fp.isa revision 7392
1// -*- mode:c++ -*-
2
3// Copyright (c) 2010 ARM Limited
4// All rights reserved
5//
6// The license below extends only to copyright in the software and shall
7// not be construed as granting a license to any other intellectual
8// property including but not limited to intellectual property relating
9// to a hardware implementation of the functionality of the software
10// licensed hereunder.  You may use the software subject to the license
11// terms below provided that you ensure that this notice is replicated
12// unmodified and in its entirety in all distributions of the software,
13// modified or unmodified, in source code or in binary form.
14//
15// Copyright (c) 2007-2008 The Florida State University
16// All rights reserved.
17//
18// Redistribution and use in source and binary forms, with or without
19// modification, are permitted provided that the following conditions are
20// met: redistributions of source code must retain the above copyright
21// notice, this list of conditions and the following disclaimer;
22// redistributions in binary form must reproduce the above copyright
23// notice, this list of conditions and the following disclaimer in the
24// documentation and/or other materials provided with the distribution;
25// neither the name of the copyright holders nor the names of its
26// contributors may be used to endorse or promote products derived from
27// this software without specific prior written permission.
28//
29// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40//
41// Authors: Stephen Hines
42
43////////////////////////////////////////////////////////////////////
44//
45// Floating Point operate instructions
46//
47
48def template FPAExecute {{
49        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
50        {
51                Fault fault = NoFault;
52
53                %(fp_enable_check)s;
54
55                %(op_decl)s;
56                %(op_rd)s;
57
58                if (%(predicate_test)s) {
59                    %(code)s;
60                    if (fault == NoFault) {
61                        %(op_wb)s;
62                    }
63                }
64
65                return fault;
66        }
67}};
68
69def template FloatDoubleDecode {{
70    {
71        ArmStaticInst *i = NULL;
72        switch (OPCODE_19 << 1 | OPCODE_7)
73        {
74            case 0:
75                i = (ArmStaticInst *)new %(class_name)sS(machInst);
76                break;
77            case 1:
78                i = (ArmStaticInst *)new %(class_name)sD(machInst);
79                break;
80            case 2:
81            case 3:
82            default:
83                panic("Cannot decode float/double nature of the instruction");
84        }
85        return i;
86    }
87}};
88
89// Primary format for float point operate instructions:
90def format FloatOp(code, *flags) {{
91        orig_code = code
92
93        cblk = code
94        iop = InstObjParams(name, Name, 'PredOp',
95                            {"code": cblk,
96                             "predicate_test": predicateTest},
97                            flags)
98        header_output = BasicDeclare.subst(iop)
99        decoder_output = BasicConstructor.subst(iop)
100        exec_output = FPAExecute.subst(iop)
101
102        sng_cblk = code
103        sng_iop = InstObjParams(name, Name+'S', 'PredOp',
104                                {"code": sng_cblk,
105                                 "predicate_test": predicateTest},
106                                flags)
107        header_output += BasicDeclare.subst(sng_iop)
108        decoder_output += BasicConstructor.subst(sng_iop)
109        exec_output += FPAExecute.subst(sng_iop)
110
111        dbl_code = re.sub(r'\.sf', '.df', orig_code)
112
113        dbl_cblk = dbl_code
114        dbl_iop = InstObjParams(name, Name+'D', 'PredOp',
115                                {"code": dbl_cblk,
116                                 "predicate_test": predicateTest},
117                                flags)
118        header_output += BasicDeclare.subst(dbl_iop)
119        decoder_output += BasicConstructor.subst(dbl_iop)
120        exec_output += FPAExecute.subst(dbl_iop)
121
122        decode_block = FloatDoubleDecode.subst(iop)
123}};
124
125let {{
126        calcFPCcCode = '''
127        uint16_t _in, _iz, _ic, _iv;
128
129        _in = %(fReg1)s < %(fReg2)s;
130        _iz = %(fReg1)s == %(fReg2)s;
131        _ic = %(fReg1)s >= %(fReg2)s;
132        _iv = (isnan(%(fReg1)s) || isnan(%(fReg2)s)) & 1;
133
134        CondCodes = _in << 31 | _iz << 30 | _ic << 29 | _iv << 28 |
135            (CondCodes & 0x0FFFFFFF);
136        '''
137}};
138
139def format FloatCmp(fReg1, fReg2, *flags) {{
140        code = calcFPCcCode % vars()
141        iop = InstObjParams(name, Name, 'PredOp',
142                            {"code": code,
143                             "predicate_test": predicateTest},
144                             flags)
145        header_output = BasicDeclare.subst(iop)
146        decoder_output = BasicConstructor.subst(iop)
147        decode_block = BasicDecode.subst(iop)
148        exec_output = FPAExecute.subst(iop)
149}};
150
151let {{
152    header_output = '''
153    StaticInstPtr
154    decodeExtensionRegLoadStore(ExtMachInst machInst);
155    '''
156    decoder_output = '''
157    StaticInstPtr
158    decodeExtensionRegLoadStore(ExtMachInst machInst)
159    {
160        const uint32_t opcode = bits(machInst, 24, 20);
161        const uint32_t offset = bits(machInst, 7, 0);
162        const bool single = (bits(machInst, 8) == 0);
163        const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
164        RegIndex vd;
165        if (single) {
166            vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
167                                      bits(machInst, 22));
168        } else {
169            vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
170                                      (bits(machInst, 22) << 5));
171        }
172        switch (bits(opcode, 4, 3)) {
173          case 0x0:
174            if (bits(opcode, 4, 1) == 0x2 &&
175                    !(machInst.thumb == 1 && bits(machInst, 28) == 1) &&
176                    !(machInst.thumb == 0 && machInst.condCode == 0xf)) {
177                if ((bits(machInst, 7, 4) & 0xd) != 1) {
178                    break;
179                }
180                const IntRegIndex rt =
181                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
182                const IntRegIndex rt2 =
183                    (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
184                const bool op = bits(machInst, 20);
185                uint32_t vm;
186                if (single) {
187                    vm = (bits(machInst, 3, 0) << 1) | bits(machInst, 5);
188                } else {
189                    vm = (bits(machInst, 3, 0) << 1) |
190                         (bits(machInst, 5) << 5);
191                }
192                if (op) {
193                    return new Vmov2Core2Reg(machInst, rt, rt2,
194                                             (IntRegIndex)vm);
195                } else {
196                    return new Vmov2Reg2Core(machInst, (IntRegIndex)vm,
197                                             rt, rt2);
198                }
199            }
200            break;
201          case 0x1:
202            switch (bits(opcode, 1, 0)) {
203              case 0x0:
204                return new VLdmStm(machInst, rn, vd, single,
205                                   true, false, false, offset);
206              case 0x1:
207                return new VLdmStm(machInst, rn, vd, single,
208                                   true, false, true, offset);
209              case 0x2:
210                return new VLdmStm(machInst, rn, vd, single,
211                                   true, true, false, offset);
212              case 0x3:
213                // If rn == sp, then this is called vpop.
214                return new VLdmStm(machInst, rn, vd, single,
215                                   true, true, true, offset);
216            }
217          case 0x2:
218            if (bits(opcode, 1, 0) == 0x2) {
219                // If rn == sp, then this is called vpush.
220                return new VLdmStm(machInst, rn, vd, single,
221                                   false, true, false, offset);
222            } else if (bits(opcode, 1, 0) == 0x3) {
223                return new VLdmStm(machInst, rn, vd, single,
224                                   false, true, true, offset);
225            }
226            // Fall through on purpose
227          case 0x3:
228            const bool up = (bits(machInst, 23) == 1);
229            const uint32_t imm = bits(machInst, 7, 0) << 2;
230            RegIndex vd;
231            if (single) {
232                vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
233                                          (bits(machInst, 22)));
234            } else {
235                vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
236                                          (bits(machInst, 22) << 5));
237            }
238            if (bits(opcode, 1, 0) == 0x0) {
239                if (single) {
240                    if (up) {
241                        return new %(vstr_us)s(machInst, vd, rn, up, imm);
242                    } else {
243                        return new %(vstr_s)s(machInst, vd, rn, up, imm);
244                    }
245                } else {
246                    if (up) {
247                        return new %(vstr_ud)s(machInst, vd, vd + 1,
248                                               rn, up, imm);
249                    } else {
250                        return new %(vstr_d)s(machInst, vd, vd + 1,
251                                              rn, up, imm);
252                    }
253                }
254            } else if (bits(opcode, 1, 0) == 0x1) {
255                if (single) {
256                    if (up) {
257                        return new %(vldr_us)s(machInst, vd, rn, up, imm);
258                    } else {
259                        return new %(vldr_s)s(machInst, vd, rn, up, imm);
260                    }
261                } else {
262                    if (up) {
263                        return new %(vldr_ud)s(machInst, vd, vd + 1,
264                                               rn, up, imm);
265                    } else {
266                        return new %(vldr_d)s(machInst, vd, vd + 1,
267                                              rn, up, imm);
268                    }
269                }
270            }
271        }
272        return new Unknown(machInst);
273    }
274    ''' % {
275        "vldr_us" : "VLDR_" + loadImmClassName(False, True, False),
276        "vldr_s" : "VLDR_" + loadImmClassName(False, False, False),
277        "vldr_ud" : "VLDR_" + loadDoubleImmClassName(False, True, False),
278        "vldr_d" : "VLDR_" + loadDoubleImmClassName(False, False, False),
279        "vstr_us" : "VSTR_" + storeImmClassName(False, True, False),
280        "vstr_s" : "VSTR_" + storeImmClassName(False, False, False),
281        "vstr_ud" : "VSTR_" + storeDoubleImmClassName(False, True, False),
282        "vstr_d" : "VSTR_" + storeDoubleImmClassName(False, False, False)
283    }
284}};
285
286def format ExtensionRegLoadStore() {{
287    decode_block = '''
288    return decodeExtensionRegLoadStore(machInst);
289    '''
290}};
291
292let {{
293    header_output = '''
294    StaticInstPtr
295    decodeShortFpTransfer(ExtMachInst machInst);
296    '''
297    decoder_output = '''
298    StaticInstPtr
299    decodeShortFpTransfer(ExtMachInst machInst)
300    {
301        const uint32_t l = bits(machInst, 20);
302        const uint32_t c = bits(machInst, 8);
303        const uint32_t a = bits(machInst, 23, 21);
304        const uint32_t b = bits(machInst, 6, 5);
305        if ((machInst.thumb == 1 && bits(machInst, 28) == 1) ||
306            (machInst.thumb == 0 && machInst.condCode == 0xf)) {
307            return new Unknown(machInst);
308        }
309        if (l == 0 && c == 0) {
310            if (a == 0) {
311                const uint32_t vn = (bits(machInst, 19, 16) << 1) |
312                                    bits(machInst, 7);
313                const IntRegIndex rt =
314                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
315                if (bits(machInst, 20) == 1) {
316                    return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
317                } else {
318                    return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
319                }
320            } else if (a == 0x7) {
321                const IntRegIndex rt =
322                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
323                uint32_t specReg = bits(machInst, 19, 16);
324                switch (specReg) {
325                  case 0:
326                    specReg = MISCREG_FPSID;
327                    break;
328                  case 1:
329                    specReg = MISCREG_FPSCR;
330                    break;
331                  case 8:
332                    specReg = MISCREG_FPEXC;
333                    break;
334                  default:
335                    return new Unknown(machInst);
336                }
337                return new Vmsr(machInst, (IntRegIndex)specReg, rt);
338            }
339        } else if (l == 0 && c == 1) {
340            if (bits(a, 2) == 0) {
341                uint32_t vd = (bits(machInst, 7) << 5) |
342                              (bits(machInst, 19, 16) << 1);
343                uint32_t index, size;
344                const IntRegIndex rt =
345                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
346                if (bits(machInst, 22) == 1) {
347                    size = 8;
348                    index = (bits(machInst, 21) << 2) |
349                            bits(machInst, 6, 5);
350                } else if (bits(machInst, 5) == 1) {
351                    size = 16;
352                    index = (bits(machInst, 21) << 1) |
353                            bits(machInst, 6);
354                } else if (bits(machInst, 6) == 0) {
355                    size = 32;
356                    index = bits(machInst, 21);
357                } else {
358                    return new Unknown(machInst);
359                }
360                if (index >= (32 / size)) {
361                    index -= (32 / size);
362                    vd++;
363                }
364                switch (size) {
365                  case 8:
366                    return new VmovCoreRegB(machInst, (IntRegIndex)vd,
367                                            rt, index);
368                  case 16:
369                    return new VmovCoreRegH(machInst, (IntRegIndex)vd,
370                                            rt, index);
371                  case 32:
372                    return new VmovCoreRegW(machInst, (IntRegIndex)vd, rt);
373                }
374            } else if (bits(b, 1) == 0) {
375                // A8-594
376                return new WarnUnimplemented("vdup", machInst);
377            }
378        } else if (l == 1 && c == 0) {
379            if (a == 0) {
380                const uint32_t vn = (bits(machInst, 19, 16) << 1) |
381                                    bits(machInst, 7);
382                const IntRegIndex rt =
383                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
384                if (bits(machInst, 20) == 1) {
385                    return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
386                } else {
387                    return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
388                }
389            } else if (a == 7) {
390                const IntRegIndex rt =
391                    (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
392                uint32_t specReg = bits(machInst, 19, 16);
393                switch (specReg) {
394                  case 0:
395                    specReg = MISCREG_FPSID;
396                    break;
397                  case 1:
398                    specReg = MISCREG_FPSCR;
399                    break;
400                  case 6:
401                    specReg = MISCREG_MVFR1;
402                    break;
403                  case 7:
404                    specReg = MISCREG_MVFR0;
405                    break;
406                  case 8:
407                    specReg = MISCREG_FPEXC;
408                    break;
409                  default:
410                    return new Unknown(machInst);
411                }
412                if (rt == 0xf) {
413                    CPSR cpsrMask = 0;
414                    cpsrMask.n = 1;
415                    cpsrMask.z = 1;
416                    cpsrMask.c = 1;
417                    cpsrMask.v = 1;
418                    return new VmrsApsr(machInst, INTREG_CONDCODES,
419                            (IntRegIndex)specReg, (uint32_t)cpsrMask);
420                } else {
421                    return new Vmrs(machInst, rt, (IntRegIndex)specReg);
422                }
423            }
424        } else {
425            uint32_t vd = (bits(machInst, 7) << 5) |
426                          (bits(machInst, 19, 16) << 1);
427            uint32_t index, size;
428            const IntRegIndex rt =
429                (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
430            const bool u = (bits(machInst, 23) == 1);
431            if (bits(machInst, 22) == 1) {
432                size = 8;
433                index = (bits(machInst, 21) << 2) |
434                        bits(machInst, 6, 5);
435            } else if (bits(machInst, 5) == 1) {
436                size = 16;
437                index = (bits(machInst, 21) << 1) |
438                        bits(machInst, 6);
439            } else if (bits(machInst, 6) == 0 && !u) {
440                size = 32;
441                index = bits(machInst, 21);
442            } else {
443                return new Unknown(machInst);
444            }
445            if (index >= (32 / size)) {
446                index -= (32 / size);
447                vd++;
448            }
449            switch (size) {
450              case 8:
451                if (u) {
452                    return new VmovRegCoreUB(machInst, rt,
453                                             (IntRegIndex)vd, index);
454                } else {
455                    return new VmovRegCoreSB(machInst, rt,
456                                             (IntRegIndex)vd, index);
457                }
458              case 16:
459                if (u) {
460                    return new VmovRegCoreUH(machInst, rt,
461                                             (IntRegIndex)vd, index);
462                } else {
463                    return new VmovRegCoreSH(machInst, rt,
464                                             (IntRegIndex)vd, index);
465                }
466              case 32:
467                return new VmovRegCoreW(machInst, rt, (IntRegIndex)vd);
468            }
469        }
470        return new Unknown(machInst);
471    }
472    '''
473}};
474
475def format ShortFpTransfer() {{
476    decode_block = '''
477    return decodeShortFpTransfer(machInst);
478    '''
479}};
480
481let {{
482    header_output = '''
483    StaticInstPtr
484    decodeVfpData(ExtMachInst machInst);
485    '''
486    decoder_output = '''
487    StaticInstPtr
488    decodeVfpData(ExtMachInst machInst)
489    {
490        const uint32_t opc1 = bits(machInst, 23, 20);
491        const uint32_t opc2 = bits(machInst, 19, 16);
492        const uint32_t opc3 = bits(machInst, 7, 6);
493        //const uint32_t opc4 = bits(machInst, 3, 0);
494        const bool single = (bits(machInst, 8) == 0);
495        // Used to select between vcmp and vcmpe.
496        const bool e = (bits(machInst, 7) == 1);
497        IntRegIndex vd;
498        IntRegIndex vm;
499        IntRegIndex vn;
500        if (single) {
501            vd = (IntRegIndex)(bits(machInst, 22) |
502                    (bits(machInst, 15, 12) << 1));
503            vm = (IntRegIndex)(bits(machInst, 5) |
504                    (bits(machInst, 3, 0) << 1));
505            vn = (IntRegIndex)(bits(machInst, 7) |
506                    (bits(machInst, 19, 16) << 1));
507        } else {
508            vd = (IntRegIndex)((bits(machInst, 22) << 5) |
509                    (bits(machInst, 15, 12) << 1));
510            vm = (IntRegIndex)((bits(machInst, 5) << 5) |
511                    (bits(machInst, 3, 0) << 1));
512            vn = (IntRegIndex)((bits(machInst, 7) << 5) |
513                    (bits(machInst, 19, 16) << 1));
514        }
515        switch (opc1 & 0xb /* 1011 */) {
516          case 0x0:
517            if (bits(machInst, 6) == 0) {
518                if (single) {
519                    return decodeVfpRegRegRegOp<VmlaS>(
520                            machInst, vd, vn, vm, false);
521                } else {
522                    return decodeVfpRegRegRegOp<VmlaD>(
523                            machInst, vd, vn, vm, true);
524                }
525            } else {
526                if (single) {
527                    return decodeVfpRegRegRegOp<VmlsS>(
528                            machInst, vd, vn, vm, false);
529                } else {
530                    return decodeVfpRegRegRegOp<VmlsD>(
531                            machInst, vd, vn, vm, true);
532                }
533            }
534          case 0x1:
535            if (bits(machInst, 6) == 1) {
536                if (single) {
537                    return decodeVfpRegRegRegOp<VnmlaS>(
538                            machInst, vd, vn, vm, false);
539                } else {
540                    return decodeVfpRegRegRegOp<VnmlaD>(
541                            machInst, vd, vn, vm, true);
542                }
543            } else {
544                if (single) {
545                    return decodeVfpRegRegRegOp<VnmlsS>(
546                            machInst, vd, vn, vm, false);
547                } else {
548                    return decodeVfpRegRegRegOp<VnmlsD>(
549                            machInst, vd, vn, vm, true);
550                }
551            }
552          case 0x2:
553            if ((opc3 & 0x1) == 0) {
554                if (single) {
555                    return decodeVfpRegRegRegOp<VmulS>(
556                            machInst, vd, vn, vm, false);
557                } else {
558                    return decodeVfpRegRegRegOp<VmulD>(
559                            machInst, vd, vn, vm, true);
560                }
561            } else {
562                if (single) {
563                    return decodeVfpRegRegRegOp<VnmulS>(
564                            machInst, vd, vn, vm, false);
565                } else {
566                    return decodeVfpRegRegRegOp<VnmulD>(
567                            machInst, vd, vn, vm, true);
568                }
569            }
570          case 0x3:
571            if ((opc3 & 0x1) == 0) {
572                if (single) {
573                    return decodeVfpRegRegRegOp<VaddS>(
574                            machInst, vd, vn, vm, false);
575                } else {
576                    return decodeVfpRegRegRegOp<VaddD>(
577                            machInst, vd, vn, vm, true);
578                }
579            } else {
580                if (single) {
581                    return decodeVfpRegRegRegOp<VsubS>(
582                            machInst, vd, vn, vm, false);
583                } else {
584                    return decodeVfpRegRegRegOp<VsubD>(
585                            machInst, vd, vn, vm, true);
586                }
587            }
588          case 0x8:
589            if ((opc3 & 0x1) == 0) {
590                if (single) {
591                    return decodeVfpRegRegRegOp<VdivS>(
592                            machInst, vd, vn, vm, false);
593                } else {
594                    return decodeVfpRegRegRegOp<VdivD>(
595                            machInst, vd, vn, vm, true);
596                }
597            }
598            break;
599          case 0xb:
600            if ((opc3 & 0x1) == 0) {
601                const uint32_t baseImm =
602                    bits(machInst, 3, 0) | (bits(machInst, 19, 16) << 4);
603                if (single) {
604                    uint32_t imm = vfp_modified_imm(baseImm, false);
605                    return decodeVfpRegImmOp<VmovImmS>(
606                            machInst, vd, imm, false);
607                } else {
608                    uint64_t imm = vfp_modified_imm(baseImm, true);
609                    return decodeVfpRegImmOp<VmovImmD>(
610                            machInst, vd, imm, true);
611                }
612            }
613            switch (opc2) {
614              case 0x0:
615                if (opc3 == 1) {
616                    if (single) {
617                        return decodeVfpRegRegOp<VmovRegS>(
618                                machInst, vd, vm, false);
619                    } else {
620                        return decodeVfpRegRegOp<VmovRegD>(
621                                machInst, vd, vm, true);
622                    }
623                } else {
624                    if (single) {
625                        return decodeVfpRegRegOp<VabsS>(
626                                machInst, vd, vm, false);
627                    } else {
628                        return decodeVfpRegRegOp<VabsD>(
629                                machInst, vd, vm, true);
630                    }
631                }
632              case 0x1:
633                if (opc3 == 1) {
634                    if (single) {
635                        return decodeVfpRegRegOp<VnegS>(
636                                machInst, vd, vm, false);
637                    } else {
638                        return decodeVfpRegRegOp<VnegD>(
639                                machInst, vd, vm, true);
640                    }
641                } else {
642                    if (single) {
643                        return decodeVfpRegRegOp<VsqrtS>(
644                                machInst, vd, vm, false);
645                    } else {
646                        return decodeVfpRegRegOp<VsqrtD>(
647                                machInst, vd, vm, true);
648                    }
649                }
650              case 0x2:
651              case 0x3:
652                // Between half and single precision.
653                return new WarnUnimplemented("vcvtb, vcvtt", machInst);
654              case 0x4:
655                if (single) {
656                    if (e) {
657                        return new VcmpeS(machInst, vd, vm);
658                    } else {
659                        return new VcmpS(machInst, vd, vm);
660                    }
661                } else {
662                    if (e) {
663                        return new VcmpeD(machInst, vd, vm);
664                    } else {
665                        return new VcmpD(machInst, vd, vm);
666                    }
667                }
668              case 0x5:
669                if (single) {
670                    if (e) {
671                        return new VcmpeZeroS(machInst, vd, 0);
672                    } else {
673                        return new VcmpZeroS(machInst, vd, 0);
674                    }
675                } else {
676                    if (e) {
677                        return new VcmpeZeroD(machInst, vd, 0);
678                    } else {
679                        return new VcmpZeroD(machInst, vd, 0);
680                    }
681                }
682              case 0x7:
683                if (opc3 == 0x3) {
684                    if (single) {
685                        vm = (IntRegIndex)(bits(machInst, 5) |
686                                (bits(machInst, 3, 0) << 1));
687                        return new VcvtFpSFpD(machInst, vd, vm);
688                    } else {
689                        vd = (IntRegIndex)(bits(machInst, 22) |
690                                (bits(machInst, 15, 12) << 1));
691                        return new VcvtFpDFpS(machInst, vd, vm);
692                    }
693                }
694                break;
695              case 0x8:
696                if (bits(machInst, 7) == 0) {
697                    if (single) {
698                        return new VcvtUIntFpS(machInst, vd, vm);
699                    } else {
700                        vm = (IntRegIndex)(bits(machInst, 5) |
701                                (bits(machInst, 3, 0) << 1));
702                        return new VcvtUIntFpD(machInst, vd, vm);
703                    }
704                } else {
705                    if (single) {
706                        return new VcvtSIntFpS(machInst, vd, vm);
707                    } else {
708                        vm = (IntRegIndex)(bits(machInst, 5) |
709                                (bits(machInst, 3, 0) << 1));
710                        return new VcvtSIntFpD(machInst, vd, vm);
711                    }
712                }
713              case 0xa:
714                {
715                    const bool half = (bits(machInst, 7) == 0);
716                    const uint32_t imm = bits(machInst, 5) |
717                                         (bits(machInst, 3, 0) << 1);
718                    const uint32_t size =
719                        (bits(machInst, 7) == 0 ? 16 : 32) - imm;
720                    if (single) {
721                        if (half) {
722                            return new VcvtSHFixedFpS(machInst, vd, vd, size);
723                        } else {
724                            return new VcvtSFixedFpS(machInst, vd, vd, size);
725                        }
726                    } else {
727                        if (half) {
728                            return new VcvtSHFixedFpD(machInst, vd, vd, size);
729                        } else {
730                            return new VcvtSFixedFpD(machInst, vd, vd, size);
731                        }
732                    }
733                }
734              case 0xb:
735                {
736                    const bool half = (bits(machInst, 7) == 0);
737                    const uint32_t imm = bits(machInst, 5) |
738                                         (bits(machInst, 3, 0) << 1);
739                    const uint32_t size =
740                        (bits(machInst, 7) == 0 ? 16 : 32) - imm;
741                    if (single) {
742                        if (half) {
743                            return new VcvtUHFixedFpS(machInst, vd, vd, size);
744                        } else {
745                            return new VcvtUFixedFpS(machInst, vd, vd, size);
746                        }
747                    } else {
748                        if (half) {
749                            return new VcvtUHFixedFpD(machInst, vd, vd, size);
750                        } else {
751                            return new VcvtUFixedFpD(machInst, vd, vd, size);
752                        }
753                    }
754                }
755              case 0xc:
756                if (bits(machInst, 7) == 0) {
757                    if (single) {
758                        return new VcvtFpUIntSR(machInst, vd, vm);
759                    } else {
760                        vd = (IntRegIndex)(bits(machInst, 22) |
761                                (bits(machInst, 15, 12) << 1));
762                        return new VcvtFpUIntDR(machInst, vd, vm);
763                    }
764                } else {
765                    if (single) {
766                        return new VcvtFpUIntS(machInst, vd, vm);
767                    } else {
768                        vd = (IntRegIndex)(bits(machInst, 22) |
769                                (bits(machInst, 15, 12) << 1));
770                        return new VcvtFpUIntD(machInst, vd, vm);
771                    }
772                }
773              case 0xd:
774                if (bits(machInst, 7) == 0) {
775                    if (single) {
776                        return new VcvtFpSIntSR(machInst, vd, vm);
777                    } else {
778                        vd = (IntRegIndex)(bits(machInst, 22) |
779                                (bits(machInst, 15, 12) << 1));
780                        return new VcvtFpSIntDR(machInst, vd, vm);
781                    }
782                } else {
783                    if (single) {
784                        return new VcvtFpSIntS(machInst, vd, vm);
785                    } else {
786                        vd = (IntRegIndex)(bits(machInst, 22) |
787                                (bits(machInst, 15, 12) << 1));
788                        return new VcvtFpSIntD(machInst, vd, vm);
789                    }
790                }
791              case 0xe:
792                {
793                    const bool half = (bits(machInst, 7) == 0);
794                    const uint32_t imm = bits(machInst, 5) |
795                                         (bits(machInst, 3, 0) << 1);
796                    const uint32_t size =
797                        (bits(machInst, 7) == 0 ? 16 : 32) - imm;
798                    if (single) {
799                        if (half) {
800                            return new VcvtFpSHFixedS(machInst, vd, vd, size);
801                        } else {
802                            return new VcvtFpSFixedS(machInst, vd, vd, size);
803                        }
804                    } else {
805                        if (half) {
806                            return new VcvtFpSHFixedD(machInst, vd, vd, size);
807                        } else {
808                            return new VcvtFpSFixedD(machInst, vd, vd, size);
809                        }
810                    }
811                }
812              case 0xf:
813                {
814                    const bool half = (bits(machInst, 7) == 0);
815                    const uint32_t imm = bits(machInst, 5) |
816                                         (bits(machInst, 3, 0) << 1);
817                    const uint32_t size =
818                        (bits(machInst, 7) == 0 ? 16 : 32) - imm;
819                    if (single) {
820                        if (half) {
821                            return new VcvtFpUHFixedS(machInst, vd, vd, size);
822                        } else {
823                            return new VcvtFpUFixedS(machInst, vd, vd, size);
824                        }
825                    } else {
826                        if (half) {
827                            return new VcvtFpUHFixedD(machInst, vd, vd, size);
828                        } else {
829                            return new VcvtFpUFixedD(machInst, vd, vd, size);
830                        }
831                    }
832                }
833            }
834            break;
835        }
836        return new Unknown(machInst);
837    }
838    '''
839}};
840
841def format VfpData() {{
842    decode_block = '''
843    return decodeVfpData(machInst);
844    '''
845}};
846