isa.cc revision 14128:6ed23d07d0d1
1/*
2 * Copyright (c) 2010-2019 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 *          Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "arch/arm/tlbi_op.hh"
46#include "cpu/base.hh"
47#include "cpu/checker/cpu.hh"
48#include "debug/Arm.hh"
49#include "debug/MiscRegs.hh"
50#include "dev/arm/generic_timer.hh"
51#include "dev/arm/gic_v3.hh"
52#include "dev/arm/gic_v3_cpu_interface.hh"
53#include "params/ArmISA.hh"
54#include "sim/faults.hh"
55#include "sim/stat_control.hh"
56#include "sim/system.hh"
57
58namespace ArmISA
59{
60
61ISA::ISA(Params *p)
62    : SimObject(p),
63      system(NULL),
64      _decoderFlavour(p->decoderFlavour),
65      _vecRegRenameMode(Enums::Full),
66      pmu(p->pmu),
67      haveGICv3CPUInterface(false),
68      impdefAsNop(p->impdef_nop),
69      afterStartup(false)
70{
71    miscRegs[MISCREG_SCTLR_RST] = 0;
72
73    // Hook up a dummy device if we haven't been configured with a
74    // real PMU. By using a dummy device, we don't need to check that
75    // the PMU exist every time we try to access a PMU register.
76    if (!pmu)
77        pmu = &dummyDevice;
78
79    // Give all ISA devices a pointer to this ISA
80    pmu->setISA(this);
81
82    system = dynamic_cast<ArmSystem *>(p->system);
83
84    // Cache system-level properties
85    if (FullSystem && system) {
86        highestELIs64 = system->highestELIs64();
87        haveSecurity = system->haveSecurity();
88        haveLPAE = system->haveLPAE();
89        haveCrypto = system->haveCrypto();
90        haveVirtualization = system->haveVirtualization();
91        haveLargeAsid64 = system->haveLargeAsid64();
92        physAddrRange = system->physAddrRange();
93        haveSVE = system->haveSVE();
94        havePAN = system->havePAN();
95        sveVL = system->sveVL();
96    } else {
97        highestELIs64 = true; // ArmSystem::highestELIs64 does the same
98        haveSecurity = haveLPAE = haveVirtualization = false;
99        haveCrypto = true;
100        haveLargeAsid64 = false;
101        physAddrRange = 32;  // dummy value
102        haveSVE = true;
103        havePAN = false;
104        sveVL = p->sve_vl_se;
105    }
106
107    // Initial rename mode depends on highestEL
108    const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) =
109        highestELIs64 ? Enums::Full : Enums::Elem;
110
111    initializeMiscRegMetadata();
112    preUnflattenMiscReg();
113
114    clear();
115}
116
117std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
118
119const ArmISAParams *
120ISA::params() const
121{
122    return dynamic_cast<const Params *>(_params);
123}
124
125void
126ISA::clear()
127{
128    const Params *p(params());
129
130    SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
131    memset(miscRegs, 0, sizeof(miscRegs));
132
133    initID32(p);
134
135    // We always initialize AArch64 ID registers even
136    // if we are in AArch32. This is done since if we
137    // are in SE mode we don't know if our ArmProcess is
138    // AArch32 or AArch64
139    initID64(p);
140
141    // Start with an event in the mailbox
142    miscRegs[MISCREG_SEV_MAILBOX] = 1;
143
144    // Separate Instruction and Data TLBs
145    miscRegs[MISCREG_TLBTR] = 1;
146
147    MVFR0 mvfr0 = 0;
148    mvfr0.advSimdRegisters = 2;
149    mvfr0.singlePrecision = 2;
150    mvfr0.doublePrecision = 2;
151    mvfr0.vfpExceptionTrapping = 0;
152    mvfr0.divide = 1;
153    mvfr0.squareRoot = 1;
154    mvfr0.shortVectors = 1;
155    mvfr0.roundingModes = 1;
156    miscRegs[MISCREG_MVFR0] = mvfr0;
157
158    MVFR1 mvfr1 = 0;
159    mvfr1.flushToZero = 1;
160    mvfr1.defaultNaN = 1;
161    mvfr1.advSimdLoadStore = 1;
162    mvfr1.advSimdInteger = 1;
163    mvfr1.advSimdSinglePrecision = 1;
164    mvfr1.advSimdHalfPrecision = 1;
165    mvfr1.vfpHalfPrecision = 1;
166    miscRegs[MISCREG_MVFR1] = mvfr1;
167
168    // Reset values of PRRR and NMRR are implementation dependent
169
170    // @todo: PRRR and NMRR in secure state?
171    miscRegs[MISCREG_PRRR_NS] =
172        (1 << 19) | // 19
173        (0 << 18) | // 18
174        (0 << 17) | // 17
175        (1 << 16) | // 16
176        (2 << 14) | // 15:14
177        (0 << 12) | // 13:12
178        (2 << 10) | // 11:10
179        (2 << 8)  | // 9:8
180        (2 << 6)  | // 7:6
181        (2 << 4)  | // 5:4
182        (1 << 2)  | // 3:2
183        0;          // 1:0
184
185    miscRegs[MISCREG_NMRR_NS] =
186        (1 << 30) | // 31:30
187        (0 << 26) | // 27:26
188        (0 << 24) | // 25:24
189        (3 << 22) | // 23:22
190        (2 << 20) | // 21:20
191        (0 << 18) | // 19:18
192        (0 << 16) | // 17:16
193        (1 << 14) | // 15:14
194        (0 << 12) | // 13:12
195        (2 << 10) | // 11:10
196        (0 << 8)  | // 9:8
197        (3 << 6)  | // 7:6
198        (2 << 4)  | // 5:4
199        (0 << 2)  | // 3:2
200        0;          // 1:0
201
202    if (FullSystem && system->highestELIs64()) {
203        // Initialize AArch64 state
204        clear64(p);
205        return;
206    }
207
208    // Initialize AArch32 state...
209    clear32(p, sctlr_rst);
210}
211
212void
213ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst)
214{
215    CPSR cpsr = 0;
216    cpsr.mode = MODE_USER;
217
218    if (FullSystem) {
219        miscRegs[MISCREG_MVBAR] = system->resetAddr();
220    }
221
222    miscRegs[MISCREG_CPSR] = cpsr;
223    updateRegMap(cpsr);
224
225    SCTLR sctlr = 0;
226    sctlr.te = (bool) sctlr_rst.te;
227    sctlr.nmfi = (bool) sctlr_rst.nmfi;
228    sctlr.v = (bool) sctlr_rst.v;
229    sctlr.u = 1;
230    sctlr.xp = 1;
231    sctlr.rao2 = 1;
232    sctlr.rao3 = 1;
233    sctlr.rao4 = 0xf;  // SCTLR[6:3]
234    sctlr.uci = 1;
235    sctlr.dze = 1;
236    miscRegs[MISCREG_SCTLR_NS] = sctlr;
237    miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
238    miscRegs[MISCREG_HCPTR] = 0;
239
240    miscRegs[MISCREG_CPACR] = 0;
241
242    miscRegs[MISCREG_FPSID] = p->fpsid;
243
244    if (haveLPAE) {
245        TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
246        ttbcr.eae = 0;
247        miscRegs[MISCREG_TTBCR_NS] = ttbcr;
248        // Enforce consistency with system-level settings
249        miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
250    }
251
252    if (haveSecurity) {
253        miscRegs[MISCREG_SCTLR_S] = sctlr;
254        miscRegs[MISCREG_SCR] = 0;
255        miscRegs[MISCREG_VBAR_S] = 0;
256    } else {
257        // we're always non-secure
258        miscRegs[MISCREG_SCR] = 1;
259    }
260
261    //XXX We need to initialize the rest of the state.
262}
263
264void
265ISA::clear64(const ArmISAParams *p)
266{
267    CPSR cpsr = 0;
268    Addr rvbar = system->resetAddr();
269    switch (system->highestEL()) {
270        // Set initial EL to highest implemented EL using associated stack
271        // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
272        // value
273      case EL3:
274        cpsr.mode = MODE_EL3H;
275        miscRegs[MISCREG_RVBAR_EL3] = rvbar;
276        break;
277      case EL2:
278        cpsr.mode = MODE_EL2H;
279        miscRegs[MISCREG_RVBAR_EL2] = rvbar;
280        break;
281      case EL1:
282        cpsr.mode = MODE_EL1H;
283        miscRegs[MISCREG_RVBAR_EL1] = rvbar;
284        break;
285      default:
286        panic("Invalid highest implemented exception level");
287        break;
288    }
289
290    // Initialize rest of CPSR
291    cpsr.daif = 0xf;  // Mask all interrupts
292    cpsr.ss = 0;
293    cpsr.il = 0;
294    miscRegs[MISCREG_CPSR] = cpsr;
295    updateRegMap(cpsr);
296
297    // Initialize other control registers
298    miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
299    if (haveSecurity) {
300        miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
301        miscRegs[MISCREG_SCR_EL3]   = 0x00000030;  // RES1 fields
302    } else if (haveVirtualization) {
303        // also  MISCREG_SCTLR_EL2 (by mapping)
304        miscRegs[MISCREG_HSCTLR] = 0x30c50830;
305    } else {
306        // also  MISCREG_SCTLR_EL1 (by mapping)
307        miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
308        // Always non-secure
309        miscRegs[MISCREG_SCR_EL3] = 1;
310    }
311}
312
313void
314ISA::initID32(const ArmISAParams *p)
315{
316    // Initialize configurable default values
317    miscRegs[MISCREG_MIDR] = p->midr;
318    miscRegs[MISCREG_MIDR_EL1] = p->midr;
319    miscRegs[MISCREG_VPIDR] = p->midr;
320
321    miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
322    miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
323    miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
324    miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
325    miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
326    miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
327
328    miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
329    miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
330    miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
331    miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
332
333    miscRegs[MISCREG_ID_ISAR5] = insertBits(
334        miscRegs[MISCREG_ID_ISAR5], 19, 4,
335        haveCrypto ? 0x1112 : 0x0);
336}
337
338void
339ISA::initID64(const ArmISAParams *p)
340{
341    // Initialize configurable id registers
342    miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
343    miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
344    miscRegs[MISCREG_ID_AA64DFR0_EL1] =
345        (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
346        (p->pmu ?             0x0000000000000100ULL : 0); // Enable PMUv3
347
348    miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
349    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
350    miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
351    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
352    miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
353    miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1;
354
355    miscRegs[MISCREG_ID_DFR0_EL1] =
356        (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
357
358    miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
359
360    // SVE
361    miscRegs[MISCREG_ID_AA64ZFR0_EL1] = 0;  // SVEver 0
362    if (haveSecurity) {
363        miscRegs[MISCREG_ZCR_EL3] = sveVL - 1;
364    } else if (haveVirtualization) {
365        miscRegs[MISCREG_ZCR_EL2] = sveVL - 1;
366    } else {
367        miscRegs[MISCREG_ZCR_EL1] = sveVL - 1;
368    }
369
370    // Enforce consistency with system-level settings...
371
372    // EL3
373    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
374        miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
375        haveSecurity ? 0x2 : 0x0);
376    // EL2
377    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
378        miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
379        haveVirtualization ? 0x2 : 0x0);
380    // SVE
381    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
382        miscRegs[MISCREG_ID_AA64PFR0_EL1], 35, 32,
383        haveSVE ? 0x1 : 0x0);
384    // Large ASID support
385    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
386        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
387        haveLargeAsid64 ? 0x2 : 0x0);
388    // Physical address size
389    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
390        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
391        encodePhysAddrRange64(physAddrRange));
392    // Crypto
393    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
394        miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4,
395        haveCrypto ? 0x1112 : 0x0);
396    // PAN
397    miscRegs[MISCREG_ID_AA64MMFR1_EL1] = insertBits(
398        miscRegs[MISCREG_ID_AA64MMFR1_EL1], 23, 20,
399        havePAN ? 0x1 : 0x0);
400}
401
402void
403ISA::startup(ThreadContext *tc)
404{
405    pmu->setThreadContext(tc);
406
407    if (system) {
408        Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC());
409        if (gicv3) {
410            haveGICv3CPUInterface = true;
411            gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId()));
412            gicv3CpuInterface->setISA(this);
413            gicv3CpuInterface->setThreadContext(tc);
414        }
415    }
416
417    afterStartup = true;
418}
419
420
421RegVal
422ISA::readMiscRegNoEffect(int misc_reg) const
423{
424    assert(misc_reg < NumMiscRegs);
425
426    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
427    const auto &map = getMiscIndices(misc_reg);
428    int lower = map.first, upper = map.second;
429    // NB!: apply architectural masks according to desired register,
430    // despite possibly getting value from different (mapped) register.
431    auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
432                                          |(miscRegs[upper] << 32));
433    if (val & reg.res0()) {
434        DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
435                miscRegName[misc_reg], val & reg.res0());
436    }
437    if ((val & reg.res1()) != reg.res1()) {
438        DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
439                miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
440    }
441    return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
442}
443
444
445RegVal
446ISA::readMiscReg(int misc_reg, ThreadContext *tc)
447{
448    CPSR cpsr = 0;
449    PCState pc = 0;
450    SCR scr = 0;
451
452    if (misc_reg == MISCREG_CPSR) {
453        cpsr = miscRegs[misc_reg];
454        pc = tc->pcState();
455        cpsr.j = pc.jazelle() ? 1 : 0;
456        cpsr.t = pc.thumb() ? 1 : 0;
457        return cpsr;
458    }
459
460#ifndef NDEBUG
461    if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
462        if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
463            warn("Unimplemented system register %s read.\n",
464                 miscRegName[misc_reg]);
465        else
466            panic("Unimplemented system register %s read.\n",
467                  miscRegName[misc_reg]);
468    }
469#endif
470
471    switch (unflattenMiscReg(misc_reg)) {
472      case MISCREG_HCR:
473        {
474            if (!haveVirtualization)
475                return 0;
476            else
477                return readMiscRegNoEffect(MISCREG_HCR);
478        }
479      case MISCREG_CPACR:
480        {
481            const uint32_t ones = (uint32_t)(-1);
482            CPACR cpacrMask = 0;
483            // Only cp10, cp11, and ase are implemented, nothing else should
484            // be readable? (straight copy from the write code)
485            cpacrMask.cp10 = ones;
486            cpacrMask.cp11 = ones;
487            cpacrMask.asedis = ones;
488
489            // Security Extensions may limit the readability of CPACR
490            if (haveSecurity) {
491                scr = readMiscRegNoEffect(MISCREG_SCR);
492                cpsr = readMiscRegNoEffect(MISCREG_CPSR);
493                if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
494                    NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
495                    // NB: Skipping the full loop, here
496                    if (!nsacr.cp10) cpacrMask.cp10 = 0;
497                    if (!nsacr.cp11) cpacrMask.cp11 = 0;
498                }
499            }
500            RegVal val = readMiscRegNoEffect(MISCREG_CPACR);
501            val &= cpacrMask;
502            DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
503                    miscRegName[misc_reg], val);
504            return val;
505        }
506      case MISCREG_MPIDR:
507      case MISCREG_MPIDR_EL1:
508        return readMPIDR(system, tc);
509      case MISCREG_VMPIDR:
510      case MISCREG_VMPIDR_EL2:
511        // top bit defined as RES1
512        return readMiscRegNoEffect(misc_reg) | 0x80000000;
513      case MISCREG_ID_AFR0: // not implemented, so alias MIDR
514      case MISCREG_REVIDR:  // not implemented, so alias MIDR
515      case MISCREG_MIDR:
516        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
517        scr  = readMiscRegNoEffect(MISCREG_SCR);
518        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
519            return readMiscRegNoEffect(misc_reg);
520        } else {
521            return readMiscRegNoEffect(MISCREG_VPIDR);
522        }
523        break;
524      case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
525      case MISCREG_JMCR:  // Jazelle trivial implementation, RAZ/WI
526      case MISCREG_JIDR:  // Jazelle trivial implementation, RAZ/WI
527      case MISCREG_AIDR:  // AUX ID set to 0
528      case MISCREG_TCMTR: // No TCM's
529        return 0;
530
531      case MISCREG_CLIDR:
532        warn_once("The clidr register always reports 0 caches.\n");
533        warn_once("clidr LoUIS field of 0b001 to match current "
534                  "ARM implementations.\n");
535        return 0x00200000;
536      case MISCREG_CCSIDR:
537        warn_once("The ccsidr register isn't implemented and "
538                "always reads as 0.\n");
539        break;
540      case MISCREG_CTR:                 // AArch32, ARMv7, top bit set
541      case MISCREG_CTR_EL0:             // AArch64
542        {
543            //all caches have the same line size in gem5
544            //4 byte words in ARM
545            unsigned lineSizeWords =
546                tc->getSystemPtr()->cacheLineSize() / 4;
547            unsigned log2LineSizeWords = 0;
548
549            while (lineSizeWords >>= 1) {
550                ++log2LineSizeWords;
551            }
552
553            CTR ctr = 0;
554            //log2 of minimun i-cache line size (words)
555            ctr.iCacheLineSize = log2LineSizeWords;
556            //b11 - gem5 uses pipt
557            ctr.l1IndexPolicy = 0x3;
558            //log2 of minimum d-cache line size (words)
559            ctr.dCacheLineSize = log2LineSizeWords;
560            //log2 of max reservation size (words)
561            ctr.erg = log2LineSizeWords;
562            //log2 of max writeback size (words)
563            ctr.cwg = log2LineSizeWords;
564            //b100 - gem5 format is ARMv7
565            ctr.format = 0x4;
566
567            return ctr;
568        }
569      case MISCREG_ACTLR:
570        warn("Not doing anything for miscreg ACTLR\n");
571        break;
572
573      case MISCREG_PMXEVTYPER_PMCCFILTR:
574      case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
575      case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
576      case MISCREG_PMCR ... MISCREG_PMOVSSET:
577        return pmu->readMiscReg(misc_reg);
578
579      case MISCREG_CPSR_Q:
580        panic("shouldn't be reading this register seperately\n");
581      case MISCREG_FPSCR_QC:
582        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
583      case MISCREG_FPSCR_EXC:
584        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
585      case MISCREG_FPSR:
586        {
587            const uint32_t ones = (uint32_t)(-1);
588            FPSCR fpscrMask = 0;
589            fpscrMask.ioc = ones;
590            fpscrMask.dzc = ones;
591            fpscrMask.ofc = ones;
592            fpscrMask.ufc = ones;
593            fpscrMask.ixc = ones;
594            fpscrMask.idc = ones;
595            fpscrMask.qc = ones;
596            fpscrMask.v = ones;
597            fpscrMask.c = ones;
598            fpscrMask.z = ones;
599            fpscrMask.n = ones;
600            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
601        }
602      case MISCREG_FPCR:
603        {
604            const uint32_t ones = (uint32_t)(-1);
605            FPSCR fpscrMask  = 0;
606            fpscrMask.len    = ones;
607            fpscrMask.fz16   = ones;
608            fpscrMask.stride = ones;
609            fpscrMask.rMode  = ones;
610            fpscrMask.fz     = ones;
611            fpscrMask.dn     = ones;
612            fpscrMask.ahp    = ones;
613            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
614        }
615      case MISCREG_NZCV:
616        {
617            CPSR cpsr = 0;
618            cpsr.nz   = tc->readCCReg(CCREG_NZ);
619            cpsr.c    = tc->readCCReg(CCREG_C);
620            cpsr.v    = tc->readCCReg(CCREG_V);
621            return cpsr;
622        }
623      case MISCREG_DAIF:
624        {
625            CPSR cpsr = 0;
626            cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
627            return cpsr;
628        }
629      case MISCREG_SP_EL0:
630        {
631            return tc->readIntReg(INTREG_SP0);
632        }
633      case MISCREG_SP_EL1:
634        {
635            return tc->readIntReg(INTREG_SP1);
636        }
637      case MISCREG_SP_EL2:
638        {
639            return tc->readIntReg(INTREG_SP2);
640        }
641      case MISCREG_SPSEL:
642        {
643            return miscRegs[MISCREG_CPSR] & 0x1;
644        }
645      case MISCREG_CURRENTEL:
646        {
647            return miscRegs[MISCREG_CPSR] & 0xc;
648        }
649      case MISCREG_PAN:
650        {
651            return miscRegs[MISCREG_CPSR] & 0x400000;
652        }
653      case MISCREG_L2CTLR:
654        {
655            // mostly unimplemented, just set NumCPUs field from sim and return
656            L2CTLR l2ctlr = 0;
657            // b00:1CPU to b11:4CPUs
658            l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
659            return l2ctlr;
660        }
661      case MISCREG_DBGDIDR:
662        /* For now just implement the version number.
663         * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
664         */
665        return 0x5 << 16;
666      case MISCREG_DBGDSCRint:
667        return 0;
668      case MISCREG_ISR:
669        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
670            readMiscRegNoEffect(MISCREG_HCR),
671            readMiscRegNoEffect(MISCREG_CPSR),
672            readMiscRegNoEffect(MISCREG_SCR));
673      case MISCREG_ISR_EL1:
674        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
675            readMiscRegNoEffect(MISCREG_HCR_EL2),
676            readMiscRegNoEffect(MISCREG_CPSR),
677            readMiscRegNoEffect(MISCREG_SCR_EL3));
678      case MISCREG_DCZID_EL0:
679        return 0x04;  // DC ZVA clear 64-byte chunks
680      case MISCREG_HCPTR:
681        {
682            RegVal val = readMiscRegNoEffect(misc_reg);
683            // The trap bit associated with CP14 is defined as RAZ
684            val &= ~(1 << 14);
685            // If a CP bit in NSACR is 0 then the corresponding bit in
686            // HCPTR is RAO/WI
687            bool secure_lookup = haveSecurity &&
688                inSecureState(readMiscRegNoEffect(MISCREG_SCR),
689                              readMiscRegNoEffect(MISCREG_CPSR));
690            if (!secure_lookup) {
691                RegVal mask = readMiscRegNoEffect(MISCREG_NSACR);
692                val |= (mask ^ 0x7FFF) & 0xBFFF;
693            }
694            // Set the bits for unimplemented coprocessors to RAO/WI
695            val |= 0x33FF;
696            return (val);
697        }
698      case MISCREG_HDFAR: // alias for secure DFAR
699        return readMiscRegNoEffect(MISCREG_DFAR_S);
700      case MISCREG_HIFAR: // alias for secure IFAR
701        return readMiscRegNoEffect(MISCREG_IFAR_S);
702
703      case MISCREG_ID_PFR0:
704        // !ThumbEE | !Jazelle | Thumb | ARM
705        return 0x00000031;
706      case MISCREG_ID_PFR1:
707        {   // Timer | Virti | !M Profile | TrustZone | ARMv4
708            bool haveTimer = (system->getGenericTimer() != NULL);
709            return 0x00000001
710                 | (haveSecurity       ? 0x00000010 : 0x0)
711                 | (haveVirtualization ? 0x00001000 : 0x0)
712                 | (haveTimer          ? 0x00010000 : 0x0);
713        }
714      case MISCREG_ID_AA64PFR0_EL1:
715        return 0x0000000000000002 | // AArch{64,32} supported at EL0
716               0x0000000000000020                               | // EL1
717               (haveVirtualization    ? 0x0000000000000200 : 0) | // EL2
718               (haveSecurity          ? 0x0000000000002000 : 0) | // EL3
719               (haveSVE               ? 0x0000000100000000 : 0) | // SVE
720               (haveGICv3CPUInterface ? 0x0000000001000000 : 0);
721      case MISCREG_ID_AA64PFR1_EL1:
722        return 0; // bits [63:0] RES0 (reserved for future use)
723
724      // Generic Timer registers
725      case MISCREG_CNTHV_CTL_EL2:
726      case MISCREG_CNTHV_CVAL_EL2:
727      case MISCREG_CNTHV_TVAL_EL2:
728      case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
729      case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
730      case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
731      case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
732        return getGenericTimer(tc).readMiscReg(misc_reg);
733
734      case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
735      case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
736        return getGICv3CPUInterface(tc).readMiscReg(misc_reg);
737
738      default:
739        break;
740
741    }
742    return readMiscRegNoEffect(misc_reg);
743}
744
745void
746ISA::setMiscRegNoEffect(int misc_reg, RegVal val)
747{
748    assert(misc_reg < NumMiscRegs);
749
750    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
751    const auto &map = getMiscIndices(misc_reg);
752    int lower = map.first, upper = map.second;
753
754    auto v = (val & ~reg.wi()) | reg.rao();
755    if (upper > 0) {
756        miscRegs[lower] = bits(v, 31, 0);
757        miscRegs[upper] = bits(v, 63, 32);
758        DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
759                misc_reg, lower, upper, v);
760    } else {
761        miscRegs[lower] = v;
762        DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
763                misc_reg, lower, v);
764    }
765}
766
767void
768ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc)
769{
770
771    RegVal newVal = val;
772    bool secure_lookup;
773    SCR scr;
774
775    if (misc_reg == MISCREG_CPSR) {
776        updateRegMap(val);
777
778
779        CPSR old_cpsr = miscRegs[MISCREG_CPSR];
780        int old_mode = old_cpsr.mode;
781        CPSR cpsr = val;
782        if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
783            getITBPtr(tc)->invalidateMiscReg();
784            getDTBPtr(tc)->invalidateMiscReg();
785        }
786
787        DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
788                miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
789        PCState pc = tc->pcState();
790        pc.nextThumb(cpsr.t);
791        pc.nextJazelle(cpsr.j);
792        pc.illegalExec(cpsr.il == 1);
793
794        tc->getDecoderPtr()->setSveLen((getCurSveVecLenInBits(tc) >> 7) - 1);
795
796        // Follow slightly different semantics if a CheckerCPU object
797        // is connected
798        CheckerCPU *checker = tc->getCheckerCpuPtr();
799        if (checker) {
800            tc->pcStateNoRecord(pc);
801        } else {
802            tc->pcState(pc);
803        }
804    } else {
805#ifndef NDEBUG
806        if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
807            if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
808                warn("Unimplemented system register %s write with %#x.\n",
809                    miscRegName[misc_reg], val);
810            else
811                panic("Unimplemented system register %s write with %#x.\n",
812                    miscRegName[misc_reg], val);
813        }
814#endif
815        switch (unflattenMiscReg(misc_reg)) {
816          case MISCREG_CPACR:
817            {
818
819                const uint32_t ones = (uint32_t)(-1);
820                CPACR cpacrMask = 0;
821                // Only cp10, cp11, and ase are implemented, nothing else should
822                // be writable
823                cpacrMask.cp10 = ones;
824                cpacrMask.cp11 = ones;
825                cpacrMask.asedis = ones;
826
827                // Security Extensions may limit the writability of CPACR
828                if (haveSecurity) {
829                    scr = readMiscRegNoEffect(MISCREG_SCR);
830                    CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
831                    if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
832                        NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
833                        // NB: Skipping the full loop, here
834                        if (!nsacr.cp10) cpacrMask.cp10 = 0;
835                        if (!nsacr.cp11) cpacrMask.cp11 = 0;
836                    }
837                }
838
839                RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR);
840                newVal &= cpacrMask;
841                newVal |= old_val & ~cpacrMask;
842                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
843                        miscRegName[misc_reg], newVal);
844            }
845            break;
846          case MISCREG_CPACR_EL1:
847            {
848                const uint32_t ones = (uint32_t)(-1);
849                CPACR cpacrMask = 0;
850                cpacrMask.tta = ones;
851                cpacrMask.fpen = ones;
852                if (haveSVE) {
853                    cpacrMask.zen = ones;
854                }
855                newVal &= cpacrMask;
856                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
857                        miscRegName[misc_reg], newVal);
858            }
859            break;
860          case MISCREG_CPTR_EL2:
861            {
862                const uint32_t ones = (uint32_t)(-1);
863                CPTR cptrMask = 0;
864                cptrMask.tcpac = ones;
865                cptrMask.tta = ones;
866                cptrMask.tfp = ones;
867                if (haveSVE) {
868                    cptrMask.tz = ones;
869                }
870                newVal &= cptrMask;
871                cptrMask = 0;
872                cptrMask.res1_13_12_el2 = ones;
873                cptrMask.res1_7_0_el2 = ones;
874                if (!haveSVE) {
875                    cptrMask.res1_8_el2 = ones;
876                }
877                cptrMask.res1_9_el2 = ones;
878                newVal |= cptrMask;
879                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
880                        miscRegName[misc_reg], newVal);
881            }
882            break;
883          case MISCREG_CPTR_EL3:
884            {
885                const uint32_t ones = (uint32_t)(-1);
886                CPTR cptrMask = 0;
887                cptrMask.tcpac = ones;
888                cptrMask.tta = ones;
889                cptrMask.tfp = ones;
890                if (haveSVE) {
891                    cptrMask.ez = ones;
892                }
893                newVal &= cptrMask;
894                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
895                        miscRegName[misc_reg], newVal);
896            }
897            break;
898          case MISCREG_CSSELR:
899            warn_once("The csselr register isn't implemented.\n");
900            return;
901
902          case MISCREG_DC_ZVA_Xt:
903            warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
904            return;
905
906          case MISCREG_FPSCR:
907            {
908                const uint32_t ones = (uint32_t)(-1);
909                FPSCR fpscrMask = 0;
910                fpscrMask.ioc = ones;
911                fpscrMask.dzc = ones;
912                fpscrMask.ofc = ones;
913                fpscrMask.ufc = ones;
914                fpscrMask.ixc = ones;
915                fpscrMask.idc = ones;
916                fpscrMask.ioe = ones;
917                fpscrMask.dze = ones;
918                fpscrMask.ofe = ones;
919                fpscrMask.ufe = ones;
920                fpscrMask.ixe = ones;
921                fpscrMask.ide = ones;
922                fpscrMask.len = ones;
923                fpscrMask.fz16 = ones;
924                fpscrMask.stride = ones;
925                fpscrMask.rMode = ones;
926                fpscrMask.fz = ones;
927                fpscrMask.dn = ones;
928                fpscrMask.ahp = ones;
929                fpscrMask.qc = ones;
930                fpscrMask.v = ones;
931                fpscrMask.c = ones;
932                fpscrMask.z = ones;
933                fpscrMask.n = ones;
934                newVal = (newVal & (uint32_t)fpscrMask) |
935                         (readMiscRegNoEffect(MISCREG_FPSCR) &
936                          ~(uint32_t)fpscrMask);
937                tc->getDecoderPtr()->setContext(newVal);
938            }
939            break;
940          case MISCREG_FPSR:
941            {
942                const uint32_t ones = (uint32_t)(-1);
943                FPSCR fpscrMask = 0;
944                fpscrMask.ioc = ones;
945                fpscrMask.dzc = ones;
946                fpscrMask.ofc = ones;
947                fpscrMask.ufc = ones;
948                fpscrMask.ixc = ones;
949                fpscrMask.idc = ones;
950                fpscrMask.qc = ones;
951                fpscrMask.v = ones;
952                fpscrMask.c = ones;
953                fpscrMask.z = ones;
954                fpscrMask.n = ones;
955                newVal = (newVal & (uint32_t)fpscrMask) |
956                         (readMiscRegNoEffect(MISCREG_FPSCR) &
957                          ~(uint32_t)fpscrMask);
958                misc_reg = MISCREG_FPSCR;
959            }
960            break;
961          case MISCREG_FPCR:
962            {
963                const uint32_t ones = (uint32_t)(-1);
964                FPSCR fpscrMask  = 0;
965                fpscrMask.len    = ones;
966                fpscrMask.fz16   = ones;
967                fpscrMask.stride = ones;
968                fpscrMask.rMode  = ones;
969                fpscrMask.fz     = ones;
970                fpscrMask.dn     = ones;
971                fpscrMask.ahp    = ones;
972                newVal = (newVal & (uint32_t)fpscrMask) |
973                         (readMiscRegNoEffect(MISCREG_FPSCR) &
974                          ~(uint32_t)fpscrMask);
975                misc_reg = MISCREG_FPSCR;
976            }
977            break;
978          case MISCREG_CPSR_Q:
979            {
980                assert(!(newVal & ~CpsrMaskQ));
981                newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
982                misc_reg = MISCREG_CPSR;
983            }
984            break;
985          case MISCREG_FPSCR_QC:
986            {
987                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
988                         (newVal & FpscrQcMask);
989                misc_reg = MISCREG_FPSCR;
990            }
991            break;
992          case MISCREG_FPSCR_EXC:
993            {
994                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
995                         (newVal & FpscrExcMask);
996                misc_reg = MISCREG_FPSCR;
997            }
998            break;
999          case MISCREG_FPEXC:
1000            {
1001                // vfpv3 architecture, section B.6.1 of DDI04068
1002                // bit 29 - valid only if fpexc[31] is 0
1003                const uint32_t fpexcMask = 0x60000000;
1004                newVal = (newVal & fpexcMask) |
1005                         (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1006            }
1007            break;
1008          case MISCREG_HCR:
1009            {
1010                if (!haveVirtualization)
1011                    return;
1012            }
1013            break;
1014          case MISCREG_IFSR:
1015            {
1016                // ARM ARM (ARM DDI 0406C.b) B4.1.96
1017                const uint32_t ifsrMask =
1018                    mask(31, 13) | mask(11, 11) | mask(8, 6);
1019                newVal = newVal & ~ifsrMask;
1020            }
1021            break;
1022          case MISCREG_DFSR:
1023            {
1024                // ARM ARM (ARM DDI 0406C.b) B4.1.52
1025                const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1026                newVal = newVal & ~dfsrMask;
1027            }
1028            break;
1029          case MISCREG_AMAIR0:
1030          case MISCREG_AMAIR1:
1031            {
1032                // ARM ARM (ARM DDI 0406C.b) B4.1.5
1033                // Valid only with LPAE
1034                if (!haveLPAE)
1035                    return;
1036                DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1037            }
1038            break;
1039          case MISCREG_SCR:
1040            getITBPtr(tc)->invalidateMiscReg();
1041            getDTBPtr(tc)->invalidateMiscReg();
1042            break;
1043          case MISCREG_SCTLR:
1044            {
1045                DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1046                scr = readMiscRegNoEffect(MISCREG_SCR);
1047
1048                MiscRegIndex sctlr_idx;
1049                if (haveSecurity && !highestELIs64 && !scr.ns) {
1050                    sctlr_idx = MISCREG_SCTLR_S;
1051                } else {
1052                    sctlr_idx =  MISCREG_SCTLR_NS;
1053                }
1054
1055                SCTLR sctlr = miscRegs[sctlr_idx];
1056                SCTLR new_sctlr = newVal;
1057                new_sctlr.nmfi =  ((bool)sctlr.nmfi) && !haveVirtualization;
1058                miscRegs[sctlr_idx] = (RegVal)new_sctlr;
1059                getITBPtr(tc)->invalidateMiscReg();
1060                getDTBPtr(tc)->invalidateMiscReg();
1061            }
1062          case MISCREG_MIDR:
1063          case MISCREG_ID_PFR0:
1064          case MISCREG_ID_PFR1:
1065          case MISCREG_ID_DFR0:
1066          case MISCREG_ID_MMFR0:
1067          case MISCREG_ID_MMFR1:
1068          case MISCREG_ID_MMFR2:
1069          case MISCREG_ID_MMFR3:
1070          case MISCREG_ID_ISAR0:
1071          case MISCREG_ID_ISAR1:
1072          case MISCREG_ID_ISAR2:
1073          case MISCREG_ID_ISAR3:
1074          case MISCREG_ID_ISAR4:
1075          case MISCREG_ID_ISAR5:
1076
1077          case MISCREG_MPIDR:
1078          case MISCREG_FPSID:
1079          case MISCREG_TLBTR:
1080          case MISCREG_MVFR0:
1081          case MISCREG_MVFR1:
1082
1083          case MISCREG_ID_AA64AFR0_EL1:
1084          case MISCREG_ID_AA64AFR1_EL1:
1085          case MISCREG_ID_AA64DFR0_EL1:
1086          case MISCREG_ID_AA64DFR1_EL1:
1087          case MISCREG_ID_AA64ISAR0_EL1:
1088          case MISCREG_ID_AA64ISAR1_EL1:
1089          case MISCREG_ID_AA64MMFR0_EL1:
1090          case MISCREG_ID_AA64MMFR1_EL1:
1091          case MISCREG_ID_AA64MMFR2_EL1:
1092          case MISCREG_ID_AA64PFR0_EL1:
1093          case MISCREG_ID_AA64PFR1_EL1:
1094            // ID registers are constants.
1095            return;
1096
1097          // TLB Invalidate All
1098          case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1099            {
1100                assert32(tc);
1101                scr = readMiscReg(MISCREG_SCR, tc);
1102
1103                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1104                tlbiOp(tc);
1105                return;
1106            }
1107          // TLB Invalidate All, Inner Shareable
1108          case MISCREG_TLBIALLIS:
1109            {
1110                assert32(tc);
1111                scr = readMiscReg(MISCREG_SCR, tc);
1112
1113                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1114                tlbiOp.broadcast(tc);
1115                return;
1116            }
1117          // Instruction TLB Invalidate All
1118          case MISCREG_ITLBIALL:
1119            {
1120                assert32(tc);
1121                scr = readMiscReg(MISCREG_SCR, tc);
1122
1123                ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1124                tlbiOp(tc);
1125                return;
1126            }
1127          // Data TLB Invalidate All
1128          case MISCREG_DTLBIALL:
1129            {
1130                assert32(tc);
1131                scr = readMiscReg(MISCREG_SCR, tc);
1132
1133                DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1134                tlbiOp(tc);
1135                return;
1136            }
1137          // TLB Invalidate by VA
1138          // mcr tlbimval(is) is invalidating all matching entries
1139          // regardless of the level of lookup, since in gem5 we cache
1140          // in the tlb the last level of lookup only.
1141          case MISCREG_TLBIMVA:
1142          case MISCREG_TLBIMVAL:
1143            {
1144                assert32(tc);
1145                scr = readMiscReg(MISCREG_SCR, tc);
1146
1147                TLBIMVA tlbiOp(EL1,
1148                               haveSecurity && !scr.ns,
1149                               mbits(newVal, 31, 12),
1150                               bits(newVal, 7,0));
1151
1152                tlbiOp(tc);
1153                return;
1154            }
1155          // TLB Invalidate by VA, Inner Shareable
1156          case MISCREG_TLBIMVAIS:
1157          case MISCREG_TLBIMVALIS:
1158            {
1159                assert32(tc);
1160                scr = readMiscReg(MISCREG_SCR, tc);
1161
1162                TLBIMVA tlbiOp(EL1,
1163                               haveSecurity && !scr.ns,
1164                               mbits(newVal, 31, 12),
1165                               bits(newVal, 7,0));
1166
1167                tlbiOp.broadcast(tc);
1168                return;
1169            }
1170          // TLB Invalidate by ASID match
1171          case MISCREG_TLBIASID:
1172            {
1173                assert32(tc);
1174                scr = readMiscReg(MISCREG_SCR, tc);
1175
1176                TLBIASID tlbiOp(EL1,
1177                                haveSecurity && !scr.ns,
1178                                bits(newVal, 7,0));
1179
1180                tlbiOp(tc);
1181                return;
1182            }
1183          // TLB Invalidate by ASID match, Inner Shareable
1184          case MISCREG_TLBIASIDIS:
1185            {
1186                assert32(tc);
1187                scr = readMiscReg(MISCREG_SCR, tc);
1188
1189                TLBIASID tlbiOp(EL1,
1190                                haveSecurity && !scr.ns,
1191                                bits(newVal, 7,0));
1192
1193                tlbiOp.broadcast(tc);
1194                return;
1195            }
1196          // mcr tlbimvaal(is) is invalidating all matching entries
1197          // regardless of the level of lookup, since in gem5 we cache
1198          // in the tlb the last level of lookup only.
1199          // TLB Invalidate by VA, All ASID
1200          case MISCREG_TLBIMVAA:
1201          case MISCREG_TLBIMVAAL:
1202            {
1203                assert32(tc);
1204                scr = readMiscReg(MISCREG_SCR, tc);
1205
1206                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1207                                mbits(newVal, 31,12));
1208
1209                tlbiOp(tc);
1210                return;
1211            }
1212          // TLB Invalidate by VA, All ASID, Inner Shareable
1213          case MISCREG_TLBIMVAAIS:
1214          case MISCREG_TLBIMVAALIS:
1215            {
1216                assert32(tc);
1217                scr = readMiscReg(MISCREG_SCR, tc);
1218
1219                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1220                                mbits(newVal, 31,12));
1221
1222                tlbiOp.broadcast(tc);
1223                return;
1224            }
1225          // mcr tlbimvalh(is) is invalidating all matching entries
1226          // regardless of the level of lookup, since in gem5 we cache
1227          // in the tlb the last level of lookup only.
1228          // TLB Invalidate by VA, Hyp mode
1229          case MISCREG_TLBIMVAH:
1230          case MISCREG_TLBIMVALH:
1231            {
1232                assert32(tc);
1233                scr = readMiscReg(MISCREG_SCR, tc);
1234
1235                TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1236                                mbits(newVal, 31,12));
1237
1238                tlbiOp(tc);
1239                return;
1240            }
1241          // TLB Invalidate by VA, Hyp mode, Inner Shareable
1242          case MISCREG_TLBIMVAHIS:
1243          case MISCREG_TLBIMVALHIS:
1244            {
1245                assert32(tc);
1246                scr = readMiscReg(MISCREG_SCR, tc);
1247
1248                TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1249                                mbits(newVal, 31,12));
1250
1251                tlbiOp.broadcast(tc);
1252                return;
1253            }
1254          // mcr tlbiipas2l(is) is invalidating all matching entries
1255          // regardless of the level of lookup, since in gem5 we cache
1256          // in the tlb the last level of lookup only.
1257          // TLB Invalidate by Intermediate Physical Address, Stage 2
1258          case MISCREG_TLBIIPAS2:
1259          case MISCREG_TLBIIPAS2L:
1260            {
1261                assert32(tc);
1262                scr = readMiscReg(MISCREG_SCR, tc);
1263
1264                TLBIIPA tlbiOp(EL1,
1265                               haveSecurity && !scr.ns,
1266                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1267
1268                tlbiOp(tc);
1269                return;
1270            }
1271          // TLB Invalidate by Intermediate Physical Address, Stage 2,
1272          // Inner Shareable
1273          case MISCREG_TLBIIPAS2IS:
1274          case MISCREG_TLBIIPAS2LIS:
1275            {
1276                assert32(tc);
1277                scr = readMiscReg(MISCREG_SCR, tc);
1278
1279                TLBIIPA tlbiOp(EL1,
1280                               haveSecurity && !scr.ns,
1281                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1282
1283                tlbiOp.broadcast(tc);
1284                return;
1285            }
1286          // Instruction TLB Invalidate by VA
1287          case MISCREG_ITLBIMVA:
1288            {
1289                assert32(tc);
1290                scr = readMiscReg(MISCREG_SCR, tc);
1291
1292                ITLBIMVA tlbiOp(EL1,
1293                                haveSecurity && !scr.ns,
1294                                mbits(newVal, 31, 12),
1295                                bits(newVal, 7,0));
1296
1297                tlbiOp(tc);
1298                return;
1299            }
1300          // Data TLB Invalidate by VA
1301          case MISCREG_DTLBIMVA:
1302            {
1303                assert32(tc);
1304                scr = readMiscReg(MISCREG_SCR, tc);
1305
1306                DTLBIMVA tlbiOp(EL1,
1307                                haveSecurity && !scr.ns,
1308                                mbits(newVal, 31, 12),
1309                                bits(newVal, 7,0));
1310
1311                tlbiOp(tc);
1312                return;
1313            }
1314          // Instruction TLB Invalidate by ASID match
1315          case MISCREG_ITLBIASID:
1316            {
1317                assert32(tc);
1318                scr = readMiscReg(MISCREG_SCR, tc);
1319
1320                ITLBIASID tlbiOp(EL1,
1321                                 haveSecurity && !scr.ns,
1322                                 bits(newVal, 7,0));
1323
1324                tlbiOp(tc);
1325                return;
1326            }
1327          // Data TLB Invalidate by ASID match
1328          case MISCREG_DTLBIASID:
1329            {
1330                assert32(tc);
1331                scr = readMiscReg(MISCREG_SCR, tc);
1332
1333                DTLBIASID tlbiOp(EL1,
1334                                 haveSecurity && !scr.ns,
1335                                 bits(newVal, 7,0));
1336
1337                tlbiOp(tc);
1338                return;
1339            }
1340          // TLB Invalidate All, Non-Secure Non-Hyp
1341          case MISCREG_TLBIALLNSNH:
1342            {
1343                assert32(tc);
1344
1345                TLBIALLN tlbiOp(EL1);
1346                tlbiOp(tc);
1347                return;
1348            }
1349          // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
1350          case MISCREG_TLBIALLNSNHIS:
1351            {
1352                assert32(tc);
1353
1354                TLBIALLN tlbiOp(EL1);
1355                tlbiOp.broadcast(tc);
1356                return;
1357            }
1358          // TLB Invalidate All, Hyp mode
1359          case MISCREG_TLBIALLH:
1360            {
1361                assert32(tc);
1362
1363                TLBIALLN tlbiOp(EL2);
1364                tlbiOp(tc);
1365                return;
1366            }
1367          // TLB Invalidate All, Hyp mode, Inner Shareable
1368          case MISCREG_TLBIALLHIS:
1369            {
1370                assert32(tc);
1371
1372                TLBIALLN tlbiOp(EL2);
1373                tlbiOp.broadcast(tc);
1374                return;
1375            }
1376          // AArch64 TLB Invalidate All, EL3
1377          case MISCREG_TLBI_ALLE3:
1378            {
1379                assert64(tc);
1380
1381                TLBIALL tlbiOp(EL3, true);
1382                tlbiOp(tc);
1383                return;
1384            }
1385          // AArch64 TLB Invalidate All, EL3, Inner Shareable
1386          case MISCREG_TLBI_ALLE3IS:
1387            {
1388                assert64(tc);
1389
1390                TLBIALL tlbiOp(EL3, true);
1391                tlbiOp.broadcast(tc);
1392                return;
1393            }
1394          // AArch64 TLB Invalidate All, EL2, Inner Shareable
1395          case MISCREG_TLBI_ALLE2:
1396          case MISCREG_TLBI_ALLE2IS:
1397            {
1398                assert64(tc);
1399                scr = readMiscReg(MISCREG_SCR, tc);
1400
1401                TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns);
1402                tlbiOp(tc);
1403                return;
1404            }
1405          // AArch64 TLB Invalidate All, EL1
1406          case MISCREG_TLBI_ALLE1:
1407          case MISCREG_TLBI_VMALLE1:
1408          case MISCREG_TLBI_VMALLS12E1:
1409            // @todo: handle VMID and stage 2 to enable Virtualization
1410            {
1411                assert64(tc);
1412                scr = readMiscReg(MISCREG_SCR, tc);
1413
1414                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1415                tlbiOp(tc);
1416                return;
1417            }
1418          // AArch64 TLB Invalidate All, EL1, Inner Shareable
1419          case MISCREG_TLBI_ALLE1IS:
1420          case MISCREG_TLBI_VMALLE1IS:
1421          case MISCREG_TLBI_VMALLS12E1IS:
1422            // @todo: handle VMID and stage 2 to enable Virtualization
1423            {
1424                assert64(tc);
1425                scr = readMiscReg(MISCREG_SCR, tc);
1426
1427                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1428                tlbiOp.broadcast(tc);
1429                return;
1430            }
1431          // VAEx(IS) and VALEx(IS) are the same because TLBs
1432          // only store entries
1433          // from the last level of translation table walks
1434          // @todo: handle VMID to enable Virtualization
1435          // AArch64 TLB Invalidate by VA, EL3
1436          case MISCREG_TLBI_VAE3_Xt:
1437          case MISCREG_TLBI_VALE3_Xt:
1438            {
1439                assert64(tc);
1440
1441                TLBIMVA tlbiOp(EL3, true,
1442                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1443                               0xbeef);
1444                tlbiOp(tc);
1445                return;
1446            }
1447          // AArch64 TLB Invalidate by VA, EL3, Inner Shareable
1448          case MISCREG_TLBI_VAE3IS_Xt:
1449          case MISCREG_TLBI_VALE3IS_Xt:
1450            {
1451                assert64(tc);
1452
1453                TLBIMVA tlbiOp(EL3, true,
1454                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1455                               0xbeef);
1456
1457                tlbiOp.broadcast(tc);
1458                return;
1459            }
1460          // AArch64 TLB Invalidate by VA, EL2
1461          case MISCREG_TLBI_VAE2_Xt:
1462          case MISCREG_TLBI_VALE2_Xt:
1463            {
1464                assert64(tc);
1465                scr = readMiscReg(MISCREG_SCR, tc);
1466
1467                TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1468                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1469                               0xbeef);
1470                tlbiOp(tc);
1471                return;
1472            }
1473          // AArch64 TLB Invalidate by VA, EL2, Inner Shareable
1474          case MISCREG_TLBI_VAE2IS_Xt:
1475          case MISCREG_TLBI_VALE2IS_Xt:
1476            {
1477                assert64(tc);
1478                scr = readMiscReg(MISCREG_SCR, tc);
1479
1480                TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1481                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1482                               0xbeef);
1483
1484                tlbiOp.broadcast(tc);
1485                return;
1486            }
1487          // AArch64 TLB Invalidate by VA, EL1
1488          case MISCREG_TLBI_VAE1_Xt:
1489          case MISCREG_TLBI_VALE1_Xt:
1490            {
1491                assert64(tc);
1492                scr = readMiscReg(MISCREG_SCR, tc);
1493                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1494                                              bits(newVal, 55, 48);
1495
1496                TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1497                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1498                               asid);
1499
1500                tlbiOp(tc);
1501                return;
1502            }
1503          // AArch64 TLB Invalidate by VA, EL1, Inner Shareable
1504          case MISCREG_TLBI_VAE1IS_Xt:
1505          case MISCREG_TLBI_VALE1IS_Xt:
1506            {
1507                assert64(tc);
1508                scr = readMiscReg(MISCREG_SCR, tc);
1509                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1510                                              bits(newVal, 55, 48);
1511
1512                TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1513                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1514                               asid);
1515
1516                tlbiOp.broadcast(tc);
1517                return;
1518            }
1519          // AArch64 TLB Invalidate by ASID, EL1
1520          // @todo: handle VMID to enable Virtualization
1521          case MISCREG_TLBI_ASIDE1_Xt:
1522            {
1523                assert64(tc);
1524                scr = readMiscReg(MISCREG_SCR, tc);
1525                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1526                                              bits(newVal, 55, 48);
1527
1528                TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1529                tlbiOp(tc);
1530                return;
1531            }
1532          // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
1533          case MISCREG_TLBI_ASIDE1IS_Xt:
1534            {
1535                assert64(tc);
1536                scr = readMiscReg(MISCREG_SCR, tc);
1537                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1538                                              bits(newVal, 55, 48);
1539
1540                TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1541                tlbiOp.broadcast(tc);
1542                return;
1543            }
1544          // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1545          // entries from the last level of translation table walks
1546          // AArch64 TLB Invalidate by VA, All ASID, EL1
1547          case MISCREG_TLBI_VAAE1_Xt:
1548          case MISCREG_TLBI_VAALE1_Xt:
1549            {
1550                assert64(tc);
1551                scr = readMiscReg(MISCREG_SCR, tc);
1552
1553                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1554                    static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1555
1556                tlbiOp(tc);
1557                return;
1558            }
1559          // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
1560          case MISCREG_TLBI_VAAE1IS_Xt:
1561          case MISCREG_TLBI_VAALE1IS_Xt:
1562            {
1563                assert64(tc);
1564                scr = readMiscReg(MISCREG_SCR, tc);
1565
1566                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1567                    static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1568
1569                tlbiOp.broadcast(tc);
1570                return;
1571            }
1572          // AArch64 TLB Invalidate by Intermediate Physical Address,
1573          // Stage 2, EL1
1574          case MISCREG_TLBI_IPAS2E1_Xt:
1575          case MISCREG_TLBI_IPAS2LE1_Xt:
1576            {
1577                assert64(tc);
1578                scr = readMiscReg(MISCREG_SCR, tc);
1579
1580                TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1581                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1582
1583                tlbiOp(tc);
1584                return;
1585            }
1586          // AArch64 TLB Invalidate by Intermediate Physical Address,
1587          // Stage 2, EL1, Inner Shareable
1588          case MISCREG_TLBI_IPAS2E1IS_Xt:
1589          case MISCREG_TLBI_IPAS2LE1IS_Xt:
1590            {
1591                assert64(tc);
1592                scr = readMiscReg(MISCREG_SCR, tc);
1593
1594                TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1595                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1596
1597                tlbiOp.broadcast(tc);
1598                return;
1599            }
1600          case MISCREG_ACTLR:
1601            warn("Not doing anything for write of miscreg ACTLR\n");
1602            break;
1603
1604          case MISCREG_PMXEVTYPER_PMCCFILTR:
1605          case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1606          case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1607          case MISCREG_PMCR ... MISCREG_PMOVSSET:
1608            pmu->setMiscReg(misc_reg, newVal);
1609            break;
1610
1611
1612          case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1613            {
1614                HSTR hstrMask = 0;
1615                hstrMask.tjdbx = 1;
1616                newVal &= ~((uint32_t) hstrMask);
1617                break;
1618            }
1619          case MISCREG_HCPTR:
1620            {
1621                // If a CP bit in NSACR is 0 then the corresponding bit in
1622                // HCPTR is RAO/WI. Same applies to NSASEDIS
1623                secure_lookup = haveSecurity &&
1624                    inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1625                                  readMiscRegNoEffect(MISCREG_CPSR));
1626                if (!secure_lookup) {
1627                    RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1628                    RegVal mask =
1629                        (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1630                    newVal = (newVal & ~mask) | (oldValue & mask);
1631                }
1632                break;
1633            }
1634          case MISCREG_HDFAR: // alias for secure DFAR
1635            misc_reg = MISCREG_DFAR_S;
1636            break;
1637          case MISCREG_HIFAR: // alias for secure IFAR
1638            misc_reg = MISCREG_IFAR_S;
1639            break;
1640          case MISCREG_ATS1CPR:
1641          case MISCREG_ATS1CPW:
1642          case MISCREG_ATS1CUR:
1643          case MISCREG_ATS1CUW:
1644          case MISCREG_ATS12NSOPR:
1645          case MISCREG_ATS12NSOPW:
1646          case MISCREG_ATS12NSOUR:
1647          case MISCREG_ATS12NSOUW:
1648          case MISCREG_ATS1HR:
1649          case MISCREG_ATS1HW:
1650            {
1651              Request::Flags flags = 0;
1652              BaseTLB::Mode mode = BaseTLB::Read;
1653              TLB::ArmTranslationType tranType = TLB::NormalTran;
1654              Fault fault;
1655              switch(misc_reg) {
1656                case MISCREG_ATS1CPR:
1657                  flags    = TLB::MustBeOne;
1658                  tranType = TLB::S1CTran;
1659                  mode     = BaseTLB::Read;
1660                  break;
1661                case MISCREG_ATS1CPW:
1662                  flags    = TLB::MustBeOne;
1663                  tranType = TLB::S1CTran;
1664                  mode     = BaseTLB::Write;
1665                  break;
1666                case MISCREG_ATS1CUR:
1667                  flags    = TLB::MustBeOne | TLB::UserMode;
1668                  tranType = TLB::S1CTran;
1669                  mode     = BaseTLB::Read;
1670                  break;
1671                case MISCREG_ATS1CUW:
1672                  flags    = TLB::MustBeOne | TLB::UserMode;
1673                  tranType = TLB::S1CTran;
1674                  mode     = BaseTLB::Write;
1675                  break;
1676                case MISCREG_ATS12NSOPR:
1677                  if (!haveSecurity)
1678                      panic("Security Extensions required for ATS12NSOPR");
1679                  flags    = TLB::MustBeOne;
1680                  tranType = TLB::S1S2NsTran;
1681                  mode     = BaseTLB::Read;
1682                  break;
1683                case MISCREG_ATS12NSOPW:
1684                  if (!haveSecurity)
1685                      panic("Security Extensions required for ATS12NSOPW");
1686                  flags    = TLB::MustBeOne;
1687                  tranType = TLB::S1S2NsTran;
1688                  mode     = BaseTLB::Write;
1689                  break;
1690                case MISCREG_ATS12NSOUR:
1691                  if (!haveSecurity)
1692                      panic("Security Extensions required for ATS12NSOUR");
1693                  flags    = TLB::MustBeOne | TLB::UserMode;
1694                  tranType = TLB::S1S2NsTran;
1695                  mode     = BaseTLB::Read;
1696                  break;
1697                case MISCREG_ATS12NSOUW:
1698                  if (!haveSecurity)
1699                      panic("Security Extensions required for ATS12NSOUW");
1700                  flags    = TLB::MustBeOne | TLB::UserMode;
1701                  tranType = TLB::S1S2NsTran;
1702                  mode     = BaseTLB::Write;
1703                  break;
1704                case MISCREG_ATS1HR: // only really useful from secure mode.
1705                  flags    = TLB::MustBeOne;
1706                  tranType = TLB::HypMode;
1707                  mode     = BaseTLB::Read;
1708                  break;
1709                case MISCREG_ATS1HW:
1710                  flags    = TLB::MustBeOne;
1711                  tranType = TLB::HypMode;
1712                  mode     = BaseTLB::Write;
1713                  break;
1714              }
1715              // If we're in timing mode then doing the translation in
1716              // functional mode then we're slightly distorting performance
1717              // results obtained from simulations. The translation should be
1718              // done in the same mode the core is running in. NOTE: This
1719              // can't be an atomic translation because that causes problems
1720              // with unexpected atomic snoop requests.
1721              warn("Translating via %s in functional mode! Fix Me!\n",
1722                   miscRegName[misc_reg]);
1723
1724              auto req = std::make_shared<Request>(
1725                  0, val, 0, flags,  Request::funcMasterId,
1726                  tc->pcState().pc(), tc->contextId());
1727
1728              fault = getDTBPtr(tc)->translateFunctional(
1729                      req, tc, mode, tranType);
1730
1731              TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1732              HCR   hcr   = readMiscRegNoEffect(MISCREG_HCR);
1733
1734              RegVal newVal;
1735              if (fault == NoFault) {
1736                  Addr paddr = req->getPaddr();
1737                  if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1738                     ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1739                      newVal = (paddr & mask(39, 12)) |
1740                               (getDTBPtr(tc)->getAttr());
1741                  } else {
1742                      newVal = (paddr & 0xfffff000) |
1743                               (getDTBPtr(tc)->getAttr());
1744                  }
1745                  DPRINTF(MiscRegs,
1746                          "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1747                          val, newVal);
1748              } else {
1749                  ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1750                  armFault->update(tc);
1751                  // Set fault bit and FSR
1752                  FSR fsr = armFault->getFsr(tc);
1753
1754                  newVal = ((fsr >> 9) & 1) << 11;
1755                  if (newVal) {
1756                    // LPAE - rearange fault status
1757                    newVal |= ((fsr >>  0) & 0x3f) << 1;
1758                  } else {
1759                    // VMSA - rearange fault status
1760                    newVal |= ((fsr >>  0) & 0xf) << 1;
1761                    newVal |= ((fsr >> 10) & 0x1) << 5;
1762                    newVal |= ((fsr >> 12) & 0x1) << 6;
1763                  }
1764                  newVal |= 0x1; // F bit
1765                  newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1766                  newVal |= armFault->isStage2() ? 0x200 : 0;
1767                  DPRINTF(MiscRegs,
1768                          "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1769                          val, fsr, newVal);
1770              }
1771              setMiscRegNoEffect(MISCREG_PAR, newVal);
1772              return;
1773            }
1774          case MISCREG_TTBCR:
1775            {
1776                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1777                const uint32_t ones = (uint32_t)(-1);
1778                TTBCR ttbcrMask = 0;
1779                TTBCR ttbcrNew = newVal;
1780
1781                // ARM DDI 0406C.b, ARMv7-32
1782                ttbcrMask.n = ones; // T0SZ
1783                if (haveSecurity) {
1784                    ttbcrMask.pd0 = ones;
1785                    ttbcrMask.pd1 = ones;
1786                }
1787                ttbcrMask.epd0 = ones;
1788                ttbcrMask.irgn0 = ones;
1789                ttbcrMask.orgn0 = ones;
1790                ttbcrMask.sh0 = ones;
1791                ttbcrMask.ps = ones; // T1SZ
1792                ttbcrMask.a1 = ones;
1793                ttbcrMask.epd1 = ones;
1794                ttbcrMask.irgn1 = ones;
1795                ttbcrMask.orgn1 = ones;
1796                ttbcrMask.sh1 = ones;
1797                if (haveLPAE)
1798                    ttbcrMask.eae = ones;
1799
1800                if (haveLPAE && ttbcrNew.eae) {
1801                    newVal = newVal & ttbcrMask;
1802                } else {
1803                    newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1804                }
1805                // Invalidate TLB MiscReg
1806                getITBPtr(tc)->invalidateMiscReg();
1807                getDTBPtr(tc)->invalidateMiscReg();
1808                break;
1809            }
1810          case MISCREG_TTBR0:
1811          case MISCREG_TTBR1:
1812            {
1813                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1814                if (haveLPAE) {
1815                    if (ttbcr.eae) {
1816                        // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1817                        // ARMv8 AArch32 bit 63-56 only
1818                        uint64_t ttbrMask = mask(63,56) | mask(47,40);
1819                        newVal = (newVal & (~ttbrMask));
1820                    }
1821                }
1822                // Invalidate TLB MiscReg
1823                getITBPtr(tc)->invalidateMiscReg();
1824                getDTBPtr(tc)->invalidateMiscReg();
1825                break;
1826            }
1827          case MISCREG_SCTLR_EL1:
1828          case MISCREG_CONTEXTIDR:
1829          case MISCREG_PRRR:
1830          case MISCREG_NMRR:
1831          case MISCREG_MAIR0:
1832          case MISCREG_MAIR1:
1833          case MISCREG_DACR:
1834          case MISCREG_VTTBR:
1835          case MISCREG_SCR_EL3:
1836          case MISCREG_HCR_EL2:
1837          case MISCREG_TCR_EL1:
1838          case MISCREG_TCR_EL2:
1839          case MISCREG_TCR_EL3:
1840          case MISCREG_SCTLR_EL2:
1841          case MISCREG_SCTLR_EL3:
1842          case MISCREG_HSCTLR:
1843          case MISCREG_TTBR0_EL1:
1844          case MISCREG_TTBR1_EL1:
1845          case MISCREG_TTBR0_EL2:
1846          case MISCREG_TTBR1_EL2:
1847          case MISCREG_TTBR0_EL3:
1848            getITBPtr(tc)->invalidateMiscReg();
1849            getDTBPtr(tc)->invalidateMiscReg();
1850            break;
1851          case MISCREG_NZCV:
1852            {
1853                CPSR cpsr = val;
1854
1855                tc->setCCReg(CCREG_NZ, cpsr.nz);
1856                tc->setCCReg(CCREG_C,  cpsr.c);
1857                tc->setCCReg(CCREG_V,  cpsr.v);
1858            }
1859            break;
1860          case MISCREG_DAIF:
1861            {
1862                CPSR cpsr = miscRegs[MISCREG_CPSR];
1863                cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1864                newVal = cpsr;
1865                misc_reg = MISCREG_CPSR;
1866            }
1867            break;
1868          case MISCREG_SP_EL0:
1869            tc->setIntReg(INTREG_SP0, newVal);
1870            break;
1871          case MISCREG_SP_EL1:
1872            tc->setIntReg(INTREG_SP1, newVal);
1873            break;
1874          case MISCREG_SP_EL2:
1875            tc->setIntReg(INTREG_SP2, newVal);
1876            break;
1877          case MISCREG_SPSEL:
1878            {
1879                CPSR cpsr = miscRegs[MISCREG_CPSR];
1880                cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1881                newVal = cpsr;
1882                misc_reg = MISCREG_CPSR;
1883            }
1884            break;
1885          case MISCREG_CURRENTEL:
1886            {
1887                CPSR cpsr = miscRegs[MISCREG_CPSR];
1888                cpsr.el = (uint8_t) ((CPSR) newVal).el;
1889                newVal = cpsr;
1890                misc_reg = MISCREG_CPSR;
1891            }
1892            break;
1893          case MISCREG_PAN:
1894            {
1895                // PAN is affecting data accesses
1896                getDTBPtr(tc)->invalidateMiscReg();
1897
1898                CPSR cpsr = miscRegs[MISCREG_CPSR];
1899                cpsr.pan = (uint8_t) ((CPSR) newVal).pan;
1900                newVal = cpsr;
1901                misc_reg = MISCREG_CPSR;
1902            }
1903            break;
1904          case MISCREG_AT_S1E1R_Xt:
1905          case MISCREG_AT_S1E1W_Xt:
1906          case MISCREG_AT_S1E0R_Xt:
1907          case MISCREG_AT_S1E0W_Xt:
1908          case MISCREG_AT_S1E2R_Xt:
1909          case MISCREG_AT_S1E2W_Xt:
1910          case MISCREG_AT_S12E1R_Xt:
1911          case MISCREG_AT_S12E1W_Xt:
1912          case MISCREG_AT_S12E0R_Xt:
1913          case MISCREG_AT_S12E0W_Xt:
1914          case MISCREG_AT_S1E3R_Xt:
1915          case MISCREG_AT_S1E3W_Xt:
1916            {
1917                RequestPtr req = std::make_shared<Request>();
1918                Request::Flags flags = 0;
1919                BaseTLB::Mode mode = BaseTLB::Read;
1920                TLB::ArmTranslationType tranType = TLB::NormalTran;
1921                Fault fault;
1922                switch(misc_reg) {
1923                  case MISCREG_AT_S1E1R_Xt:
1924                    flags    = TLB::MustBeOne;
1925                    tranType = TLB::S1E1Tran;
1926                    mode     = BaseTLB::Read;
1927                    break;
1928                  case MISCREG_AT_S1E1W_Xt:
1929                    flags    = TLB::MustBeOne;
1930                    tranType = TLB::S1E1Tran;
1931                    mode     = BaseTLB::Write;
1932                    break;
1933                  case MISCREG_AT_S1E0R_Xt:
1934                    flags    = TLB::MustBeOne | TLB::UserMode;
1935                    tranType = TLB::S1E0Tran;
1936                    mode     = BaseTLB::Read;
1937                    break;
1938                  case MISCREG_AT_S1E0W_Xt:
1939                    flags    = TLB::MustBeOne | TLB::UserMode;
1940                    tranType = TLB::S1E0Tran;
1941                    mode     = BaseTLB::Write;
1942                    break;
1943                  case MISCREG_AT_S1E2R_Xt:
1944                    flags    = TLB::MustBeOne;
1945                    tranType = TLB::S1E2Tran;
1946                    mode     = BaseTLB::Read;
1947                    break;
1948                  case MISCREG_AT_S1E2W_Xt:
1949                    flags    = TLB::MustBeOne;
1950                    tranType = TLB::S1E2Tran;
1951                    mode     = BaseTLB::Write;
1952                    break;
1953                  case MISCREG_AT_S12E0R_Xt:
1954                    flags    = TLB::MustBeOne | TLB::UserMode;
1955                    tranType = TLB::S12E0Tran;
1956                    mode     = BaseTLB::Read;
1957                    break;
1958                  case MISCREG_AT_S12E0W_Xt:
1959                    flags    = TLB::MustBeOne | TLB::UserMode;
1960                    tranType = TLB::S12E0Tran;
1961                    mode     = BaseTLB::Write;
1962                    break;
1963                  case MISCREG_AT_S12E1R_Xt:
1964                    flags    = TLB::MustBeOne;
1965                    tranType = TLB::S12E1Tran;
1966                    mode     = BaseTLB::Read;
1967                    break;
1968                  case MISCREG_AT_S12E1W_Xt:
1969                    flags    = TLB::MustBeOne;
1970                    tranType = TLB::S12E1Tran;
1971                    mode     = BaseTLB::Write;
1972                    break;
1973                  case MISCREG_AT_S1E3R_Xt:
1974                    flags    = TLB::MustBeOne;
1975                    tranType = TLB::S1E3Tran;
1976                    mode     = BaseTLB::Read;
1977                    break;
1978                  case MISCREG_AT_S1E3W_Xt:
1979                    flags    = TLB::MustBeOne;
1980                    tranType = TLB::S1E3Tran;
1981                    mode     = BaseTLB::Write;
1982                    break;
1983                }
1984                // If we're in timing mode then doing the translation in
1985                // functional mode then we're slightly distorting performance
1986                // results obtained from simulations. The translation should be
1987                // done in the same mode the core is running in. NOTE: This
1988                // can't be an atomic translation because that causes problems
1989                // with unexpected atomic snoop requests.
1990                warn("Translating via %s in functional mode! Fix Me!\n",
1991                     miscRegName[misc_reg]);
1992
1993                req->setVirt(0, val, 0, flags,  Request::funcMasterId,
1994                               tc->pcState().pc());
1995                req->setContext(tc->contextId());
1996                fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
1997                                                           tranType);
1998
1999                RegVal newVal;
2000                if (fault == NoFault) {
2001                    Addr paddr = req->getPaddr();
2002                    uint64_t attr = getDTBPtr(tc)->getAttr();
2003                    uint64_t attr1 = attr >> 56;
2004                    if (!attr1 || attr1 ==0x44) {
2005                        attr |= 0x100;
2006                        attr &= ~ uint64_t(0x80);
2007                    }
2008                    newVal = (paddr & mask(47, 12)) | attr;
2009                    DPRINTF(MiscRegs,
2010                          "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
2011                          val, newVal);
2012                } else {
2013                    ArmFault *armFault = static_cast<ArmFault *>(fault.get());
2014                    armFault->update(tc);
2015                    // Set fault bit and FSR
2016                    FSR fsr = armFault->getFsr(tc);
2017
2018                    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
2019                    if (cpsr.width) { // AArch32
2020                        newVal = ((fsr >> 9) & 1) << 11;
2021                        // rearrange fault status
2022                        newVal |= ((fsr >>  0) & 0x3f) << 1;
2023                        newVal |= 0x1; // F bit
2024                        newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
2025                        newVal |= armFault->isStage2() ? 0x200 : 0;
2026                    } else { // AArch64
2027                        newVal = 1; // F bit
2028                        newVal |= fsr << 1; // FST
2029                        // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
2030                        newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
2031                        newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
2032                        newVal |= 1 << 11; // RES1
2033                    }
2034                    DPRINTF(MiscRegs,
2035                            "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
2036                            val, fsr, newVal);
2037                }
2038                setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
2039                return;
2040            }
2041          case MISCREG_SPSR_EL3:
2042          case MISCREG_SPSR_EL2:
2043          case MISCREG_SPSR_EL1:
2044            {
2045                RegVal spsr_mask = havePAN ?
2046                    ~(0x5 << 21) : ~(0x7 << 21);
2047
2048                newVal = val & spsr_mask;
2049                break;
2050            }
2051          case MISCREG_L2CTLR:
2052            warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
2053                 miscRegName[misc_reg], uint32_t(val));
2054            break;
2055
2056          // Generic Timer registers
2057          case MISCREG_CNTHV_CTL_EL2:
2058          case MISCREG_CNTHV_CVAL_EL2:
2059          case MISCREG_CNTHV_TVAL_EL2:
2060          case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
2061          case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
2062          case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
2063          case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
2064            getGenericTimer(tc).setMiscReg(misc_reg, newVal);
2065            break;
2066          case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
2067          case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
2068            getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal);
2069            return;
2070          case MISCREG_ZCR_EL3:
2071          case MISCREG_ZCR_EL2:
2072          case MISCREG_ZCR_EL1:
2073            tc->getDecoderPtr()->setSveLen(
2074                (getCurSveVecLenInBits(tc) >> 7) - 1);
2075            break;
2076        }
2077    }
2078    setMiscRegNoEffect(misc_reg, newVal);
2079}
2080
2081BaseISADevice &
2082ISA::getGenericTimer(ThreadContext *tc)
2083{
2084    // We only need to create an ISA interface the first time we try
2085    // to access the timer.
2086    if (timer)
2087        return *timer.get();
2088
2089    assert(system);
2090    GenericTimer *generic_timer(system->getGenericTimer());
2091    if (!generic_timer) {
2092        panic("Trying to get a generic timer from a system that hasn't "
2093              "been configured to use a generic timer.\n");
2094    }
2095
2096    timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2097    timer->setThreadContext(tc);
2098
2099    return *timer.get();
2100}
2101
2102BaseISADevice &
2103ISA::getGICv3CPUInterface(ThreadContext *tc)
2104{
2105    panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!");
2106    return *gicv3CpuInterface.get();
2107}
2108
2109unsigned
2110ISA::getCurSveVecLenInBits(ThreadContext *tc) const
2111{
2112    if (!FullSystem) {
2113        return sveVL * 128;
2114    }
2115
2116    panic_if(!tc,
2117             "A ThreadContext is needed to determine the SVE vector length "
2118             "in full-system mode");
2119
2120    CPSR cpsr = miscRegs[MISCREG_CPSR];
2121    ExceptionLevel el = (ExceptionLevel) (uint8_t) cpsr.el;
2122
2123    unsigned len = 0;
2124
2125    if (el == EL1 || (el == EL0 && !ELIsInHost(tc, el))) {
2126        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL1]).len;
2127    }
2128
2129    if (el == EL2 || (el == EL0 && ELIsInHost(tc, el))) {
2130        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len;
2131    } else if (haveVirtualization && !inSecureState(tc) &&
2132               (el == EL0 || el == EL1)) {
2133        len = std::min(
2134            len,
2135            static_cast<unsigned>(
2136                static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len));
2137    }
2138
2139    if (el == EL3) {
2140        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len;
2141    } else if (haveSecurity) {
2142        len = std::min(
2143            len,
2144            static_cast<unsigned>(
2145                static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len));
2146    }
2147
2148    len = std::min(len, sveVL - 1);
2149
2150    return (len + 1) * 128;
2151}
2152
2153void
2154ISA::zeroSveVecRegUpperPart(VecRegContainer &vc, unsigned eCount)
2155{
2156    auto vv = vc.as<uint64_t>();
2157    for (int i = 2; i < eCount; ++i) {
2158        vv[i] = 0;
2159    }
2160}
2161
2162}  // namespace ArmISA
2163
2164ArmISA::ISA *
2165ArmISAParams::create()
2166{
2167    return new ArmISA::ISA(this);
2168}
2169