isa.cc revision 14133:f3e7e7c3803d
1/*
2 * Copyright (c) 2010-2019 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 *          Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "arch/arm/tlbi_op.hh"
46#include "cpu/base.hh"
47#include "cpu/checker/cpu.hh"
48#include "debug/Arm.hh"
49#include "debug/MiscRegs.hh"
50#include "dev/arm/generic_timer.hh"
51#include "dev/arm/gic_v3.hh"
52#include "dev/arm/gic_v3_cpu_interface.hh"
53#include "params/ArmISA.hh"
54#include "sim/faults.hh"
55#include "sim/stat_control.hh"
56#include "sim/system.hh"
57
58namespace ArmISA
59{
60
61ISA::ISA(Params *p)
62    : SimObject(p),
63      system(NULL),
64      _decoderFlavour(p->decoderFlavour),
65      _vecRegRenameMode(Enums::Full),
66      pmu(p->pmu),
67      haveGICv3CPUInterface(false),
68      impdefAsNop(p->impdef_nop),
69      afterStartup(false)
70{
71    miscRegs[MISCREG_SCTLR_RST] = 0;
72
73    // Hook up a dummy device if we haven't been configured with a
74    // real PMU. By using a dummy device, we don't need to check that
75    // the PMU exist every time we try to access a PMU register.
76    if (!pmu)
77        pmu = &dummyDevice;
78
79    // Give all ISA devices a pointer to this ISA
80    pmu->setISA(this);
81
82    system = dynamic_cast<ArmSystem *>(p->system);
83
84    // Cache system-level properties
85    if (FullSystem && system) {
86        highestELIs64 = system->highestELIs64();
87        haveSecurity = system->haveSecurity();
88        haveLPAE = system->haveLPAE();
89        haveCrypto = system->haveCrypto();
90        haveVirtualization = system->haveVirtualization();
91        haveLargeAsid64 = system->haveLargeAsid64();
92        physAddrRange = system->physAddrRange();
93        haveSVE = system->haveSVE();
94        havePAN = system->havePAN();
95        sveVL = system->sveVL();
96        haveLSE = system->haveLSE();
97    } else {
98        highestELIs64 = true; // ArmSystem::highestELIs64 does the same
99        haveSecurity = haveLPAE = haveVirtualization = false;
100        haveCrypto = true;
101        haveLargeAsid64 = false;
102        physAddrRange = 32;  // dummy value
103        haveSVE = true;
104        havePAN = false;
105        sveVL = p->sve_vl_se;
106        haveLSE = true;
107    }
108
109    // Initial rename mode depends on highestEL
110    const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) =
111        highestELIs64 ? Enums::Full : Enums::Elem;
112
113    initializeMiscRegMetadata();
114    preUnflattenMiscReg();
115
116    clear();
117}
118
119std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
120
121const ArmISAParams *
122ISA::params() const
123{
124    return dynamic_cast<const Params *>(_params);
125}
126
127void
128ISA::clear()
129{
130    const Params *p(params());
131
132    SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
133    memset(miscRegs, 0, sizeof(miscRegs));
134
135    initID32(p);
136
137    // We always initialize AArch64 ID registers even
138    // if we are in AArch32. This is done since if we
139    // are in SE mode we don't know if our ArmProcess is
140    // AArch32 or AArch64
141    initID64(p);
142
143    // Start with an event in the mailbox
144    miscRegs[MISCREG_SEV_MAILBOX] = 1;
145
146    // Separate Instruction and Data TLBs
147    miscRegs[MISCREG_TLBTR] = 1;
148
149    MVFR0 mvfr0 = 0;
150    mvfr0.advSimdRegisters = 2;
151    mvfr0.singlePrecision = 2;
152    mvfr0.doublePrecision = 2;
153    mvfr0.vfpExceptionTrapping = 0;
154    mvfr0.divide = 1;
155    mvfr0.squareRoot = 1;
156    mvfr0.shortVectors = 1;
157    mvfr0.roundingModes = 1;
158    miscRegs[MISCREG_MVFR0] = mvfr0;
159
160    MVFR1 mvfr1 = 0;
161    mvfr1.flushToZero = 1;
162    mvfr1.defaultNaN = 1;
163    mvfr1.advSimdLoadStore = 1;
164    mvfr1.advSimdInteger = 1;
165    mvfr1.advSimdSinglePrecision = 1;
166    mvfr1.advSimdHalfPrecision = 1;
167    mvfr1.vfpHalfPrecision = 1;
168    miscRegs[MISCREG_MVFR1] = mvfr1;
169
170    // Reset values of PRRR and NMRR are implementation dependent
171
172    // @todo: PRRR and NMRR in secure state?
173    miscRegs[MISCREG_PRRR_NS] =
174        (1 << 19) | // 19
175        (0 << 18) | // 18
176        (0 << 17) | // 17
177        (1 << 16) | // 16
178        (2 << 14) | // 15:14
179        (0 << 12) | // 13:12
180        (2 << 10) | // 11:10
181        (2 << 8)  | // 9:8
182        (2 << 6)  | // 7:6
183        (2 << 4)  | // 5:4
184        (1 << 2)  | // 3:2
185        0;          // 1:0
186
187    miscRegs[MISCREG_NMRR_NS] =
188        (1 << 30) | // 31:30
189        (0 << 26) | // 27:26
190        (0 << 24) | // 25:24
191        (3 << 22) | // 23:22
192        (2 << 20) | // 21:20
193        (0 << 18) | // 19:18
194        (0 << 16) | // 17:16
195        (1 << 14) | // 15:14
196        (0 << 12) | // 13:12
197        (2 << 10) | // 11:10
198        (0 << 8)  | // 9:8
199        (3 << 6)  | // 7:6
200        (2 << 4)  | // 5:4
201        (0 << 2)  | // 3:2
202        0;          // 1:0
203
204    if (FullSystem && system->highestELIs64()) {
205        // Initialize AArch64 state
206        clear64(p);
207        return;
208    }
209
210    // Initialize AArch32 state...
211    clear32(p, sctlr_rst);
212}
213
214void
215ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst)
216{
217    CPSR cpsr = 0;
218    cpsr.mode = MODE_USER;
219
220    if (FullSystem) {
221        miscRegs[MISCREG_MVBAR] = system->resetAddr();
222    }
223
224    miscRegs[MISCREG_CPSR] = cpsr;
225    updateRegMap(cpsr);
226
227    SCTLR sctlr = 0;
228    sctlr.te = (bool) sctlr_rst.te;
229    sctlr.nmfi = (bool) sctlr_rst.nmfi;
230    sctlr.v = (bool) sctlr_rst.v;
231    sctlr.u = 1;
232    sctlr.xp = 1;
233    sctlr.rao2 = 1;
234    sctlr.rao3 = 1;
235    sctlr.rao4 = 0xf;  // SCTLR[6:3]
236    sctlr.uci = 1;
237    sctlr.dze = 1;
238    miscRegs[MISCREG_SCTLR_NS] = sctlr;
239    miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
240    miscRegs[MISCREG_HCPTR] = 0;
241
242    miscRegs[MISCREG_CPACR] = 0;
243
244    miscRegs[MISCREG_FPSID] = p->fpsid;
245
246    if (haveLPAE) {
247        TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
248        ttbcr.eae = 0;
249        miscRegs[MISCREG_TTBCR_NS] = ttbcr;
250        // Enforce consistency with system-level settings
251        miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
252    }
253
254    if (haveSecurity) {
255        miscRegs[MISCREG_SCTLR_S] = sctlr;
256        miscRegs[MISCREG_SCR] = 0;
257        miscRegs[MISCREG_VBAR_S] = 0;
258    } else {
259        // we're always non-secure
260        miscRegs[MISCREG_SCR] = 1;
261    }
262
263    //XXX We need to initialize the rest of the state.
264}
265
266void
267ISA::clear64(const ArmISAParams *p)
268{
269    CPSR cpsr = 0;
270    Addr rvbar = system->resetAddr();
271    switch (system->highestEL()) {
272        // Set initial EL to highest implemented EL using associated stack
273        // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
274        // value
275      case EL3:
276        cpsr.mode = MODE_EL3H;
277        miscRegs[MISCREG_RVBAR_EL3] = rvbar;
278        break;
279      case EL2:
280        cpsr.mode = MODE_EL2H;
281        miscRegs[MISCREG_RVBAR_EL2] = rvbar;
282        break;
283      case EL1:
284        cpsr.mode = MODE_EL1H;
285        miscRegs[MISCREG_RVBAR_EL1] = rvbar;
286        break;
287      default:
288        panic("Invalid highest implemented exception level");
289        break;
290    }
291
292    // Initialize rest of CPSR
293    cpsr.daif = 0xf;  // Mask all interrupts
294    cpsr.ss = 0;
295    cpsr.il = 0;
296    miscRegs[MISCREG_CPSR] = cpsr;
297    updateRegMap(cpsr);
298
299    // Initialize other control registers
300    miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
301    if (haveSecurity) {
302        miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
303        miscRegs[MISCREG_SCR_EL3]   = 0x00000030;  // RES1 fields
304    } else if (haveVirtualization) {
305        // also  MISCREG_SCTLR_EL2 (by mapping)
306        miscRegs[MISCREG_HSCTLR] = 0x30c50830;
307    } else {
308        // also  MISCREG_SCTLR_EL1 (by mapping)
309        miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
310        // Always non-secure
311        miscRegs[MISCREG_SCR_EL3] = 1;
312    }
313}
314
315void
316ISA::initID32(const ArmISAParams *p)
317{
318    // Initialize configurable default values
319    miscRegs[MISCREG_MIDR] = p->midr;
320    miscRegs[MISCREG_MIDR_EL1] = p->midr;
321    miscRegs[MISCREG_VPIDR] = p->midr;
322
323    miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
324    miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
325    miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
326    miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
327    miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
328    miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
329
330    miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
331    miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
332    miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
333    miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
334
335    miscRegs[MISCREG_ID_ISAR5] = insertBits(
336        miscRegs[MISCREG_ID_ISAR5], 19, 4,
337        haveCrypto ? 0x1112 : 0x0);
338}
339
340void
341ISA::initID64(const ArmISAParams *p)
342{
343    // Initialize configurable id registers
344    miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
345    miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
346    miscRegs[MISCREG_ID_AA64DFR0_EL1] =
347        (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
348        (p->pmu ?             0x0000000000000100ULL : 0); // Enable PMUv3
349
350    miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
351    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
352    miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
353    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
354    miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
355    miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1;
356
357    miscRegs[MISCREG_ID_DFR0_EL1] =
358        (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
359
360    miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
361
362    // SVE
363    miscRegs[MISCREG_ID_AA64ZFR0_EL1] = 0;  // SVEver 0
364    if (haveSecurity) {
365        miscRegs[MISCREG_ZCR_EL3] = sveVL - 1;
366    } else if (haveVirtualization) {
367        miscRegs[MISCREG_ZCR_EL2] = sveVL - 1;
368    } else {
369        miscRegs[MISCREG_ZCR_EL1] = sveVL - 1;
370    }
371
372    // Enforce consistency with system-level settings...
373
374    // EL3
375    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
376        miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
377        haveSecurity ? 0x2 : 0x0);
378    // EL2
379    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
380        miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
381        haveVirtualization ? 0x2 : 0x0);
382    // SVE
383    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
384        miscRegs[MISCREG_ID_AA64PFR0_EL1], 35, 32,
385        haveSVE ? 0x1 : 0x0);
386    // Large ASID support
387    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
388        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
389        haveLargeAsid64 ? 0x2 : 0x0);
390    // Physical address size
391    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
392        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
393        encodePhysAddrRange64(physAddrRange));
394    // Crypto
395    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
396        miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4,
397        haveCrypto ? 0x1112 : 0x0);
398    // LSE
399    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
400        miscRegs[MISCREG_ID_AA64ISAR0_EL1], 23, 20,
401        haveLSE ? 0x2 : 0x0);
402    // PAN
403    miscRegs[MISCREG_ID_AA64MMFR1_EL1] = insertBits(
404        miscRegs[MISCREG_ID_AA64MMFR1_EL1], 23, 20,
405        havePAN ? 0x1 : 0x0);
406}
407
408void
409ISA::startup(ThreadContext *tc)
410{
411    pmu->setThreadContext(tc);
412
413    if (system) {
414        Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC());
415        if (gicv3) {
416            haveGICv3CPUInterface = true;
417            gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId()));
418            gicv3CpuInterface->setISA(this);
419            gicv3CpuInterface->setThreadContext(tc);
420        }
421    }
422
423    afterStartup = true;
424}
425
426
427RegVal
428ISA::readMiscRegNoEffect(int misc_reg) const
429{
430    assert(misc_reg < NumMiscRegs);
431
432    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
433    const auto &map = getMiscIndices(misc_reg);
434    int lower = map.first, upper = map.second;
435    // NB!: apply architectural masks according to desired register,
436    // despite possibly getting value from different (mapped) register.
437    auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
438                                          |(miscRegs[upper] << 32));
439    if (val & reg.res0()) {
440        DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
441                miscRegName[misc_reg], val & reg.res0());
442    }
443    if ((val & reg.res1()) != reg.res1()) {
444        DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
445                miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
446    }
447    return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
448}
449
450
451RegVal
452ISA::readMiscReg(int misc_reg, ThreadContext *tc)
453{
454    CPSR cpsr = 0;
455    PCState pc = 0;
456    SCR scr = 0;
457
458    if (misc_reg == MISCREG_CPSR) {
459        cpsr = miscRegs[misc_reg];
460        pc = tc->pcState();
461        cpsr.j = pc.jazelle() ? 1 : 0;
462        cpsr.t = pc.thumb() ? 1 : 0;
463        return cpsr;
464    }
465
466#ifndef NDEBUG
467    if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
468        if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
469            warn("Unimplemented system register %s read.\n",
470                 miscRegName[misc_reg]);
471        else
472            panic("Unimplemented system register %s read.\n",
473                  miscRegName[misc_reg]);
474    }
475#endif
476
477    switch (unflattenMiscReg(misc_reg)) {
478      case MISCREG_HCR:
479        {
480            if (!haveVirtualization)
481                return 0;
482            else
483                return readMiscRegNoEffect(MISCREG_HCR);
484        }
485      case MISCREG_CPACR:
486        {
487            const uint32_t ones = (uint32_t)(-1);
488            CPACR cpacrMask = 0;
489            // Only cp10, cp11, and ase are implemented, nothing else should
490            // be readable? (straight copy from the write code)
491            cpacrMask.cp10 = ones;
492            cpacrMask.cp11 = ones;
493            cpacrMask.asedis = ones;
494
495            // Security Extensions may limit the readability of CPACR
496            if (haveSecurity) {
497                scr = readMiscRegNoEffect(MISCREG_SCR);
498                cpsr = readMiscRegNoEffect(MISCREG_CPSR);
499                if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
500                    NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
501                    // NB: Skipping the full loop, here
502                    if (!nsacr.cp10) cpacrMask.cp10 = 0;
503                    if (!nsacr.cp11) cpacrMask.cp11 = 0;
504                }
505            }
506            RegVal val = readMiscRegNoEffect(MISCREG_CPACR);
507            val &= cpacrMask;
508            DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
509                    miscRegName[misc_reg], val);
510            return val;
511        }
512      case MISCREG_MPIDR:
513      case MISCREG_MPIDR_EL1:
514        return readMPIDR(system, tc);
515      case MISCREG_VMPIDR:
516      case MISCREG_VMPIDR_EL2:
517        // top bit defined as RES1
518        return readMiscRegNoEffect(misc_reg) | 0x80000000;
519      case MISCREG_ID_AFR0: // not implemented, so alias MIDR
520      case MISCREG_REVIDR:  // not implemented, so alias MIDR
521      case MISCREG_MIDR:
522        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
523        scr  = readMiscRegNoEffect(MISCREG_SCR);
524        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
525            return readMiscRegNoEffect(misc_reg);
526        } else {
527            return readMiscRegNoEffect(MISCREG_VPIDR);
528        }
529        break;
530      case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
531      case MISCREG_JMCR:  // Jazelle trivial implementation, RAZ/WI
532      case MISCREG_JIDR:  // Jazelle trivial implementation, RAZ/WI
533      case MISCREG_AIDR:  // AUX ID set to 0
534      case MISCREG_TCMTR: // No TCM's
535        return 0;
536
537      case MISCREG_CLIDR:
538        warn_once("The clidr register always reports 0 caches.\n");
539        warn_once("clidr LoUIS field of 0b001 to match current "
540                  "ARM implementations.\n");
541        return 0x00200000;
542      case MISCREG_CCSIDR:
543        warn_once("The ccsidr register isn't implemented and "
544                "always reads as 0.\n");
545        break;
546      case MISCREG_CTR:                 // AArch32, ARMv7, top bit set
547      case MISCREG_CTR_EL0:             // AArch64
548        {
549            //all caches have the same line size in gem5
550            //4 byte words in ARM
551            unsigned lineSizeWords =
552                tc->getSystemPtr()->cacheLineSize() / 4;
553            unsigned log2LineSizeWords = 0;
554
555            while (lineSizeWords >>= 1) {
556                ++log2LineSizeWords;
557            }
558
559            CTR ctr = 0;
560            //log2 of minimun i-cache line size (words)
561            ctr.iCacheLineSize = log2LineSizeWords;
562            //b11 - gem5 uses pipt
563            ctr.l1IndexPolicy = 0x3;
564            //log2 of minimum d-cache line size (words)
565            ctr.dCacheLineSize = log2LineSizeWords;
566            //log2 of max reservation size (words)
567            ctr.erg = log2LineSizeWords;
568            //log2 of max writeback size (words)
569            ctr.cwg = log2LineSizeWords;
570            //b100 - gem5 format is ARMv7
571            ctr.format = 0x4;
572
573            return ctr;
574        }
575      case MISCREG_ACTLR:
576        warn("Not doing anything for miscreg ACTLR\n");
577        break;
578
579      case MISCREG_PMXEVTYPER_PMCCFILTR:
580      case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
581      case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
582      case MISCREG_PMCR ... MISCREG_PMOVSSET:
583        return pmu->readMiscReg(misc_reg);
584
585      case MISCREG_CPSR_Q:
586        panic("shouldn't be reading this register seperately\n");
587      case MISCREG_FPSCR_QC:
588        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
589      case MISCREG_FPSCR_EXC:
590        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
591      case MISCREG_FPSR:
592        {
593            const uint32_t ones = (uint32_t)(-1);
594            FPSCR fpscrMask = 0;
595            fpscrMask.ioc = ones;
596            fpscrMask.dzc = ones;
597            fpscrMask.ofc = ones;
598            fpscrMask.ufc = ones;
599            fpscrMask.ixc = ones;
600            fpscrMask.idc = ones;
601            fpscrMask.qc = ones;
602            fpscrMask.v = ones;
603            fpscrMask.c = ones;
604            fpscrMask.z = ones;
605            fpscrMask.n = ones;
606            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
607        }
608      case MISCREG_FPCR:
609        {
610            const uint32_t ones = (uint32_t)(-1);
611            FPSCR fpscrMask  = 0;
612            fpscrMask.len    = ones;
613            fpscrMask.fz16   = ones;
614            fpscrMask.stride = ones;
615            fpscrMask.rMode  = ones;
616            fpscrMask.fz     = ones;
617            fpscrMask.dn     = ones;
618            fpscrMask.ahp    = ones;
619            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
620        }
621      case MISCREG_NZCV:
622        {
623            CPSR cpsr = 0;
624            cpsr.nz   = tc->readCCReg(CCREG_NZ);
625            cpsr.c    = tc->readCCReg(CCREG_C);
626            cpsr.v    = tc->readCCReg(CCREG_V);
627            return cpsr;
628        }
629      case MISCREG_DAIF:
630        {
631            CPSR cpsr = 0;
632            cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
633            return cpsr;
634        }
635      case MISCREG_SP_EL0:
636        {
637            return tc->readIntReg(INTREG_SP0);
638        }
639      case MISCREG_SP_EL1:
640        {
641            return tc->readIntReg(INTREG_SP1);
642        }
643      case MISCREG_SP_EL2:
644        {
645            return tc->readIntReg(INTREG_SP2);
646        }
647      case MISCREG_SPSEL:
648        {
649            return miscRegs[MISCREG_CPSR] & 0x1;
650        }
651      case MISCREG_CURRENTEL:
652        {
653            return miscRegs[MISCREG_CPSR] & 0xc;
654        }
655      case MISCREG_PAN:
656        {
657            return miscRegs[MISCREG_CPSR] & 0x400000;
658        }
659      case MISCREG_L2CTLR:
660        {
661            // mostly unimplemented, just set NumCPUs field from sim and return
662            L2CTLR l2ctlr = 0;
663            // b00:1CPU to b11:4CPUs
664            l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
665            return l2ctlr;
666        }
667      case MISCREG_DBGDIDR:
668        /* For now just implement the version number.
669         * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
670         */
671        return 0x5 << 16;
672      case MISCREG_DBGDSCRint:
673        return 0;
674      case MISCREG_ISR:
675        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
676            readMiscRegNoEffect(MISCREG_HCR),
677            readMiscRegNoEffect(MISCREG_CPSR),
678            readMiscRegNoEffect(MISCREG_SCR));
679      case MISCREG_ISR_EL1:
680        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
681            readMiscRegNoEffect(MISCREG_HCR_EL2),
682            readMiscRegNoEffect(MISCREG_CPSR),
683            readMiscRegNoEffect(MISCREG_SCR_EL3));
684      case MISCREG_DCZID_EL0:
685        return 0x04;  // DC ZVA clear 64-byte chunks
686      case MISCREG_HCPTR:
687        {
688            RegVal val = readMiscRegNoEffect(misc_reg);
689            // The trap bit associated with CP14 is defined as RAZ
690            val &= ~(1 << 14);
691            // If a CP bit in NSACR is 0 then the corresponding bit in
692            // HCPTR is RAO/WI
693            bool secure_lookup = haveSecurity &&
694                inSecureState(readMiscRegNoEffect(MISCREG_SCR),
695                              readMiscRegNoEffect(MISCREG_CPSR));
696            if (!secure_lookup) {
697                RegVal mask = readMiscRegNoEffect(MISCREG_NSACR);
698                val |= (mask ^ 0x7FFF) & 0xBFFF;
699            }
700            // Set the bits for unimplemented coprocessors to RAO/WI
701            val |= 0x33FF;
702            return (val);
703        }
704      case MISCREG_HDFAR: // alias for secure DFAR
705        return readMiscRegNoEffect(MISCREG_DFAR_S);
706      case MISCREG_HIFAR: // alias for secure IFAR
707        return readMiscRegNoEffect(MISCREG_IFAR_S);
708
709      case MISCREG_ID_PFR0:
710        // !ThumbEE | !Jazelle | Thumb | ARM
711        return 0x00000031;
712      case MISCREG_ID_PFR1:
713        {   // Timer | Virti | !M Profile | TrustZone | ARMv4
714            bool haveTimer = (system->getGenericTimer() != NULL);
715            return 0x00000001
716                 | (haveSecurity       ? 0x00000010 : 0x0)
717                 | (haveVirtualization ? 0x00001000 : 0x0)
718                 | (haveTimer          ? 0x00010000 : 0x0);
719        }
720      case MISCREG_ID_AA64PFR0_EL1:
721        return 0x0000000000000002 | // AArch{64,32} supported at EL0
722               0x0000000000000020                               | // EL1
723               (haveVirtualization    ? 0x0000000000000200 : 0) | // EL2
724               (haveSecurity          ? 0x0000000000002000 : 0) | // EL3
725               (haveSVE               ? 0x0000000100000000 : 0) | // SVE
726               (haveGICv3CPUInterface ? 0x0000000001000000 : 0);
727      case MISCREG_ID_AA64PFR1_EL1:
728        return 0; // bits [63:0] RES0 (reserved for future use)
729
730      // Generic Timer registers
731      case MISCREG_CNTHV_CTL_EL2:
732      case MISCREG_CNTHV_CVAL_EL2:
733      case MISCREG_CNTHV_TVAL_EL2:
734      case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
735      case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
736      case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
737      case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
738        return getGenericTimer(tc).readMiscReg(misc_reg);
739
740      case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
741      case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
742        return getGICv3CPUInterface(tc).readMiscReg(misc_reg);
743
744      default:
745        break;
746
747    }
748    return readMiscRegNoEffect(misc_reg);
749}
750
751void
752ISA::setMiscRegNoEffect(int misc_reg, RegVal val)
753{
754    assert(misc_reg < NumMiscRegs);
755
756    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
757    const auto &map = getMiscIndices(misc_reg);
758    int lower = map.first, upper = map.second;
759
760    auto v = (val & ~reg.wi()) | reg.rao();
761    if (upper > 0) {
762        miscRegs[lower] = bits(v, 31, 0);
763        miscRegs[upper] = bits(v, 63, 32);
764        DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
765                misc_reg, lower, upper, v);
766    } else {
767        miscRegs[lower] = v;
768        DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
769                misc_reg, lower, v);
770    }
771}
772
773void
774ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc)
775{
776
777    RegVal newVal = val;
778    bool secure_lookup;
779    SCR scr;
780
781    if (misc_reg == MISCREG_CPSR) {
782        updateRegMap(val);
783
784
785        CPSR old_cpsr = miscRegs[MISCREG_CPSR];
786        int old_mode = old_cpsr.mode;
787        CPSR cpsr = val;
788        if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
789            getITBPtr(tc)->invalidateMiscReg();
790            getDTBPtr(tc)->invalidateMiscReg();
791        }
792
793        DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
794                miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
795        PCState pc = tc->pcState();
796        pc.nextThumb(cpsr.t);
797        pc.nextJazelle(cpsr.j);
798        pc.illegalExec(cpsr.il == 1);
799
800        tc->getDecoderPtr()->setSveLen((getCurSveVecLenInBits(tc) >> 7) - 1);
801
802        // Follow slightly different semantics if a CheckerCPU object
803        // is connected
804        CheckerCPU *checker = tc->getCheckerCpuPtr();
805        if (checker) {
806            tc->pcStateNoRecord(pc);
807        } else {
808            tc->pcState(pc);
809        }
810    } else {
811#ifndef NDEBUG
812        if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
813            if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
814                warn("Unimplemented system register %s write with %#x.\n",
815                    miscRegName[misc_reg], val);
816            else
817                panic("Unimplemented system register %s write with %#x.\n",
818                    miscRegName[misc_reg], val);
819        }
820#endif
821        switch (unflattenMiscReg(misc_reg)) {
822          case MISCREG_CPACR:
823            {
824
825                const uint32_t ones = (uint32_t)(-1);
826                CPACR cpacrMask = 0;
827                // Only cp10, cp11, and ase are implemented, nothing else should
828                // be writable
829                cpacrMask.cp10 = ones;
830                cpacrMask.cp11 = ones;
831                cpacrMask.asedis = ones;
832
833                // Security Extensions may limit the writability of CPACR
834                if (haveSecurity) {
835                    scr = readMiscRegNoEffect(MISCREG_SCR);
836                    CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
837                    if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
838                        NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
839                        // NB: Skipping the full loop, here
840                        if (!nsacr.cp10) cpacrMask.cp10 = 0;
841                        if (!nsacr.cp11) cpacrMask.cp11 = 0;
842                    }
843                }
844
845                RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR);
846                newVal &= cpacrMask;
847                newVal |= old_val & ~cpacrMask;
848                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
849                        miscRegName[misc_reg], newVal);
850            }
851            break;
852          case MISCREG_CPACR_EL1:
853            {
854                const uint32_t ones = (uint32_t)(-1);
855                CPACR cpacrMask = 0;
856                cpacrMask.tta = ones;
857                cpacrMask.fpen = ones;
858                if (haveSVE) {
859                    cpacrMask.zen = ones;
860                }
861                newVal &= cpacrMask;
862                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
863                        miscRegName[misc_reg], newVal);
864            }
865            break;
866          case MISCREG_CPTR_EL2:
867            {
868                const uint32_t ones = (uint32_t)(-1);
869                CPTR cptrMask = 0;
870                cptrMask.tcpac = ones;
871                cptrMask.tta = ones;
872                cptrMask.tfp = ones;
873                if (haveSVE) {
874                    cptrMask.tz = ones;
875                }
876                newVal &= cptrMask;
877                cptrMask = 0;
878                cptrMask.res1_13_12_el2 = ones;
879                cptrMask.res1_7_0_el2 = ones;
880                if (!haveSVE) {
881                    cptrMask.res1_8_el2 = ones;
882                }
883                cptrMask.res1_9_el2 = ones;
884                newVal |= cptrMask;
885                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
886                        miscRegName[misc_reg], newVal);
887            }
888            break;
889          case MISCREG_CPTR_EL3:
890            {
891                const uint32_t ones = (uint32_t)(-1);
892                CPTR cptrMask = 0;
893                cptrMask.tcpac = ones;
894                cptrMask.tta = ones;
895                cptrMask.tfp = ones;
896                if (haveSVE) {
897                    cptrMask.ez = ones;
898                }
899                newVal &= cptrMask;
900                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
901                        miscRegName[misc_reg], newVal);
902            }
903            break;
904          case MISCREG_CSSELR:
905            warn_once("The csselr register isn't implemented.\n");
906            return;
907
908          case MISCREG_DC_ZVA_Xt:
909            warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
910            return;
911
912          case MISCREG_FPSCR:
913            {
914                const uint32_t ones = (uint32_t)(-1);
915                FPSCR fpscrMask = 0;
916                fpscrMask.ioc = ones;
917                fpscrMask.dzc = ones;
918                fpscrMask.ofc = ones;
919                fpscrMask.ufc = ones;
920                fpscrMask.ixc = ones;
921                fpscrMask.idc = ones;
922                fpscrMask.ioe = ones;
923                fpscrMask.dze = ones;
924                fpscrMask.ofe = ones;
925                fpscrMask.ufe = ones;
926                fpscrMask.ixe = ones;
927                fpscrMask.ide = ones;
928                fpscrMask.len = ones;
929                fpscrMask.fz16 = ones;
930                fpscrMask.stride = ones;
931                fpscrMask.rMode = ones;
932                fpscrMask.fz = ones;
933                fpscrMask.dn = ones;
934                fpscrMask.ahp = ones;
935                fpscrMask.qc = ones;
936                fpscrMask.v = ones;
937                fpscrMask.c = ones;
938                fpscrMask.z = ones;
939                fpscrMask.n = ones;
940                newVal = (newVal & (uint32_t)fpscrMask) |
941                         (readMiscRegNoEffect(MISCREG_FPSCR) &
942                          ~(uint32_t)fpscrMask);
943                tc->getDecoderPtr()->setContext(newVal);
944            }
945            break;
946          case MISCREG_FPSR:
947            {
948                const uint32_t ones = (uint32_t)(-1);
949                FPSCR fpscrMask = 0;
950                fpscrMask.ioc = ones;
951                fpscrMask.dzc = ones;
952                fpscrMask.ofc = ones;
953                fpscrMask.ufc = ones;
954                fpscrMask.ixc = ones;
955                fpscrMask.idc = ones;
956                fpscrMask.qc = ones;
957                fpscrMask.v = ones;
958                fpscrMask.c = ones;
959                fpscrMask.z = ones;
960                fpscrMask.n = ones;
961                newVal = (newVal & (uint32_t)fpscrMask) |
962                         (readMiscRegNoEffect(MISCREG_FPSCR) &
963                          ~(uint32_t)fpscrMask);
964                misc_reg = MISCREG_FPSCR;
965            }
966            break;
967          case MISCREG_FPCR:
968            {
969                const uint32_t ones = (uint32_t)(-1);
970                FPSCR fpscrMask  = 0;
971                fpscrMask.len    = ones;
972                fpscrMask.fz16   = ones;
973                fpscrMask.stride = ones;
974                fpscrMask.rMode  = ones;
975                fpscrMask.fz     = ones;
976                fpscrMask.dn     = ones;
977                fpscrMask.ahp    = ones;
978                newVal = (newVal & (uint32_t)fpscrMask) |
979                         (readMiscRegNoEffect(MISCREG_FPSCR) &
980                          ~(uint32_t)fpscrMask);
981                misc_reg = MISCREG_FPSCR;
982            }
983            break;
984          case MISCREG_CPSR_Q:
985            {
986                assert(!(newVal & ~CpsrMaskQ));
987                newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
988                misc_reg = MISCREG_CPSR;
989            }
990            break;
991          case MISCREG_FPSCR_QC:
992            {
993                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
994                         (newVal & FpscrQcMask);
995                misc_reg = MISCREG_FPSCR;
996            }
997            break;
998          case MISCREG_FPSCR_EXC:
999            {
1000                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1001                         (newVal & FpscrExcMask);
1002                misc_reg = MISCREG_FPSCR;
1003            }
1004            break;
1005          case MISCREG_FPEXC:
1006            {
1007                // vfpv3 architecture, section B.6.1 of DDI04068
1008                // bit 29 - valid only if fpexc[31] is 0
1009                const uint32_t fpexcMask = 0x60000000;
1010                newVal = (newVal & fpexcMask) |
1011                         (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1012            }
1013            break;
1014          case MISCREG_HCR:
1015            {
1016                if (!haveVirtualization)
1017                    return;
1018            }
1019            break;
1020          case MISCREG_IFSR:
1021            {
1022                // ARM ARM (ARM DDI 0406C.b) B4.1.96
1023                const uint32_t ifsrMask =
1024                    mask(31, 13) | mask(11, 11) | mask(8, 6);
1025                newVal = newVal & ~ifsrMask;
1026            }
1027            break;
1028          case MISCREG_DFSR:
1029            {
1030                // ARM ARM (ARM DDI 0406C.b) B4.1.52
1031                const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1032                newVal = newVal & ~dfsrMask;
1033            }
1034            break;
1035          case MISCREG_AMAIR0:
1036          case MISCREG_AMAIR1:
1037            {
1038                // ARM ARM (ARM DDI 0406C.b) B4.1.5
1039                // Valid only with LPAE
1040                if (!haveLPAE)
1041                    return;
1042                DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1043            }
1044            break;
1045          case MISCREG_SCR:
1046            getITBPtr(tc)->invalidateMiscReg();
1047            getDTBPtr(tc)->invalidateMiscReg();
1048            break;
1049          case MISCREG_SCTLR:
1050            {
1051                DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1052                scr = readMiscRegNoEffect(MISCREG_SCR);
1053
1054                MiscRegIndex sctlr_idx;
1055                if (haveSecurity && !highestELIs64 && !scr.ns) {
1056                    sctlr_idx = MISCREG_SCTLR_S;
1057                } else {
1058                    sctlr_idx =  MISCREG_SCTLR_NS;
1059                }
1060
1061                SCTLR sctlr = miscRegs[sctlr_idx];
1062                SCTLR new_sctlr = newVal;
1063                new_sctlr.nmfi =  ((bool)sctlr.nmfi) && !haveVirtualization;
1064                miscRegs[sctlr_idx] = (RegVal)new_sctlr;
1065                getITBPtr(tc)->invalidateMiscReg();
1066                getDTBPtr(tc)->invalidateMiscReg();
1067            }
1068          case MISCREG_MIDR:
1069          case MISCREG_ID_PFR0:
1070          case MISCREG_ID_PFR1:
1071          case MISCREG_ID_DFR0:
1072          case MISCREG_ID_MMFR0:
1073          case MISCREG_ID_MMFR1:
1074          case MISCREG_ID_MMFR2:
1075          case MISCREG_ID_MMFR3:
1076          case MISCREG_ID_ISAR0:
1077          case MISCREG_ID_ISAR1:
1078          case MISCREG_ID_ISAR2:
1079          case MISCREG_ID_ISAR3:
1080          case MISCREG_ID_ISAR4:
1081          case MISCREG_ID_ISAR5:
1082
1083          case MISCREG_MPIDR:
1084          case MISCREG_FPSID:
1085          case MISCREG_TLBTR:
1086          case MISCREG_MVFR0:
1087          case MISCREG_MVFR1:
1088
1089          case MISCREG_ID_AA64AFR0_EL1:
1090          case MISCREG_ID_AA64AFR1_EL1:
1091          case MISCREG_ID_AA64DFR0_EL1:
1092          case MISCREG_ID_AA64DFR1_EL1:
1093          case MISCREG_ID_AA64ISAR0_EL1:
1094          case MISCREG_ID_AA64ISAR1_EL1:
1095          case MISCREG_ID_AA64MMFR0_EL1:
1096          case MISCREG_ID_AA64MMFR1_EL1:
1097          case MISCREG_ID_AA64MMFR2_EL1:
1098          case MISCREG_ID_AA64PFR0_EL1:
1099          case MISCREG_ID_AA64PFR1_EL1:
1100            // ID registers are constants.
1101            return;
1102
1103          // TLB Invalidate All
1104          case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1105            {
1106                assert32(tc);
1107                scr = readMiscReg(MISCREG_SCR, tc);
1108
1109                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1110                tlbiOp(tc);
1111                return;
1112            }
1113          // TLB Invalidate All, Inner Shareable
1114          case MISCREG_TLBIALLIS:
1115            {
1116                assert32(tc);
1117                scr = readMiscReg(MISCREG_SCR, tc);
1118
1119                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1120                tlbiOp.broadcast(tc);
1121                return;
1122            }
1123          // Instruction TLB Invalidate All
1124          case MISCREG_ITLBIALL:
1125            {
1126                assert32(tc);
1127                scr = readMiscReg(MISCREG_SCR, tc);
1128
1129                ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1130                tlbiOp(tc);
1131                return;
1132            }
1133          // Data TLB Invalidate All
1134          case MISCREG_DTLBIALL:
1135            {
1136                assert32(tc);
1137                scr = readMiscReg(MISCREG_SCR, tc);
1138
1139                DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1140                tlbiOp(tc);
1141                return;
1142            }
1143          // TLB Invalidate by VA
1144          // mcr tlbimval(is) is invalidating all matching entries
1145          // regardless of the level of lookup, since in gem5 we cache
1146          // in the tlb the last level of lookup only.
1147          case MISCREG_TLBIMVA:
1148          case MISCREG_TLBIMVAL:
1149            {
1150                assert32(tc);
1151                scr = readMiscReg(MISCREG_SCR, tc);
1152
1153                TLBIMVA tlbiOp(EL1,
1154                               haveSecurity && !scr.ns,
1155                               mbits(newVal, 31, 12),
1156                               bits(newVal, 7,0));
1157
1158                tlbiOp(tc);
1159                return;
1160            }
1161          // TLB Invalidate by VA, Inner Shareable
1162          case MISCREG_TLBIMVAIS:
1163          case MISCREG_TLBIMVALIS:
1164            {
1165                assert32(tc);
1166                scr = readMiscReg(MISCREG_SCR, tc);
1167
1168                TLBIMVA tlbiOp(EL1,
1169                               haveSecurity && !scr.ns,
1170                               mbits(newVal, 31, 12),
1171                               bits(newVal, 7,0));
1172
1173                tlbiOp.broadcast(tc);
1174                return;
1175            }
1176          // TLB Invalidate by ASID match
1177          case MISCREG_TLBIASID:
1178            {
1179                assert32(tc);
1180                scr = readMiscReg(MISCREG_SCR, tc);
1181
1182                TLBIASID tlbiOp(EL1,
1183                                haveSecurity && !scr.ns,
1184                                bits(newVal, 7,0));
1185
1186                tlbiOp(tc);
1187                return;
1188            }
1189          // TLB Invalidate by ASID match, Inner Shareable
1190          case MISCREG_TLBIASIDIS:
1191            {
1192                assert32(tc);
1193                scr = readMiscReg(MISCREG_SCR, tc);
1194
1195                TLBIASID tlbiOp(EL1,
1196                                haveSecurity && !scr.ns,
1197                                bits(newVal, 7,0));
1198
1199                tlbiOp.broadcast(tc);
1200                return;
1201            }
1202          // mcr tlbimvaal(is) is invalidating all matching entries
1203          // regardless of the level of lookup, since in gem5 we cache
1204          // in the tlb the last level of lookup only.
1205          // TLB Invalidate by VA, All ASID
1206          case MISCREG_TLBIMVAA:
1207          case MISCREG_TLBIMVAAL:
1208            {
1209                assert32(tc);
1210                scr = readMiscReg(MISCREG_SCR, tc);
1211
1212                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1213                                mbits(newVal, 31,12));
1214
1215                tlbiOp(tc);
1216                return;
1217            }
1218          // TLB Invalidate by VA, All ASID, Inner Shareable
1219          case MISCREG_TLBIMVAAIS:
1220          case MISCREG_TLBIMVAALIS:
1221            {
1222                assert32(tc);
1223                scr = readMiscReg(MISCREG_SCR, tc);
1224
1225                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1226                                mbits(newVal, 31,12));
1227
1228                tlbiOp.broadcast(tc);
1229                return;
1230            }
1231          // mcr tlbimvalh(is) is invalidating all matching entries
1232          // regardless of the level of lookup, since in gem5 we cache
1233          // in the tlb the last level of lookup only.
1234          // TLB Invalidate by VA, Hyp mode
1235          case MISCREG_TLBIMVAH:
1236          case MISCREG_TLBIMVALH:
1237            {
1238                assert32(tc);
1239                scr = readMiscReg(MISCREG_SCR, tc);
1240
1241                TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1242                                mbits(newVal, 31,12));
1243
1244                tlbiOp(tc);
1245                return;
1246            }
1247          // TLB Invalidate by VA, Hyp mode, Inner Shareable
1248          case MISCREG_TLBIMVAHIS:
1249          case MISCREG_TLBIMVALHIS:
1250            {
1251                assert32(tc);
1252                scr = readMiscReg(MISCREG_SCR, tc);
1253
1254                TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1255                                mbits(newVal, 31,12));
1256
1257                tlbiOp.broadcast(tc);
1258                return;
1259            }
1260          // mcr tlbiipas2l(is) is invalidating all matching entries
1261          // regardless of the level of lookup, since in gem5 we cache
1262          // in the tlb the last level of lookup only.
1263          // TLB Invalidate by Intermediate Physical Address, Stage 2
1264          case MISCREG_TLBIIPAS2:
1265          case MISCREG_TLBIIPAS2L:
1266            {
1267                assert32(tc);
1268                scr = readMiscReg(MISCREG_SCR, tc);
1269
1270                TLBIIPA tlbiOp(EL1,
1271                               haveSecurity && !scr.ns,
1272                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1273
1274                tlbiOp(tc);
1275                return;
1276            }
1277          // TLB Invalidate by Intermediate Physical Address, Stage 2,
1278          // Inner Shareable
1279          case MISCREG_TLBIIPAS2IS:
1280          case MISCREG_TLBIIPAS2LIS:
1281            {
1282                assert32(tc);
1283                scr = readMiscReg(MISCREG_SCR, tc);
1284
1285                TLBIIPA tlbiOp(EL1,
1286                               haveSecurity && !scr.ns,
1287                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1288
1289                tlbiOp.broadcast(tc);
1290                return;
1291            }
1292          // Instruction TLB Invalidate by VA
1293          case MISCREG_ITLBIMVA:
1294            {
1295                assert32(tc);
1296                scr = readMiscReg(MISCREG_SCR, tc);
1297
1298                ITLBIMVA tlbiOp(EL1,
1299                                haveSecurity && !scr.ns,
1300                                mbits(newVal, 31, 12),
1301                                bits(newVal, 7,0));
1302
1303                tlbiOp(tc);
1304                return;
1305            }
1306          // Data TLB Invalidate by VA
1307          case MISCREG_DTLBIMVA:
1308            {
1309                assert32(tc);
1310                scr = readMiscReg(MISCREG_SCR, tc);
1311
1312                DTLBIMVA tlbiOp(EL1,
1313                                haveSecurity && !scr.ns,
1314                                mbits(newVal, 31, 12),
1315                                bits(newVal, 7,0));
1316
1317                tlbiOp(tc);
1318                return;
1319            }
1320          // Instruction TLB Invalidate by ASID match
1321          case MISCREG_ITLBIASID:
1322            {
1323                assert32(tc);
1324                scr = readMiscReg(MISCREG_SCR, tc);
1325
1326                ITLBIASID tlbiOp(EL1,
1327                                 haveSecurity && !scr.ns,
1328                                 bits(newVal, 7,0));
1329
1330                tlbiOp(tc);
1331                return;
1332            }
1333          // Data TLB Invalidate by ASID match
1334          case MISCREG_DTLBIASID:
1335            {
1336                assert32(tc);
1337                scr = readMiscReg(MISCREG_SCR, tc);
1338
1339                DTLBIASID tlbiOp(EL1,
1340                                 haveSecurity && !scr.ns,
1341                                 bits(newVal, 7,0));
1342
1343                tlbiOp(tc);
1344                return;
1345            }
1346          // TLB Invalidate All, Non-Secure Non-Hyp
1347          case MISCREG_TLBIALLNSNH:
1348            {
1349                assert32(tc);
1350
1351                TLBIALLN tlbiOp(EL1);
1352                tlbiOp(tc);
1353                return;
1354            }
1355          // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
1356          case MISCREG_TLBIALLNSNHIS:
1357            {
1358                assert32(tc);
1359
1360                TLBIALLN tlbiOp(EL1);
1361                tlbiOp.broadcast(tc);
1362                return;
1363            }
1364          // TLB Invalidate All, Hyp mode
1365          case MISCREG_TLBIALLH:
1366            {
1367                assert32(tc);
1368
1369                TLBIALLN tlbiOp(EL2);
1370                tlbiOp(tc);
1371                return;
1372            }
1373          // TLB Invalidate All, Hyp mode, Inner Shareable
1374          case MISCREG_TLBIALLHIS:
1375            {
1376                assert32(tc);
1377
1378                TLBIALLN tlbiOp(EL2);
1379                tlbiOp.broadcast(tc);
1380                return;
1381            }
1382          // AArch64 TLB Invalidate All, EL3
1383          case MISCREG_TLBI_ALLE3:
1384            {
1385                assert64(tc);
1386
1387                TLBIALL tlbiOp(EL3, true);
1388                tlbiOp(tc);
1389                return;
1390            }
1391          // AArch64 TLB Invalidate All, EL3, Inner Shareable
1392          case MISCREG_TLBI_ALLE3IS:
1393            {
1394                assert64(tc);
1395
1396                TLBIALL tlbiOp(EL3, true);
1397                tlbiOp.broadcast(tc);
1398                return;
1399            }
1400          // AArch64 TLB Invalidate All, EL2, Inner Shareable
1401          case MISCREG_TLBI_ALLE2:
1402          case MISCREG_TLBI_ALLE2IS:
1403            {
1404                assert64(tc);
1405                scr = readMiscReg(MISCREG_SCR, tc);
1406
1407                TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns);
1408                tlbiOp(tc);
1409                return;
1410            }
1411          // AArch64 TLB Invalidate All, EL1
1412          case MISCREG_TLBI_ALLE1:
1413          case MISCREG_TLBI_VMALLE1:
1414          case MISCREG_TLBI_VMALLS12E1:
1415            // @todo: handle VMID and stage 2 to enable Virtualization
1416            {
1417                assert64(tc);
1418                scr = readMiscReg(MISCREG_SCR, tc);
1419
1420                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1421                tlbiOp(tc);
1422                return;
1423            }
1424          // AArch64 TLB Invalidate All, EL1, Inner Shareable
1425          case MISCREG_TLBI_ALLE1IS:
1426          case MISCREG_TLBI_VMALLE1IS:
1427          case MISCREG_TLBI_VMALLS12E1IS:
1428            // @todo: handle VMID and stage 2 to enable Virtualization
1429            {
1430                assert64(tc);
1431                scr = readMiscReg(MISCREG_SCR, tc);
1432
1433                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1434                tlbiOp.broadcast(tc);
1435                return;
1436            }
1437          // VAEx(IS) and VALEx(IS) are the same because TLBs
1438          // only store entries
1439          // from the last level of translation table walks
1440          // @todo: handle VMID to enable Virtualization
1441          // AArch64 TLB Invalidate by VA, EL3
1442          case MISCREG_TLBI_VAE3_Xt:
1443          case MISCREG_TLBI_VALE3_Xt:
1444            {
1445                assert64(tc);
1446
1447                TLBIMVA tlbiOp(EL3, true,
1448                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1449                               0xbeef);
1450                tlbiOp(tc);
1451                return;
1452            }
1453          // AArch64 TLB Invalidate by VA, EL3, Inner Shareable
1454          case MISCREG_TLBI_VAE3IS_Xt:
1455          case MISCREG_TLBI_VALE3IS_Xt:
1456            {
1457                assert64(tc);
1458
1459                TLBIMVA tlbiOp(EL3, true,
1460                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1461                               0xbeef);
1462
1463                tlbiOp.broadcast(tc);
1464                return;
1465            }
1466          // AArch64 TLB Invalidate by VA, EL2
1467          case MISCREG_TLBI_VAE2_Xt:
1468          case MISCREG_TLBI_VALE2_Xt:
1469            {
1470                assert64(tc);
1471                scr = readMiscReg(MISCREG_SCR, tc);
1472
1473                TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1474                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1475                               0xbeef);
1476                tlbiOp(tc);
1477                return;
1478            }
1479          // AArch64 TLB Invalidate by VA, EL2, Inner Shareable
1480          case MISCREG_TLBI_VAE2IS_Xt:
1481          case MISCREG_TLBI_VALE2IS_Xt:
1482            {
1483                assert64(tc);
1484                scr = readMiscReg(MISCREG_SCR, tc);
1485
1486                TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1487                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1488                               0xbeef);
1489
1490                tlbiOp.broadcast(tc);
1491                return;
1492            }
1493          // AArch64 TLB Invalidate by VA, EL1
1494          case MISCREG_TLBI_VAE1_Xt:
1495          case MISCREG_TLBI_VALE1_Xt:
1496            {
1497                assert64(tc);
1498                scr = readMiscReg(MISCREG_SCR, tc);
1499                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1500                                              bits(newVal, 55, 48);
1501
1502                TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1503                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1504                               asid);
1505
1506                tlbiOp(tc);
1507                return;
1508            }
1509          // AArch64 TLB Invalidate by VA, EL1, Inner Shareable
1510          case MISCREG_TLBI_VAE1IS_Xt:
1511          case MISCREG_TLBI_VALE1IS_Xt:
1512            {
1513                assert64(tc);
1514                scr = readMiscReg(MISCREG_SCR, tc);
1515                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1516                                              bits(newVal, 55, 48);
1517
1518                TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1519                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1520                               asid);
1521
1522                tlbiOp.broadcast(tc);
1523                return;
1524            }
1525          // AArch64 TLB Invalidate by ASID, EL1
1526          // @todo: handle VMID to enable Virtualization
1527          case MISCREG_TLBI_ASIDE1_Xt:
1528            {
1529                assert64(tc);
1530                scr = readMiscReg(MISCREG_SCR, tc);
1531                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1532                                              bits(newVal, 55, 48);
1533
1534                TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1535                tlbiOp(tc);
1536                return;
1537            }
1538          // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
1539          case MISCREG_TLBI_ASIDE1IS_Xt:
1540            {
1541                assert64(tc);
1542                scr = readMiscReg(MISCREG_SCR, tc);
1543                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1544                                              bits(newVal, 55, 48);
1545
1546                TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1547                tlbiOp.broadcast(tc);
1548                return;
1549            }
1550          // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1551          // entries from the last level of translation table walks
1552          // AArch64 TLB Invalidate by VA, All ASID, EL1
1553          case MISCREG_TLBI_VAAE1_Xt:
1554          case MISCREG_TLBI_VAALE1_Xt:
1555            {
1556                assert64(tc);
1557                scr = readMiscReg(MISCREG_SCR, tc);
1558
1559                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1560                    static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1561
1562                tlbiOp(tc);
1563                return;
1564            }
1565          // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
1566          case MISCREG_TLBI_VAAE1IS_Xt:
1567          case MISCREG_TLBI_VAALE1IS_Xt:
1568            {
1569                assert64(tc);
1570                scr = readMiscReg(MISCREG_SCR, tc);
1571
1572                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1573                    static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1574
1575                tlbiOp.broadcast(tc);
1576                return;
1577            }
1578          // AArch64 TLB Invalidate by Intermediate Physical Address,
1579          // Stage 2, EL1
1580          case MISCREG_TLBI_IPAS2E1_Xt:
1581          case MISCREG_TLBI_IPAS2LE1_Xt:
1582            {
1583                assert64(tc);
1584                scr = readMiscReg(MISCREG_SCR, tc);
1585
1586                TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1587                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1588
1589                tlbiOp(tc);
1590                return;
1591            }
1592          // AArch64 TLB Invalidate by Intermediate Physical Address,
1593          // Stage 2, EL1, Inner Shareable
1594          case MISCREG_TLBI_IPAS2E1IS_Xt:
1595          case MISCREG_TLBI_IPAS2LE1IS_Xt:
1596            {
1597                assert64(tc);
1598                scr = readMiscReg(MISCREG_SCR, tc);
1599
1600                TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1601                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1602
1603                tlbiOp.broadcast(tc);
1604                return;
1605            }
1606          case MISCREG_ACTLR:
1607            warn("Not doing anything for write of miscreg ACTLR\n");
1608            break;
1609
1610          case MISCREG_PMXEVTYPER_PMCCFILTR:
1611          case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1612          case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1613          case MISCREG_PMCR ... MISCREG_PMOVSSET:
1614            pmu->setMiscReg(misc_reg, newVal);
1615            break;
1616
1617
1618          case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1619            {
1620                HSTR hstrMask = 0;
1621                hstrMask.tjdbx = 1;
1622                newVal &= ~((uint32_t) hstrMask);
1623                break;
1624            }
1625          case MISCREG_HCPTR:
1626            {
1627                // If a CP bit in NSACR is 0 then the corresponding bit in
1628                // HCPTR is RAO/WI. Same applies to NSASEDIS
1629                secure_lookup = haveSecurity &&
1630                    inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1631                                  readMiscRegNoEffect(MISCREG_CPSR));
1632                if (!secure_lookup) {
1633                    RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1634                    RegVal mask =
1635                        (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1636                    newVal = (newVal & ~mask) | (oldValue & mask);
1637                }
1638                break;
1639            }
1640          case MISCREG_HDFAR: // alias for secure DFAR
1641            misc_reg = MISCREG_DFAR_S;
1642            break;
1643          case MISCREG_HIFAR: // alias for secure IFAR
1644            misc_reg = MISCREG_IFAR_S;
1645            break;
1646          case MISCREG_ATS1CPR:
1647          case MISCREG_ATS1CPW:
1648          case MISCREG_ATS1CUR:
1649          case MISCREG_ATS1CUW:
1650          case MISCREG_ATS12NSOPR:
1651          case MISCREG_ATS12NSOPW:
1652          case MISCREG_ATS12NSOUR:
1653          case MISCREG_ATS12NSOUW:
1654          case MISCREG_ATS1HR:
1655          case MISCREG_ATS1HW:
1656            {
1657              Request::Flags flags = 0;
1658              BaseTLB::Mode mode = BaseTLB::Read;
1659              TLB::ArmTranslationType tranType = TLB::NormalTran;
1660              Fault fault;
1661              switch(misc_reg) {
1662                case MISCREG_ATS1CPR:
1663                  flags    = TLB::MustBeOne;
1664                  tranType = TLB::S1CTran;
1665                  mode     = BaseTLB::Read;
1666                  break;
1667                case MISCREG_ATS1CPW:
1668                  flags    = TLB::MustBeOne;
1669                  tranType = TLB::S1CTran;
1670                  mode     = BaseTLB::Write;
1671                  break;
1672                case MISCREG_ATS1CUR:
1673                  flags    = TLB::MustBeOne | TLB::UserMode;
1674                  tranType = TLB::S1CTran;
1675                  mode     = BaseTLB::Read;
1676                  break;
1677                case MISCREG_ATS1CUW:
1678                  flags    = TLB::MustBeOne | TLB::UserMode;
1679                  tranType = TLB::S1CTran;
1680                  mode     = BaseTLB::Write;
1681                  break;
1682                case MISCREG_ATS12NSOPR:
1683                  if (!haveSecurity)
1684                      panic("Security Extensions required for ATS12NSOPR");
1685                  flags    = TLB::MustBeOne;
1686                  tranType = TLB::S1S2NsTran;
1687                  mode     = BaseTLB::Read;
1688                  break;
1689                case MISCREG_ATS12NSOPW:
1690                  if (!haveSecurity)
1691                      panic("Security Extensions required for ATS12NSOPW");
1692                  flags    = TLB::MustBeOne;
1693                  tranType = TLB::S1S2NsTran;
1694                  mode     = BaseTLB::Write;
1695                  break;
1696                case MISCREG_ATS12NSOUR:
1697                  if (!haveSecurity)
1698                      panic("Security Extensions required for ATS12NSOUR");
1699                  flags    = TLB::MustBeOne | TLB::UserMode;
1700                  tranType = TLB::S1S2NsTran;
1701                  mode     = BaseTLB::Read;
1702                  break;
1703                case MISCREG_ATS12NSOUW:
1704                  if (!haveSecurity)
1705                      panic("Security Extensions required for ATS12NSOUW");
1706                  flags    = TLB::MustBeOne | TLB::UserMode;
1707                  tranType = TLB::S1S2NsTran;
1708                  mode     = BaseTLB::Write;
1709                  break;
1710                case MISCREG_ATS1HR: // only really useful from secure mode.
1711                  flags    = TLB::MustBeOne;
1712                  tranType = TLB::HypMode;
1713                  mode     = BaseTLB::Read;
1714                  break;
1715                case MISCREG_ATS1HW:
1716                  flags    = TLB::MustBeOne;
1717                  tranType = TLB::HypMode;
1718                  mode     = BaseTLB::Write;
1719                  break;
1720              }
1721              // If we're in timing mode then doing the translation in
1722              // functional mode then we're slightly distorting performance
1723              // results obtained from simulations. The translation should be
1724              // done in the same mode the core is running in. NOTE: This
1725              // can't be an atomic translation because that causes problems
1726              // with unexpected atomic snoop requests.
1727              warn("Translating via %s in functional mode! Fix Me!\n",
1728                   miscRegName[misc_reg]);
1729
1730              auto req = std::make_shared<Request>(
1731                  0, val, 0, flags,  Request::funcMasterId,
1732                  tc->pcState().pc(), tc->contextId());
1733
1734              fault = getDTBPtr(tc)->translateFunctional(
1735                      req, tc, mode, tranType);
1736
1737              TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1738              HCR   hcr   = readMiscRegNoEffect(MISCREG_HCR);
1739
1740              RegVal newVal;
1741              if (fault == NoFault) {
1742                  Addr paddr = req->getPaddr();
1743                  if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1744                     ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1745                      newVal = (paddr & mask(39, 12)) |
1746                               (getDTBPtr(tc)->getAttr());
1747                  } else {
1748                      newVal = (paddr & 0xfffff000) |
1749                               (getDTBPtr(tc)->getAttr());
1750                  }
1751                  DPRINTF(MiscRegs,
1752                          "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1753                          val, newVal);
1754              } else {
1755                  ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1756                  armFault->update(tc);
1757                  // Set fault bit and FSR
1758                  FSR fsr = armFault->getFsr(tc);
1759
1760                  newVal = ((fsr >> 9) & 1) << 11;
1761                  if (newVal) {
1762                    // LPAE - rearange fault status
1763                    newVal |= ((fsr >>  0) & 0x3f) << 1;
1764                  } else {
1765                    // VMSA - rearange fault status
1766                    newVal |= ((fsr >>  0) & 0xf) << 1;
1767                    newVal |= ((fsr >> 10) & 0x1) << 5;
1768                    newVal |= ((fsr >> 12) & 0x1) << 6;
1769                  }
1770                  newVal |= 0x1; // F bit
1771                  newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1772                  newVal |= armFault->isStage2() ? 0x200 : 0;
1773                  DPRINTF(MiscRegs,
1774                          "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1775                          val, fsr, newVal);
1776              }
1777              setMiscRegNoEffect(MISCREG_PAR, newVal);
1778              return;
1779            }
1780          case MISCREG_TTBCR:
1781            {
1782                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1783                const uint32_t ones = (uint32_t)(-1);
1784                TTBCR ttbcrMask = 0;
1785                TTBCR ttbcrNew = newVal;
1786
1787                // ARM DDI 0406C.b, ARMv7-32
1788                ttbcrMask.n = ones; // T0SZ
1789                if (haveSecurity) {
1790                    ttbcrMask.pd0 = ones;
1791                    ttbcrMask.pd1 = ones;
1792                }
1793                ttbcrMask.epd0 = ones;
1794                ttbcrMask.irgn0 = ones;
1795                ttbcrMask.orgn0 = ones;
1796                ttbcrMask.sh0 = ones;
1797                ttbcrMask.ps = ones; // T1SZ
1798                ttbcrMask.a1 = ones;
1799                ttbcrMask.epd1 = ones;
1800                ttbcrMask.irgn1 = ones;
1801                ttbcrMask.orgn1 = ones;
1802                ttbcrMask.sh1 = ones;
1803                if (haveLPAE)
1804                    ttbcrMask.eae = ones;
1805
1806                if (haveLPAE && ttbcrNew.eae) {
1807                    newVal = newVal & ttbcrMask;
1808                } else {
1809                    newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1810                }
1811                // Invalidate TLB MiscReg
1812                getITBPtr(tc)->invalidateMiscReg();
1813                getDTBPtr(tc)->invalidateMiscReg();
1814                break;
1815            }
1816          case MISCREG_TTBR0:
1817          case MISCREG_TTBR1:
1818            {
1819                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1820                if (haveLPAE) {
1821                    if (ttbcr.eae) {
1822                        // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1823                        // ARMv8 AArch32 bit 63-56 only
1824                        uint64_t ttbrMask = mask(63,56) | mask(47,40);
1825                        newVal = (newVal & (~ttbrMask));
1826                    }
1827                }
1828                // Invalidate TLB MiscReg
1829                getITBPtr(tc)->invalidateMiscReg();
1830                getDTBPtr(tc)->invalidateMiscReg();
1831                break;
1832            }
1833          case MISCREG_SCTLR_EL1:
1834          case MISCREG_CONTEXTIDR:
1835          case MISCREG_PRRR:
1836          case MISCREG_NMRR:
1837          case MISCREG_MAIR0:
1838          case MISCREG_MAIR1:
1839          case MISCREG_DACR:
1840          case MISCREG_VTTBR:
1841          case MISCREG_SCR_EL3:
1842          case MISCREG_HCR_EL2:
1843          case MISCREG_TCR_EL1:
1844          case MISCREG_TCR_EL2:
1845          case MISCREG_TCR_EL3:
1846          case MISCREG_SCTLR_EL2:
1847          case MISCREG_SCTLR_EL3:
1848          case MISCREG_HSCTLR:
1849          case MISCREG_TTBR0_EL1:
1850          case MISCREG_TTBR1_EL1:
1851          case MISCREG_TTBR0_EL2:
1852          case MISCREG_TTBR1_EL2:
1853          case MISCREG_TTBR0_EL3:
1854            getITBPtr(tc)->invalidateMiscReg();
1855            getDTBPtr(tc)->invalidateMiscReg();
1856            break;
1857          case MISCREG_NZCV:
1858            {
1859                CPSR cpsr = val;
1860
1861                tc->setCCReg(CCREG_NZ, cpsr.nz);
1862                tc->setCCReg(CCREG_C,  cpsr.c);
1863                tc->setCCReg(CCREG_V,  cpsr.v);
1864            }
1865            break;
1866          case MISCREG_DAIF:
1867            {
1868                CPSR cpsr = miscRegs[MISCREG_CPSR];
1869                cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1870                newVal = cpsr;
1871                misc_reg = MISCREG_CPSR;
1872            }
1873            break;
1874          case MISCREG_SP_EL0:
1875            tc->setIntReg(INTREG_SP0, newVal);
1876            break;
1877          case MISCREG_SP_EL1:
1878            tc->setIntReg(INTREG_SP1, newVal);
1879            break;
1880          case MISCREG_SP_EL2:
1881            tc->setIntReg(INTREG_SP2, newVal);
1882            break;
1883          case MISCREG_SPSEL:
1884            {
1885                CPSR cpsr = miscRegs[MISCREG_CPSR];
1886                cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1887                newVal = cpsr;
1888                misc_reg = MISCREG_CPSR;
1889            }
1890            break;
1891          case MISCREG_CURRENTEL:
1892            {
1893                CPSR cpsr = miscRegs[MISCREG_CPSR];
1894                cpsr.el = (uint8_t) ((CPSR) newVal).el;
1895                newVal = cpsr;
1896                misc_reg = MISCREG_CPSR;
1897            }
1898            break;
1899          case MISCREG_PAN:
1900            {
1901                // PAN is affecting data accesses
1902                getDTBPtr(tc)->invalidateMiscReg();
1903
1904                CPSR cpsr = miscRegs[MISCREG_CPSR];
1905                cpsr.pan = (uint8_t) ((CPSR) newVal).pan;
1906                newVal = cpsr;
1907                misc_reg = MISCREG_CPSR;
1908            }
1909            break;
1910          case MISCREG_AT_S1E1R_Xt:
1911          case MISCREG_AT_S1E1W_Xt:
1912          case MISCREG_AT_S1E0R_Xt:
1913          case MISCREG_AT_S1E0W_Xt:
1914          case MISCREG_AT_S1E2R_Xt:
1915          case MISCREG_AT_S1E2W_Xt:
1916          case MISCREG_AT_S12E1R_Xt:
1917          case MISCREG_AT_S12E1W_Xt:
1918          case MISCREG_AT_S12E0R_Xt:
1919          case MISCREG_AT_S12E0W_Xt:
1920          case MISCREG_AT_S1E3R_Xt:
1921          case MISCREG_AT_S1E3W_Xt:
1922            {
1923                RequestPtr req = std::make_shared<Request>();
1924                Request::Flags flags = 0;
1925                BaseTLB::Mode mode = BaseTLB::Read;
1926                TLB::ArmTranslationType tranType = TLB::NormalTran;
1927                Fault fault;
1928                switch(misc_reg) {
1929                  case MISCREG_AT_S1E1R_Xt:
1930                    flags    = TLB::MustBeOne;
1931                    tranType = TLB::S1E1Tran;
1932                    mode     = BaseTLB::Read;
1933                    break;
1934                  case MISCREG_AT_S1E1W_Xt:
1935                    flags    = TLB::MustBeOne;
1936                    tranType = TLB::S1E1Tran;
1937                    mode     = BaseTLB::Write;
1938                    break;
1939                  case MISCREG_AT_S1E0R_Xt:
1940                    flags    = TLB::MustBeOne | TLB::UserMode;
1941                    tranType = TLB::S1E0Tran;
1942                    mode     = BaseTLB::Read;
1943                    break;
1944                  case MISCREG_AT_S1E0W_Xt:
1945                    flags    = TLB::MustBeOne | TLB::UserMode;
1946                    tranType = TLB::S1E0Tran;
1947                    mode     = BaseTLB::Write;
1948                    break;
1949                  case MISCREG_AT_S1E2R_Xt:
1950                    flags    = TLB::MustBeOne;
1951                    tranType = TLB::S1E2Tran;
1952                    mode     = BaseTLB::Read;
1953                    break;
1954                  case MISCREG_AT_S1E2W_Xt:
1955                    flags    = TLB::MustBeOne;
1956                    tranType = TLB::S1E2Tran;
1957                    mode     = BaseTLB::Write;
1958                    break;
1959                  case MISCREG_AT_S12E0R_Xt:
1960                    flags    = TLB::MustBeOne | TLB::UserMode;
1961                    tranType = TLB::S12E0Tran;
1962                    mode     = BaseTLB::Read;
1963                    break;
1964                  case MISCREG_AT_S12E0W_Xt:
1965                    flags    = TLB::MustBeOne | TLB::UserMode;
1966                    tranType = TLB::S12E0Tran;
1967                    mode     = BaseTLB::Write;
1968                    break;
1969                  case MISCREG_AT_S12E1R_Xt:
1970                    flags    = TLB::MustBeOne;
1971                    tranType = TLB::S12E1Tran;
1972                    mode     = BaseTLB::Read;
1973                    break;
1974                  case MISCREG_AT_S12E1W_Xt:
1975                    flags    = TLB::MustBeOne;
1976                    tranType = TLB::S12E1Tran;
1977                    mode     = BaseTLB::Write;
1978                    break;
1979                  case MISCREG_AT_S1E3R_Xt:
1980                    flags    = TLB::MustBeOne;
1981                    tranType = TLB::S1E3Tran;
1982                    mode     = BaseTLB::Read;
1983                    break;
1984                  case MISCREG_AT_S1E3W_Xt:
1985                    flags    = TLB::MustBeOne;
1986                    tranType = TLB::S1E3Tran;
1987                    mode     = BaseTLB::Write;
1988                    break;
1989                }
1990                // If we're in timing mode then doing the translation in
1991                // functional mode then we're slightly distorting performance
1992                // results obtained from simulations. The translation should be
1993                // done in the same mode the core is running in. NOTE: This
1994                // can't be an atomic translation because that causes problems
1995                // with unexpected atomic snoop requests.
1996                warn("Translating via %s in functional mode! Fix Me!\n",
1997                     miscRegName[misc_reg]);
1998
1999                req->setVirt(0, val, 0, flags,  Request::funcMasterId,
2000                               tc->pcState().pc());
2001                req->setContext(tc->contextId());
2002                fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
2003                                                           tranType);
2004
2005                RegVal newVal;
2006                if (fault == NoFault) {
2007                    Addr paddr = req->getPaddr();
2008                    uint64_t attr = getDTBPtr(tc)->getAttr();
2009                    uint64_t attr1 = attr >> 56;
2010                    if (!attr1 || attr1 ==0x44) {
2011                        attr |= 0x100;
2012                        attr &= ~ uint64_t(0x80);
2013                    }
2014                    newVal = (paddr & mask(47, 12)) | attr;
2015                    DPRINTF(MiscRegs,
2016                          "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
2017                          val, newVal);
2018                } else {
2019                    ArmFault *armFault = static_cast<ArmFault *>(fault.get());
2020                    armFault->update(tc);
2021                    // Set fault bit and FSR
2022                    FSR fsr = armFault->getFsr(tc);
2023
2024                    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
2025                    if (cpsr.width) { // AArch32
2026                        newVal = ((fsr >> 9) & 1) << 11;
2027                        // rearrange fault status
2028                        newVal |= ((fsr >>  0) & 0x3f) << 1;
2029                        newVal |= 0x1; // F bit
2030                        newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
2031                        newVal |= armFault->isStage2() ? 0x200 : 0;
2032                    } else { // AArch64
2033                        newVal = 1; // F bit
2034                        newVal |= fsr << 1; // FST
2035                        // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
2036                        newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
2037                        newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
2038                        newVal |= 1 << 11; // RES1
2039                    }
2040                    DPRINTF(MiscRegs,
2041                            "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
2042                            val, fsr, newVal);
2043                }
2044                setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
2045                return;
2046            }
2047          case MISCREG_SPSR_EL3:
2048          case MISCREG_SPSR_EL2:
2049          case MISCREG_SPSR_EL1:
2050            {
2051                RegVal spsr_mask = havePAN ?
2052                    ~(0x5 << 21) : ~(0x7 << 21);
2053
2054                newVal = val & spsr_mask;
2055                break;
2056            }
2057          case MISCREG_L2CTLR:
2058            warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
2059                 miscRegName[misc_reg], uint32_t(val));
2060            break;
2061
2062          // Generic Timer registers
2063          case MISCREG_CNTHV_CTL_EL2:
2064          case MISCREG_CNTHV_CVAL_EL2:
2065          case MISCREG_CNTHV_TVAL_EL2:
2066          case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
2067          case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
2068          case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
2069          case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
2070            getGenericTimer(tc).setMiscReg(misc_reg, newVal);
2071            break;
2072          case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
2073          case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
2074            getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal);
2075            return;
2076          case MISCREG_ZCR_EL3:
2077          case MISCREG_ZCR_EL2:
2078          case MISCREG_ZCR_EL1:
2079            tc->getDecoderPtr()->setSveLen(
2080                (getCurSveVecLenInBits(tc) >> 7) - 1);
2081            break;
2082        }
2083    }
2084    setMiscRegNoEffect(misc_reg, newVal);
2085}
2086
2087BaseISADevice &
2088ISA::getGenericTimer(ThreadContext *tc)
2089{
2090    // We only need to create an ISA interface the first time we try
2091    // to access the timer.
2092    if (timer)
2093        return *timer.get();
2094
2095    assert(system);
2096    GenericTimer *generic_timer(system->getGenericTimer());
2097    if (!generic_timer) {
2098        panic("Trying to get a generic timer from a system that hasn't "
2099              "been configured to use a generic timer.\n");
2100    }
2101
2102    timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2103    timer->setThreadContext(tc);
2104
2105    return *timer.get();
2106}
2107
2108BaseISADevice &
2109ISA::getGICv3CPUInterface(ThreadContext *tc)
2110{
2111    panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!");
2112    return *gicv3CpuInterface.get();
2113}
2114
2115unsigned
2116ISA::getCurSveVecLenInBits(ThreadContext *tc) const
2117{
2118    if (!FullSystem) {
2119        return sveVL * 128;
2120    }
2121
2122    panic_if(!tc,
2123             "A ThreadContext is needed to determine the SVE vector length "
2124             "in full-system mode");
2125
2126    CPSR cpsr = miscRegs[MISCREG_CPSR];
2127    ExceptionLevel el = (ExceptionLevel) (uint8_t) cpsr.el;
2128
2129    unsigned len = 0;
2130
2131    if (el == EL1 || (el == EL0 && !ELIsInHost(tc, el))) {
2132        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL1]).len;
2133    }
2134
2135    if (el == EL2 || (el == EL0 && ELIsInHost(tc, el))) {
2136        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len;
2137    } else if (haveVirtualization && !inSecureState(tc) &&
2138               (el == EL0 || el == EL1)) {
2139        len = std::min(
2140            len,
2141            static_cast<unsigned>(
2142                static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len));
2143    }
2144
2145    if (el == EL3) {
2146        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len;
2147    } else if (haveSecurity) {
2148        len = std::min(
2149            len,
2150            static_cast<unsigned>(
2151                static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len));
2152    }
2153
2154    len = std::min(len, sveVL - 1);
2155
2156    return (len + 1) * 128;
2157}
2158
2159void
2160ISA::zeroSveVecRegUpperPart(VecRegContainer &vc, unsigned eCount)
2161{
2162    auto vv = vc.as<uint64_t>();
2163    for (int i = 2; i < eCount; ++i) {
2164        vv[i] = 0;
2165    }
2166}
2167
2168}  // namespace ArmISA
2169
2170ArmISA::ISA *
2171ArmISAParams::create()
2172{
2173    return new ArmISA::ISA(this);
2174}
2175