = bits(machInst, 21);
432            } else {
433                return new Unknown(machInst);
434            }
435            if (index >= (32 / size)) {
436                index -= (32 / size);
437                vd++;
438            }
439            switch (size) {
440              case 8:
441                if (u) {
442                    return new VmovRegCoreUB(machInst, rt,
443                                             (IntRegIndex)vd, index);
444                } else {
445                    return new VmovRegCoreSB(machInst, rt,
446                                             (IntRegIndex)vd, index);
447                }
448              case 16:
449                if (u) {
450                    return new VmovRegCoreUH(machInst, rt,
451                                             (IntRegIndex)vd, index);
452                } else {
453                    return new VmovRegCoreSH(machInst, rt,
454                                             (IntRegIndex)vd, index);
455                }
456              case 32:
457                return new VmovRegCoreW(machInst, rt, (IntRegIndex)vd);
458            }
459        }
460        return new Unknown(machInst);
461    }
462    '''
463}};
464
465def format ShortFpTransfer() {{
466    decode_block = '''
467    return decodeShortFpTransfer(machInst);
468    '''
469}};
470
471let {{
472    header_output = '''
473    StaticInstPtr
474    decodeVfpData(ExtMachInst machInst);
475    '''
476    decoder_output = '''
477    StaticInstPtr
478    decodeVfpData(ExtMachInst machInst)
479    {
480        const uint32_t opc1 = bits(machInst, 23, 20);
481        const uint32_t opc2 = bits(machInst, 19, 16);
482        const uint32_t opc3 = bits(machInst, 7, 6);
483        //const uint32_t opc4 = bits(machInst, 3, 0);
484        const bool single = (bits(machInst, 8) == 0);
485        IntRegIndex vd;
486        IntRegIndex vm;
487        IntRegIndex vn;
488        if (single) {
489            vd = (IntRegIndex)(bits(machInst, 22) |
490                    (bits(machInst, 15, 12) << 1));
491            vm = (IntRegIndex)(bits(machInst, 5) |
492                    (bits(machInst, 3, 0) << 1));
493            vn = (IntRegIndex)(bits(machInst, 7) |
494                    (bits(machInst, 19, 16) << 1));
495        } else {
496            vd = (IntRegIndex)((bits(machInst, 22) << 5) |
497                    (bits(machInst, 15, 12) << 1));
498            vm = (IntRegIndex)((bits(machInst, 5) << 5) |
499                    (bits(machInst, 3, 0) << 1));
500            vn = (IntRegIndex)((bits(machInst, 7) << 5) |
501                    (bits(machInst, 19, 16) << 1));
502        }
503        switch (opc1 & 0xb /* 1011 */) {
504          case 0x0:
505            if (bits(machInst, 6) == 0) {
506                if (single) {
507                    return new VmlaS(machInst, vd, vn, vm);
508                } else {
509                    return new VmlaD(machInst, vd, vn, vm);
510                }
511            } else {
512                if (single) {
513                    return new VmlsS(machInst, vd, vn, vm);
514                } else {
515                    return new VmlsD(machInst, vd, vn, vm);
516                }
517            }
518          case 0x1:
519            if (bits(machInst, 6) == 1) {
520                if (single) {
521                    return new VnmlaS(machInst, vd, vn, vm);
522                } else {
523                    return new VnmlaD(machInst, vd, vn, vm);
524                }
525            } else {
526                if (single) {
527                    return new VnmlsS(machInst, vd, vn, vm);
528                } else {
529                    return new VnmlsD(machInst, vd, vn, vm);
530                }
531            }
532          case 0x2:
533            if ((opc3 & 0x1) == 0) {
534                if (single) {
535                    return new VmulS(machInst, vd, vn, vm);
536                } else {
537                    return new VmulD(machInst, vd, vn, vm);
538                }
539            } else {
540                if (single) {
541                    return new VnmulS(machInst, vd, vn, vm);
542                } else {
543                    return new VnmulD(machInst, vd, vn, vm);
544                }
545            }
546          case 0x3:
547            if ((opc3 & 0x1) == 0) {
548                if (single) {
549                    return new VaddS(machInst, vd, vn, vm);
550                } else {
551                    return new VaddD(machInst, vd, vn, vm);
552                }
553            } else {
554                if (single) {
555                    return new VsubS(machInst, vd, vn, vm);
556                } else {
557                    return new VsubD(machInst, vd, vn, vm);
558                }
559            }
560          case 0x8:
561            if ((opc3 & 0x1) == 0) {
562                if (single) {
563                    return new VdivS(machInst, vd, vn, vm);
564                } else {
565                    return new VdivD(machInst, vd, vn, vm);
566                }
567            }
568            break;
569          case 0xb:
570            if ((opc3 & 0x1) == 0) {
571                const uint32_t baseImm =
572                    bits(machInst, 3, 0) | (bits(machInst, 19, 16) << 4);
573                if (single) {
574                    uint32_t imm = vfp_modified_imm(baseImm, false);
575                    return new VmovImmS(machInst, vd, imm);
576                } else {
577                    uint64_t imm = vfp_modified_imm(baseImm, true);
578                    return new VmovImmD(machInst, vd, imm);
579                }
580            }
581            switch (opc2) {
582              case 0x0:
583                if (opc3 == 1) {
584                    if (single) {
585                        return new VmovRegS(machInst, vd, vm);
586                    } else {
587                        return new VmovRegD(machInst, vd, vm);
588                    }
589                } else {
590                    if (single) {
591                        return new VabsS(machInst, vd, vm);
592                    } else {
593                        return new VabsD(machInst, vd, vm);
594                    }
595                }
596              case 0x1:
597                if (opc3 == 1) {
598                    if (single) {
599                        return new VnegS(machInst, vd, vm);
600                    } else {
601                        return new VnegD(machInst, vd, vm);
602                    }
603                } else {
604                    if (single) {
605                        return new VsqrtS(machInst, vd, vm);
606                    } else {
607                        return new VsqrtD(machInst, vd, vm);
608                    }
609                }
610              case 0x2:
611              case 0x3:
612                // Between half and single precision.
613                return new WarnUnimplemented("vcvtb, vcvtt", machInst);
614              case 0x4:
615              case 0x5:
616                return new WarnUnimplemented("vcmp, vcmpe", machInst);
617              case 0x7:
618                if (opc3 == 0x3) {
619                    if (single) {
620                        vm = (IntRegIndex)(bits(machInst, 5) |
621                                (bits(machInst, 3, 0) << 1));
622                        return new VcvtFpSFpD(machInst, vd, vm);
623                    } else {
624                        vd = (IntRegIndex)(bits(machInst, 22) |
625                                (bits(machInst, 15, 12) << 1));
626                        return new VcvtFpDFpS(machInst, vd, vm);
627                    }
628                }
629                break;
630              case 0x8:
631                if (bits(machInst, 7) == 0) {
632                    if (single) {
633                        return new VcvtUIntFpS(machInst, vd, vm);
634                    } else {
635                        vm = (IntRegIndex)(bits(machInst, 5) |
636                                (bits(machInst, 3, 0) << 1));
637                        return new VcvtUIntFpD(machInst, vd, vm);
638                    }
639                } else {
640                    if (single) {
641                        return new VcvtSIntFpS(machInst, vd, vm);
642                    } else {
643                        vm = (IntRegIndex)(bits(machInst, 5) |
644                                (bits(machInst, 3, 0) << 1));
645                        return new VcvtSIntFpD(machInst, vd, vm);
646                    }
647                }
648              case 0xa:
649              case 0xb:
650                // Between FP and fixed point.
651                return new WarnUnimplemented("vcvt", machInst);
652              case 0xc:
653                if (single) {
654                    return new VcvtFpUIntS(machInst, vd, vm);
655                } else {
656                    vd = (IntRegIndex)(bits(machInst, 22) |
657                            (bits(machInst, 15, 12) << 1));
658                    return new VcvtFpUIntD(machInst, vd, vm);
659                }
660              case 0xd:
661                if (single) {
662                    return new VcvtFpSIntS(machInst, vd, vm);
663                } else {
664                    vd = (IntRegIndex)(bits(machInst, 22) |
665                            (bits(machInst, 15, 12) << 1));
666                    return new VcvtFpSIntD(machInst, vd, vm);
667                }
668              case 0xe:
669              case 0xf:
670                // Between FP and fixed point.
671                return new WarnUnimplemented("vcvt", machInst);
672            }
673            break;
674        }
675        return new Unknown(machInst);
676    }
677    '''
678}};
679
680def format VfpData() {{
681    decode_block = '''
682    return decodeVfpData(machInst);
683    '''
684}};
685