isa.cc revision 14128
1/* 2 * Copyright (c) 2010-2019 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Gabe Black 38 * Ali Saidi 39 */ 40 41#include "arch/arm/isa.hh" 42#include "arch/arm/pmu.hh" 43#include "arch/arm/system.hh" 44#include "arch/arm/tlb.hh" 45#include "arch/arm/tlbi_op.hh" 46#include "cpu/base.hh" 47#include "cpu/checker/cpu.hh" 48#include "debug/Arm.hh" 49#include "debug/MiscRegs.hh" 50#include "dev/arm/generic_timer.hh" 51#include "dev/arm/gic_v3.hh" 52#include "dev/arm/gic_v3_cpu_interface.hh" 53#include "params/ArmISA.hh" 54#include "sim/faults.hh" 55#include "sim/stat_control.hh" 56#include "sim/system.hh" 57 58namespace ArmISA 59{ 60 61ISA::ISA(Params *p) 62 : SimObject(p), 63 system(NULL), 64 _decoderFlavour(p->decoderFlavour), 65 _vecRegRenameMode(Enums::Full), 66 pmu(p->pmu), 67 haveGICv3CPUInterface(false), 68 impdefAsNop(p->impdef_nop), 69 afterStartup(false) 70{ 71 miscRegs[MISCREG_SCTLR_RST] = 0; 72 73 // Hook up a dummy device if we haven't been configured with a 74 // real PMU. By using a dummy device, we don't need to check that 75 // the PMU exist every time we try to access a PMU register. 76 if (!pmu) 77 pmu = &dummyDevice; 78 79 // Give all ISA devices a pointer to this ISA 80 pmu->setISA(this); 81 82 system = dynamic_cast<ArmSystem *>(p->system); 83 84 // Cache system-level properties 85 if (FullSystem && system) { 86 highestELIs64 = system->highestELIs64(); 87 haveSecurity = system->haveSecurity(); 88 haveLPAE = system->haveLPAE(); 89 haveCrypto = system->haveCrypto(); 90 haveVirtualization = system->haveVirtualization(); 91 haveLargeAsid64 = system->haveLargeAsid64(); 92 physAddrRange = system->physAddrRange(); 93 haveSVE = system->haveSVE(); 94 havePAN = system->havePAN(); 95 sveVL = system->sveVL(); 96 } else { 97 highestELIs64 = true; // ArmSystem::highestELIs64 does the same 98 haveSecurity = haveLPAE = haveVirtualization = false; 99 haveCrypto = true; 100 haveLargeAsid64 = false; 101 physAddrRange = 32; // dummy value 102 haveSVE = true; 103 havePAN = false; 104 sveVL = p->sve_vl_se; 105 } 106 107 // Initial rename mode depends on highestEL 108 const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) = 109 highestELIs64 ? Enums::Full : Enums::Elem; 110 111 initializeMiscRegMetadata(); 112 preUnflattenMiscReg(); 113 114 clear(); 115} 116 117std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS); 118 119const ArmISAParams * 120ISA::params() const 121{ 122 return dynamic_cast<const Params *>(_params); 123} 124 125void 126ISA::clear() 127{ 128 const Params *p(params()); 129 130 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST]; 131 memset(miscRegs, 0, sizeof(miscRegs)); 132 133 initID32(p); 134 135 // We always initialize AArch64 ID registers even 136 // if we are in AArch32. This is done since if we 137 // are in SE mode we don't know if our ArmProcess is 138 // AArch32 or AArch64 139 initID64(p); 140 141 // Start with an event in the mailbox 142 miscRegs[MISCREG_SEV_MAILBOX] = 1; 143 144 // Separate Instruction and Data TLBs 145 miscRegs[MISCREG_TLBTR] = 1; 146 147 MVFR0 mvfr0 = 0; 148 mvfr0.advSimdRegisters = 2; 149 mvfr0.singlePrecision = 2; 150 mvfr0.doublePrecision = 2; 151 mvfr0.vfpExceptionTrapping = 0; 152 mvfr0.divide = 1; 153 mvfr0.squareRoot = 1; 154 mvfr0.shortVectors = 1; 155 mvfr0.roundingModes = 1; 156 miscRegs[MISCREG_MVFR0] = mvfr0; 157 158 MVFR1 mvfr1 = 0; 159 mvfr1.flushToZero = 1; 160 mvfr1.defaultNaN = 1; 161 mvfr1.advSimdLoadStore = 1; 162 mvfr1.advSimdInteger = 1; 163 mvfr1.advSimdSinglePrecision = 1; 164 mvfr1.advSimdHalfPrecision = 1; 165 mvfr1.vfpHalfPrecision = 1; 166 miscRegs[MISCREG_MVFR1] = mvfr1; 167 168 // Reset values of PRRR and NMRR are implementation dependent 169 170 // @todo: PRRR and NMRR in secure state? 171 miscRegs[MISCREG_PRRR_NS] = 172 (1 << 19) | // 19 173 (0 << 18) | // 18 174 (0 << 17) | // 17 175 (1 << 16) | // 16 176 (2 << 14) | // 15:14 177 (0 << 12) | // 13:12 178 (2 << 10) | // 11:10 179 (2 << 8) | // 9:8 180 (2 << 6) | // 7:6 181 (2 << 4) | // 5:4 182 (1 << 2) | // 3:2 183 0; // 1:0 184 185 miscRegs[MISCREG_NMRR_NS] = 186 (1 << 30) | // 31:30 187 (0 << 26) | // 27:26 188 (0 << 24) | // 25:24 189 (3 << 22) | // 23:22 190 (2 << 20) | // 21:20 191 (0 << 18) | // 19:18 192 (0 << 16) | // 17:16 193 (1 << 14) | // 15:14 194 (0 << 12) | // 13:12 195 (2 << 10) | // 11:10 196 (0 << 8) | // 9:8 197 (3 << 6) | // 7:6 198 (2 << 4) | // 5:4 199 (0 << 2) | // 3:2 200 0; // 1:0 201 202 if (FullSystem && system->highestELIs64()) { 203 // Initialize AArch64 state 204 clear64(p); 205 return; 206 } 207 208 // Initialize AArch32 state... 209 clear32(p, sctlr_rst); 210} 211 212void 213ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst) 214{ 215 CPSR cpsr = 0; 216 cpsr.mode = MODE_USER; 217 218 if (FullSystem) { 219 miscRegs[MISCREG_MVBAR] = system->resetAddr(); 220 } 221 222 miscRegs[MISCREG_CPSR] = cpsr; 223 updateRegMap(cpsr); 224 225 SCTLR sctlr = 0; 226 sctlr.te = (bool) sctlr_rst.te; 227 sctlr.nmfi = (bool) sctlr_rst.nmfi; 228 sctlr.v = (bool) sctlr_rst.v; 229 sctlr.u = 1; 230 sctlr.xp = 1; 231 sctlr.rao2 = 1; 232 sctlr.rao3 = 1; 233 sctlr.rao4 = 0xf; // SCTLR[6:3] 234 sctlr.uci = 1; 235 sctlr.dze = 1; 236 miscRegs[MISCREG_SCTLR_NS] = sctlr; 237 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst; 238 miscRegs[MISCREG_HCPTR] = 0; 239 240 miscRegs[MISCREG_CPACR] = 0; 241 242 miscRegs[MISCREG_FPSID] = p->fpsid; 243 244 if (haveLPAE) { 245 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS]; 246 ttbcr.eae = 0; 247 miscRegs[MISCREG_TTBCR_NS] = ttbcr; 248 // Enforce consistency with system-level settings 249 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5; 250 } 251 252 if (haveSecurity) { 253 miscRegs[MISCREG_SCTLR_S] = sctlr; 254 miscRegs[MISCREG_SCR] = 0; 255 miscRegs[MISCREG_VBAR_S] = 0; 256 } else { 257 // we're always non-secure 258 miscRegs[MISCREG_SCR] = 1; 259 } 260 261 //XXX We need to initialize the rest of the state. 262} 263 264void 265ISA::clear64(const ArmISAParams *p) 266{ 267 CPSR cpsr = 0; 268 Addr rvbar = system->resetAddr(); 269 switch (system->highestEL()) { 270 // Set initial EL to highest implemented EL using associated stack 271 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset 272 // value 273 case EL3: 274 cpsr.mode = MODE_EL3H; 275 miscRegs[MISCREG_RVBAR_EL3] = rvbar; 276 break; 277 case EL2: 278 cpsr.mode = MODE_EL2H; 279 miscRegs[MISCREG_RVBAR_EL2] = rvbar; 280 break; 281 case EL1: 282 cpsr.mode = MODE_EL1H; 283 miscRegs[MISCREG_RVBAR_EL1] = rvbar; 284 break; 285 default: 286 panic("Invalid highest implemented exception level"); 287 break; 288 } 289 290 // Initialize rest of CPSR 291 cpsr.daif = 0xf; // Mask all interrupts 292 cpsr.ss = 0; 293 cpsr.il = 0; 294 miscRegs[MISCREG_CPSR] = cpsr; 295 updateRegMap(cpsr); 296 297 // Initialize other control registers 298 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000; 299 if (haveSecurity) { 300 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830; 301 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields 302 } else if (haveVirtualization) { 303 // also MISCREG_SCTLR_EL2 (by mapping) 304 miscRegs[MISCREG_HSCTLR] = 0x30c50830; 305 } else { 306 // also MISCREG_SCTLR_EL1 (by mapping) 307 miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init 308 // Always non-secure 309 miscRegs[MISCREG_SCR_EL3] = 1; 310 } 311} 312 313void 314ISA::initID32(const ArmISAParams *p) 315{ 316 // Initialize configurable default values 317 miscRegs[MISCREG_MIDR] = p->midr; 318 miscRegs[MISCREG_MIDR_EL1] = p->midr; 319 miscRegs[MISCREG_VPIDR] = p->midr; 320 321 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0; 322 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1; 323 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2; 324 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3; 325 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4; 326 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5; 327 328 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0; 329 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1; 330 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2; 331 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3; 332 333 miscRegs[MISCREG_ID_ISAR5] = insertBits( 334 miscRegs[MISCREG_ID_ISAR5], 19, 4, 335 haveCrypto ? 0x1112 : 0x0); 336} 337 338void 339ISA::initID64(const ArmISAParams *p) 340{ 341 // Initialize configurable id registers 342 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1; 343 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1; 344 miscRegs[MISCREG_ID_AA64DFR0_EL1] = 345 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) | 346 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3 347 348 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1; 349 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1; 350 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1; 351 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1; 352 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1; 353 miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1; 354 355 miscRegs[MISCREG_ID_DFR0_EL1] = 356 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3 357 358 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1]; 359 360 // SVE 361 miscRegs[MISCREG_ID_AA64ZFR0_EL1] = 0; // SVEver 0 362 if (haveSecurity) { 363 miscRegs[MISCREG_ZCR_EL3] = sveVL - 1; 364 } else if (haveVirtualization) { 365 miscRegs[MISCREG_ZCR_EL2] = sveVL - 1; 366 } else { 367 miscRegs[MISCREG_ZCR_EL1] = sveVL - 1; 368 } 369 370 // Enforce consistency with system-level settings... 371 372 // EL3 373 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 374 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12, 375 haveSecurity ? 0x2 : 0x0); 376 // EL2 377 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 378 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8, 379 haveVirtualization ? 0x2 : 0x0); 380 // SVE 381 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 382 miscRegs[MISCREG_ID_AA64PFR0_EL1], 35, 32, 383 haveSVE ? 0x1 : 0x0); 384 // Large ASID support 385 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( 386 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4, 387 haveLargeAsid64 ? 0x2 : 0x0); 388 // Physical address size 389 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( 390 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0, 391 encodePhysAddrRange64(physAddrRange)); 392 // Crypto 393 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits( 394 miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4, 395 haveCrypto ? 0x1112 : 0x0); 396 // PAN 397 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = insertBits( 398 miscRegs[MISCREG_ID_AA64MMFR1_EL1], 23, 20, 399 havePAN ? 0x1 : 0x0); 400} 401 402void 403ISA::startup(ThreadContext *tc) 404{ 405 pmu->setThreadContext(tc); 406 407 if (system) { 408 Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC()); 409 if (gicv3) { 410 haveGICv3CPUInterface = true; 411 gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId())); 412 gicv3CpuInterface->setISA(this); 413 gicv3CpuInterface->setThreadContext(tc); 414 } 415 } 416 417 afterStartup = true; 418} 419 420 421RegVal 422ISA::readMiscRegNoEffect(int misc_reg) const 423{ 424 assert(misc_reg < NumMiscRegs); 425 426 const auto ® = lookUpMiscReg[misc_reg]; // bit masks 427 const auto &map = getMiscIndices(misc_reg); 428 int lower = map.first, upper = map.second; 429 // NB!: apply architectural masks according to desired register, 430 // despite possibly getting value from different (mapped) register. 431 auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32)) 432 |(miscRegs[upper] << 32)); 433 if (val & reg.res0()) { 434 DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n", 435 miscRegName[misc_reg], val & reg.res0()); 436 } 437 if ((val & reg.res1()) != reg.res1()) { 438 DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n", 439 miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1()); 440 } 441 return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao 442} 443 444 445RegVal 446ISA::readMiscReg(int misc_reg, ThreadContext *tc) 447{ 448 CPSR cpsr = 0; 449 PCState pc = 0; 450 SCR scr = 0; 451 452 if (misc_reg == MISCREG_CPSR) { 453 cpsr = miscRegs[misc_reg]; 454 pc = tc->pcState(); 455 cpsr.j = pc.jazelle() ? 1 : 0; 456 cpsr.t = pc.thumb() ? 1 : 0; 457 return cpsr; 458 } 459 460#ifndef NDEBUG 461 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { 462 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) 463 warn("Unimplemented system register %s read.\n", 464 miscRegName[misc_reg]); 465 else 466 panic("Unimplemented system register %s read.\n", 467 miscRegName[misc_reg]); 468 } 469#endif 470 471 switch (unflattenMiscReg(misc_reg)) { 472 case MISCREG_HCR: 473 { 474 if (!haveVirtualization) 475 return 0; 476 else 477 return readMiscRegNoEffect(MISCREG_HCR); 478 } 479 case MISCREG_CPACR: 480 { 481 const uint32_t ones = (uint32_t)(-1); 482 CPACR cpacrMask = 0; 483 // Only cp10, cp11, and ase are implemented, nothing else should 484 // be readable? (straight copy from the write code) 485 cpacrMask.cp10 = ones; 486 cpacrMask.cp11 = ones; 487 cpacrMask.asedis = ones; 488 489 // Security Extensions may limit the readability of CPACR 490 if (haveSecurity) { 491 scr = readMiscRegNoEffect(MISCREG_SCR); 492 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 493 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) { 494 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); 495 // NB: Skipping the full loop, here 496 if (!nsacr.cp10) cpacrMask.cp10 = 0; 497 if (!nsacr.cp11) cpacrMask.cp11 = 0; 498 } 499 } 500 RegVal val = readMiscRegNoEffect(MISCREG_CPACR); 501 val &= cpacrMask; 502 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n", 503 miscRegName[misc_reg], val); 504 return val; 505 } 506 case MISCREG_MPIDR: 507 case MISCREG_MPIDR_EL1: 508 return readMPIDR(system, tc); 509 case MISCREG_VMPIDR: 510 case MISCREG_VMPIDR_EL2: 511 // top bit defined as RES1 512 return readMiscRegNoEffect(misc_reg) | 0x80000000; 513 case MISCREG_ID_AFR0: // not implemented, so alias MIDR 514 case MISCREG_REVIDR: // not implemented, so alias MIDR 515 case MISCREG_MIDR: 516 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 517 scr = readMiscRegNoEffect(MISCREG_SCR); 518 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) { 519 return readMiscRegNoEffect(misc_reg); 520 } else { 521 return readMiscRegNoEffect(MISCREG_VPIDR); 522 } 523 break; 524 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI 525 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI 526 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI 527 case MISCREG_AIDR: // AUX ID set to 0 528 case MISCREG_TCMTR: // No TCM's 529 return 0; 530 531 case MISCREG_CLIDR: 532 warn_once("The clidr register always reports 0 caches.\n"); 533 warn_once("clidr LoUIS field of 0b001 to match current " 534 "ARM implementations.\n"); 535 return 0x00200000; 536 case MISCREG_CCSIDR: 537 warn_once("The ccsidr register isn't implemented and " 538 "always reads as 0.\n"); 539 break; 540 case MISCREG_CTR: // AArch32, ARMv7, top bit set 541 case MISCREG_CTR_EL0: // AArch64 542 { 543 //all caches have the same line size in gem5 544 //4 byte words in ARM 545 unsigned lineSizeWords = 546 tc->getSystemPtr()->cacheLineSize() / 4; 547 unsigned log2LineSizeWords = 0; 548 549 while (lineSizeWords >>= 1) { 550 ++log2LineSizeWords; 551 } 552 553 CTR ctr = 0; 554 //log2 of minimun i-cache line size (words) 555 ctr.iCacheLineSize = log2LineSizeWords; 556 //b11 - gem5 uses pipt 557 ctr.l1IndexPolicy = 0x3; 558 //log2 of minimum d-cache line size (words) 559 ctr.dCacheLineSize = log2LineSizeWords; 560 //log2 of max reservation size (words) 561 ctr.erg = log2LineSizeWords; 562 //log2 of max writeback size (words) 563 ctr.cwg = log2LineSizeWords; 564 //b100 - gem5 format is ARMv7 565 ctr.format = 0x4; 566 567 return ctr; 568 } 569 case MISCREG_ACTLR: 570 warn("Not doing anything for miscreg ACTLR\n"); 571 break; 572 573 case MISCREG_PMXEVTYPER_PMCCFILTR: 574 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0: 575 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0: 576 case MISCREG_PMCR ... MISCREG_PMOVSSET: 577 return pmu->readMiscReg(misc_reg); 578 579 case MISCREG_CPSR_Q: 580 panic("shouldn't be reading this register seperately\n"); 581 case MISCREG_FPSCR_QC: 582 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask; 583 case MISCREG_FPSCR_EXC: 584 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask; 585 case MISCREG_FPSR: 586 { 587 const uint32_t ones = (uint32_t)(-1); 588 FPSCR fpscrMask = 0; 589 fpscrMask.ioc = ones; 590 fpscrMask.dzc = ones; 591 fpscrMask.ofc = ones; 592 fpscrMask.ufc = ones; 593 fpscrMask.ixc = ones; 594 fpscrMask.idc = ones; 595 fpscrMask.qc = ones; 596 fpscrMask.v = ones; 597 fpscrMask.c = ones; 598 fpscrMask.z = ones; 599 fpscrMask.n = ones; 600 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; 601 } 602 case MISCREG_FPCR: 603 { 604 const uint32_t ones = (uint32_t)(-1); 605 FPSCR fpscrMask = 0; 606 fpscrMask.len = ones; 607 fpscrMask.fz16 = ones; 608 fpscrMask.stride = ones; 609 fpscrMask.rMode = ones; 610 fpscrMask.fz = ones; 611 fpscrMask.dn = ones; 612 fpscrMask.ahp = ones; 613 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; 614 } 615 case MISCREG_NZCV: 616 { 617 CPSR cpsr = 0; 618 cpsr.nz = tc->readCCReg(CCREG_NZ); 619 cpsr.c = tc->readCCReg(CCREG_C); 620 cpsr.v = tc->readCCReg(CCREG_V); 621 return cpsr; 622 } 623 case MISCREG_DAIF: 624 { 625 CPSR cpsr = 0; 626 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif; 627 return cpsr; 628 } 629 case MISCREG_SP_EL0: 630 { 631 return tc->readIntReg(INTREG_SP0); 632 } 633 case MISCREG_SP_EL1: 634 { 635 return tc->readIntReg(INTREG_SP1); 636 } 637 case MISCREG_SP_EL2: 638 { 639 return tc->readIntReg(INTREG_SP2); 640 } 641 case MISCREG_SPSEL: 642 { 643 return miscRegs[MISCREG_CPSR] & 0x1; 644 } 645 case MISCREG_CURRENTEL: 646 { 647 return miscRegs[MISCREG_CPSR] & 0xc; 648 } 649 case MISCREG_PAN: 650 { 651 return miscRegs[MISCREG_CPSR] & 0x400000; 652 } 653 case MISCREG_L2CTLR: 654 { 655 // mostly unimplemented, just set NumCPUs field from sim and return 656 L2CTLR l2ctlr = 0; 657 // b00:1CPU to b11:4CPUs 658 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1; 659 return l2ctlr; 660 } 661 case MISCREG_DBGDIDR: 662 /* For now just implement the version number. 663 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5) 664 */ 665 return 0x5 << 16; 666 case MISCREG_DBGDSCRint: 667 return 0; 668 case MISCREG_ISR: 669 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR( 670 readMiscRegNoEffect(MISCREG_HCR), 671 readMiscRegNoEffect(MISCREG_CPSR), 672 readMiscRegNoEffect(MISCREG_SCR)); 673 case MISCREG_ISR_EL1: 674 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR( 675 readMiscRegNoEffect(MISCREG_HCR_EL2), 676 readMiscRegNoEffect(MISCREG_CPSR), 677 readMiscRegNoEffect(MISCREG_SCR_EL3)); 678 case MISCREG_DCZID_EL0: 679 return 0x04; // DC ZVA clear 64-byte chunks 680 case MISCREG_HCPTR: 681 { 682 RegVal val = readMiscRegNoEffect(misc_reg); 683 // The trap bit associated with CP14 is defined as RAZ 684 val &= ~(1 << 14); 685 // If a CP bit in NSACR is 0 then the corresponding bit in 686 // HCPTR is RAO/WI 687 bool secure_lookup = haveSecurity && 688 inSecureState(readMiscRegNoEffect(MISCREG_SCR), 689 readMiscRegNoEffect(MISCREG_CPSR)); 690 if (!secure_lookup) { 691 RegVal mask = readMiscRegNoEffect(MISCREG_NSACR); 692 val |= (mask ^ 0x7FFF) & 0xBFFF; 693 } 694 // Set the bits for unimplemented coprocessors to RAO/WI 695 val |= 0x33FF; 696 return (val); 697 } 698 case MISCREG_HDFAR: // alias for secure DFAR 699 return readMiscRegNoEffect(MISCREG_DFAR_S); 700 case MISCREG_HIFAR: // alias for secure IFAR 701 return readMiscRegNoEffect(MISCREG_IFAR_S); 702 703 case MISCREG_ID_PFR0: 704 // !ThumbEE | !Jazelle | Thumb | ARM 705 return 0x00000031; 706 case MISCREG_ID_PFR1: 707 { // Timer | Virti | !M Profile | TrustZone | ARMv4 708 bool haveTimer = (system->getGenericTimer() != NULL); 709 return 0x00000001 710 | (haveSecurity ? 0x00000010 : 0x0) 711 | (haveVirtualization ? 0x00001000 : 0x0) 712 | (haveTimer ? 0x00010000 : 0x0); 713 } 714 case MISCREG_ID_AA64PFR0_EL1: 715 return 0x0000000000000002 | // AArch{64,32} supported at EL0 716 0x0000000000000020 | // EL1 717 (haveVirtualization ? 0x0000000000000200 : 0) | // EL2 718 (haveSecurity ? 0x0000000000002000 : 0) | // EL3 719 (haveSVE ? 0x0000000100000000 : 0) | // SVE 720 (haveGICv3CPUInterface ? 0x0000000001000000 : 0); 721 case MISCREG_ID_AA64PFR1_EL1: 722 return 0; // bits [63:0] RES0 (reserved for future use) 723 724 // Generic Timer registers 725 case MISCREG_CNTHV_CTL_EL2: 726 case MISCREG_CNTHV_CVAL_EL2: 727 case MISCREG_CNTHV_TVAL_EL2: 728 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL: 729 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL: 730 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0: 731 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1: 732 return getGenericTimer(tc).readMiscReg(misc_reg); 733 734 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3: 735 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2: 736 return getGICv3CPUInterface(tc).readMiscReg(misc_reg); 737 738 default: 739 break; 740 741 } 742 return readMiscRegNoEffect(misc_reg); 743} 744 745void 746ISA::setMiscRegNoEffect(int misc_reg, RegVal val) 747{ 748 assert(misc_reg < NumMiscRegs); 749 750 const auto ® = lookUpMiscReg[misc_reg]; // bit masks 751 const auto &map = getMiscIndices(misc_reg); 752 int lower = map.first, upper = map.second; 753 754 auto v = (val & ~reg.wi()) | reg.rao(); 755 if (upper > 0) { 756 miscRegs[lower] = bits(v, 31, 0); 757 miscRegs[upper] = bits(v, 63, 32); 758 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n", 759 misc_reg, lower, upper, v); 760 } else { 761 miscRegs[lower] = v; 762 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n", 763 misc_reg, lower, v); 764 } 765} 766 767void 768ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc) 769{ 770 771 RegVal newVal = val; 772 bool secure_lookup; 773 SCR scr; 774 775 if (misc_reg == MISCREG_CPSR) { 776 updateRegMap(val); 777 778 779 CPSR old_cpsr = miscRegs[MISCREG_CPSR]; 780 int old_mode = old_cpsr.mode; 781 CPSR cpsr = val; 782 if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) { 783 getITBPtr(tc)->invalidateMiscReg(); 784 getDTBPtr(tc)->invalidateMiscReg(); 785 } 786 787 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n", 788 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode); 789 PCState pc = tc->pcState(); 790 pc.nextThumb(cpsr.t); 791 pc.nextJazelle(cpsr.j); 792 pc.illegalExec(cpsr.il == 1); 793 794 tc->getDecoderPtr()->setSveLen((getCurSveVecLenInBits(tc) >> 7) - 1); 795 796 // Follow slightly different semantics if a CheckerCPU object 797 // is connected 798 CheckerCPU *checker = tc->getCheckerCpuPtr(); 799 if (checker) { 800 tc->pcStateNoRecord(pc); 801 } else { 802 tc->pcState(pc); 803 } 804 } else { 805#ifndef NDEBUG 806 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { 807 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) 808 warn("Unimplemented system register %s write with %#x.\n", 809 miscRegName[misc_reg], val); 810 else 811 panic("Unimplemented system register %s write with %#x.\n", 812 miscRegName[misc_reg], val); 813 } 814#endif 815 switch (unflattenMiscReg(misc_reg)) { 816 case MISCREG_CPACR: 817 { 818 819 const uint32_t ones = (uint32_t)(-1); 820 CPACR cpacrMask = 0; 821 // Only cp10, cp11, and ase are implemented, nothing else should 822 // be writable 823 cpacrMask.cp10 = ones; 824 cpacrMask.cp11 = ones; 825 cpacrMask.asedis = ones; 826 827 // Security Extensions may limit the writability of CPACR 828 if (haveSecurity) { 829 scr = readMiscRegNoEffect(MISCREG_SCR); 830 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR); 831 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) { 832 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); 833 // NB: Skipping the full loop, here 834 if (!nsacr.cp10) cpacrMask.cp10 = 0; 835 if (!nsacr.cp11) cpacrMask.cp11 = 0; 836 } 837 } 838 839 RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR); 840 newVal &= cpacrMask; 841 newVal |= old_val & ~cpacrMask; 842 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 843 miscRegName[misc_reg], newVal); 844 } 845 break; 846 case MISCREG_CPACR_EL1: 847 { 848 const uint32_t ones = (uint32_t)(-1); 849 CPACR cpacrMask = 0; 850 cpacrMask.tta = ones; 851 cpacrMask.fpen = ones; 852 if (haveSVE) { 853 cpacrMask.zen = ones; 854 } 855 newVal &= cpacrMask; 856 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 857 miscRegName[misc_reg], newVal); 858 } 859 break; 860 case MISCREG_CPTR_EL2: 861 { 862 const uint32_t ones = (uint32_t)(-1); 863 CPTR cptrMask = 0; 864 cptrMask.tcpac = ones; 865 cptrMask.tta = ones; 866 cptrMask.tfp = ones; 867 if (haveSVE) { 868 cptrMask.tz = ones; 869 } 870 newVal &= cptrMask; 871 cptrMask = 0; 872 cptrMask.res1_13_12_el2 = ones; 873 cptrMask.res1_7_0_el2 = ones; 874 if (!haveSVE) { 875 cptrMask.res1_8_el2 = ones; 876 } 877 cptrMask.res1_9_el2 = ones; 878 newVal |= cptrMask; 879 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 880 miscRegName[misc_reg], newVal); 881 } 882 break; 883 case MISCREG_CPTR_EL3: 884 { 885 const uint32_t ones = (uint32_t)(-1); 886 CPTR cptrMask = 0; 887 cptrMask.tcpac = ones; 888 cptrMask.tta = ones; 889 cptrMask.tfp = ones; 890 if (haveSVE) { 891 cptrMask.ez = ones; 892 } 893 newVal &= cptrMask; 894 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 895 miscRegName[misc_reg], newVal); 896 } 897 break; 898 case MISCREG_CSSELR: 899 warn_once("The csselr register isn't implemented.\n"); 900 return; 901 902 case MISCREG_DC_ZVA_Xt: 903 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n"); 904 return; 905 906 case MISCREG_FPSCR: 907 { 908 const uint32_t ones = (uint32_t)(-1); 909 FPSCR fpscrMask = 0; 910 fpscrMask.ioc = ones; 911 fpscrMask.dzc = ones; 912 fpscrMask.ofc = ones; 913 fpscrMask.ufc = ones; 914 fpscrMask.ixc = ones; 915 fpscrMask.idc = ones; 916 fpscrMask.ioe = ones; 917 fpscrMask.dze = ones; 918 fpscrMask.ofe = ones; 919 fpscrMask.ufe = ones; 920 fpscrMask.ixe = ones; 921 fpscrMask.ide = ones; 922 fpscrMask.len = ones; 923 fpscrMask.fz16 = ones; 924 fpscrMask.stride = ones; 925 fpscrMask.rMode = ones; 926 fpscrMask.fz = ones; 927 fpscrMask.dn = ones; 928 fpscrMask.ahp = ones; 929 fpscrMask.qc = ones; 930 fpscrMask.v = ones; 931 fpscrMask.c = ones; 932 fpscrMask.z = ones; 933 fpscrMask.n = ones; 934 newVal = (newVal & (uint32_t)fpscrMask) | 935 (readMiscRegNoEffect(MISCREG_FPSCR) & 936 ~(uint32_t)fpscrMask); 937 tc->getDecoderPtr()->setContext(newVal); 938 } 939 break; 940 case MISCREG_FPSR: 941 { 942 const uint32_t ones = (uint32_t)(-1); 943 FPSCR fpscrMask = 0; 944 fpscrMask.ioc = ones; 945 fpscrMask.dzc = ones; 946 fpscrMask.ofc = ones; 947 fpscrMask.ufc = ones; 948 fpscrMask.ixc = ones; 949 fpscrMask.idc = ones; 950 fpscrMask.qc = ones; 951 fpscrMask.v = ones; 952 fpscrMask.c = ones; 953 fpscrMask.z = ones; 954 fpscrMask.n = ones; 955 newVal = (newVal & (uint32_t)fpscrMask) | 956 (readMiscRegNoEffect(MISCREG_FPSCR) & 957 ~(uint32_t)fpscrMask); 958 misc_reg = MISCREG_FPSCR; 959 } 960 break; 961 case MISCREG_FPCR: 962 { 963 const uint32_t ones = (uint32_t)(-1); 964 FPSCR fpscrMask = 0; 965 fpscrMask.len = ones; 966 fpscrMask.fz16 = ones; 967 fpscrMask.stride = ones; 968 fpscrMask.rMode = ones; 969 fpscrMask.fz = ones; 970 fpscrMask.dn = ones; 971 fpscrMask.ahp = ones; 972 newVal = (newVal & (uint32_t)fpscrMask) | 973 (readMiscRegNoEffect(MISCREG_FPSCR) & 974 ~(uint32_t)fpscrMask); 975 misc_reg = MISCREG_FPSCR; 976 } 977 break; 978 case MISCREG_CPSR_Q: 979 { 980 assert(!(newVal & ~CpsrMaskQ)); 981 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal; 982 misc_reg = MISCREG_CPSR; 983 } 984 break; 985 case MISCREG_FPSCR_QC: 986 { 987 newVal = readMiscRegNoEffect(MISCREG_FPSCR) | 988 (newVal & FpscrQcMask); 989 misc_reg = MISCREG_FPSCR; 990 } 991 break; 992 case MISCREG_FPSCR_EXC: 993 { 994 newVal = readMiscRegNoEffect(MISCREG_FPSCR) | 995 (newVal & FpscrExcMask); 996 misc_reg = MISCREG_FPSCR; 997 } 998 break; 999 case MISCREG_FPEXC: 1000 { 1001 // vfpv3 architecture, section B.6.1 of DDI04068 1002 // bit 29 - valid only if fpexc[31] is 0 1003 const uint32_t fpexcMask = 0x60000000; 1004 newVal = (newVal & fpexcMask) | 1005 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask); 1006 } 1007 break; 1008 case MISCREG_HCR: 1009 { 1010 if (!haveVirtualization) 1011 return; 1012 } 1013 break; 1014 case MISCREG_IFSR: 1015 { 1016 // ARM ARM (ARM DDI 0406C.b) B4.1.96 1017 const uint32_t ifsrMask = 1018 mask(31, 13) | mask(11, 11) | mask(8, 6); 1019 newVal = newVal & ~ifsrMask; 1020 } 1021 break; 1022 case MISCREG_DFSR: 1023 { 1024 // ARM ARM (ARM DDI 0406C.b) B4.1.52 1025 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8); 1026 newVal = newVal & ~dfsrMask; 1027 } 1028 break; 1029 case MISCREG_AMAIR0: 1030 case MISCREG_AMAIR1: 1031 { 1032 // ARM ARM (ARM DDI 0406C.b) B4.1.5 1033 // Valid only with LPAE 1034 if (!haveLPAE) 1035 return; 1036 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal); 1037 } 1038 break; 1039 case MISCREG_SCR: 1040 getITBPtr(tc)->invalidateMiscReg(); 1041 getDTBPtr(tc)->invalidateMiscReg(); 1042 break; 1043 case MISCREG_SCTLR: 1044 { 1045 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal); 1046 scr = readMiscRegNoEffect(MISCREG_SCR); 1047 1048 MiscRegIndex sctlr_idx; 1049 if (haveSecurity && !highestELIs64 && !scr.ns) { 1050 sctlr_idx = MISCREG_SCTLR_S; 1051 } else { 1052 sctlr_idx = MISCREG_SCTLR_NS; 1053 } 1054 1055 SCTLR sctlr = miscRegs[sctlr_idx]; 1056 SCTLR new_sctlr = newVal; 1057 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization; 1058 miscRegs[sctlr_idx] = (RegVal)new_sctlr; 1059 getITBPtr(tc)->invalidateMiscReg(); 1060 getDTBPtr(tc)->invalidateMiscReg(); 1061 } 1062 case MISCREG_MIDR: 1063 case MISCREG_ID_PFR0: 1064 case MISCREG_ID_PFR1: 1065 case MISCREG_ID_DFR0: 1066 case MISCREG_ID_MMFR0: 1067 case MISCREG_ID_MMFR1: 1068 case MISCREG_ID_MMFR2: 1069 case MISCREG_ID_MMFR3: 1070 case MISCREG_ID_ISAR0: 1071 case MISCREG_ID_ISAR1: 1072 case MISCREG_ID_ISAR2: 1073 case MISCREG_ID_ISAR3: 1074 case MISCREG_ID_ISAR4: 1075 case MISCREG_ID_ISAR5: 1076 1077 case MISCREG_MPIDR: 1078 case MISCREG_FPSID: 1079 case MISCREG_TLBTR: 1080 case MISCREG_MVFR0: 1081 case MISCREG_MVFR1: 1082 1083 case MISCREG_ID_AA64AFR0_EL1: 1084 case MISCREG_ID_AA64AFR1_EL1: 1085 case MISCREG_ID_AA64DFR0_EL1: 1086 case MISCREG_ID_AA64DFR1_EL1: 1087 case MISCREG_ID_AA64ISAR0_EL1: 1088 case MISCREG_ID_AA64ISAR1_EL1: 1089 case MISCREG_ID_AA64MMFR0_EL1: 1090 case MISCREG_ID_AA64MMFR1_EL1: 1091 case MISCREG_ID_AA64MMFR2_EL1: 1092 case MISCREG_ID_AA64PFR0_EL1: 1093 case MISCREG_ID_AA64PFR1_EL1: 1094 // ID registers are constants. 1095 return; 1096 1097 // TLB Invalidate All 1098 case MISCREG_TLBIALL: // TLBI all entries, EL0&1, 1099 { 1100 assert32(tc); 1101 scr = readMiscReg(MISCREG_SCR, tc); 1102 1103 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1104 tlbiOp(tc); 1105 return; 1106 } 1107 // TLB Invalidate All, Inner Shareable 1108 case MISCREG_TLBIALLIS: 1109 { 1110 assert32(tc); 1111 scr = readMiscReg(MISCREG_SCR, tc); 1112 1113 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1114 tlbiOp.broadcast(tc); 1115 return; 1116 } 1117 // Instruction TLB Invalidate All 1118 case MISCREG_ITLBIALL: 1119 { 1120 assert32(tc); 1121 scr = readMiscReg(MISCREG_SCR, tc); 1122 1123 ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1124 tlbiOp(tc); 1125 return; 1126 } 1127 // Data TLB Invalidate All 1128 case MISCREG_DTLBIALL: 1129 { 1130 assert32(tc); 1131 scr = readMiscReg(MISCREG_SCR, tc); 1132 1133 DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1134 tlbiOp(tc); 1135 return; 1136 } 1137 // TLB Invalidate by VA 1138 // mcr tlbimval(is) is invalidating all matching entries 1139 // regardless of the level of lookup, since in gem5 we cache 1140 // in the tlb the last level of lookup only. 1141 case MISCREG_TLBIMVA: 1142 case MISCREG_TLBIMVAL: 1143 { 1144 assert32(tc); 1145 scr = readMiscReg(MISCREG_SCR, tc); 1146 1147 TLBIMVA tlbiOp(EL1, 1148 haveSecurity && !scr.ns, 1149 mbits(newVal, 31, 12), 1150 bits(newVal, 7,0)); 1151 1152 tlbiOp(tc); 1153 return; 1154 } 1155 // TLB Invalidate by VA, Inner Shareable 1156 case MISCREG_TLBIMVAIS: 1157 case MISCREG_TLBIMVALIS: 1158 { 1159 assert32(tc); 1160 scr = readMiscReg(MISCREG_SCR, tc); 1161 1162 TLBIMVA tlbiOp(EL1, 1163 haveSecurity && !scr.ns, 1164 mbits(newVal, 31, 12), 1165 bits(newVal, 7,0)); 1166 1167 tlbiOp.broadcast(tc); 1168 return; 1169 } 1170 // TLB Invalidate by ASID match 1171 case MISCREG_TLBIASID: 1172 { 1173 assert32(tc); 1174 scr = readMiscReg(MISCREG_SCR, tc); 1175 1176 TLBIASID tlbiOp(EL1, 1177 haveSecurity && !scr.ns, 1178 bits(newVal, 7,0)); 1179 1180 tlbiOp(tc); 1181 return; 1182 } 1183 // TLB Invalidate by ASID match, Inner Shareable 1184 case MISCREG_TLBIASIDIS: 1185 { 1186 assert32(tc); 1187 scr = readMiscReg(MISCREG_SCR, tc); 1188 1189 TLBIASID tlbiOp(EL1, 1190 haveSecurity && !scr.ns, 1191 bits(newVal, 7,0)); 1192 1193 tlbiOp.broadcast(tc); 1194 return; 1195 } 1196 // mcr tlbimvaal(is) is invalidating all matching entries 1197 // regardless of the level of lookup, since in gem5 we cache 1198 // in the tlb the last level of lookup only. 1199 // TLB Invalidate by VA, All ASID 1200 case MISCREG_TLBIMVAA: 1201 case MISCREG_TLBIMVAAL: 1202 { 1203 assert32(tc); 1204 scr = readMiscReg(MISCREG_SCR, tc); 1205 1206 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, 1207 mbits(newVal, 31,12)); 1208 1209 tlbiOp(tc); 1210 return; 1211 } 1212 // TLB Invalidate by VA, All ASID, Inner Shareable 1213 case MISCREG_TLBIMVAAIS: 1214 case MISCREG_TLBIMVAALIS: 1215 { 1216 assert32(tc); 1217 scr = readMiscReg(MISCREG_SCR, tc); 1218 1219 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, 1220 mbits(newVal, 31,12)); 1221 1222 tlbiOp.broadcast(tc); 1223 return; 1224 } 1225 // mcr tlbimvalh(is) is invalidating all matching entries 1226 // regardless of the level of lookup, since in gem5 we cache 1227 // in the tlb the last level of lookup only. 1228 // TLB Invalidate by VA, Hyp mode 1229 case MISCREG_TLBIMVAH: 1230 case MISCREG_TLBIMVALH: 1231 { 1232 assert32(tc); 1233 scr = readMiscReg(MISCREG_SCR, tc); 1234 1235 TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns, 1236 mbits(newVal, 31,12)); 1237 1238 tlbiOp(tc); 1239 return; 1240 } 1241 // TLB Invalidate by VA, Hyp mode, Inner Shareable 1242 case MISCREG_TLBIMVAHIS: 1243 case MISCREG_TLBIMVALHIS: 1244 { 1245 assert32(tc); 1246 scr = readMiscReg(MISCREG_SCR, tc); 1247 1248 TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns, 1249 mbits(newVal, 31,12)); 1250 1251 tlbiOp.broadcast(tc); 1252 return; 1253 } 1254 // mcr tlbiipas2l(is) is invalidating all matching entries 1255 // regardless of the level of lookup, since in gem5 we cache 1256 // in the tlb the last level of lookup only. 1257 // TLB Invalidate by Intermediate Physical Address, Stage 2 1258 case MISCREG_TLBIIPAS2: 1259 case MISCREG_TLBIIPAS2L: 1260 { 1261 assert32(tc); 1262 scr = readMiscReg(MISCREG_SCR, tc); 1263 1264 TLBIIPA tlbiOp(EL1, 1265 haveSecurity && !scr.ns, 1266 static_cast<Addr>(bits(newVal, 35, 0)) << 12); 1267 1268 tlbiOp(tc); 1269 return; 1270 } 1271 // TLB Invalidate by Intermediate Physical Address, Stage 2, 1272 // Inner Shareable 1273 case MISCREG_TLBIIPAS2IS: 1274 case MISCREG_TLBIIPAS2LIS: 1275 { 1276 assert32(tc); 1277 scr = readMiscReg(MISCREG_SCR, tc); 1278 1279 TLBIIPA tlbiOp(EL1, 1280 haveSecurity && !scr.ns, 1281 static_cast<Addr>(bits(newVal, 35, 0)) << 12); 1282 1283 tlbiOp.broadcast(tc); 1284 return; 1285 } 1286 // Instruction TLB Invalidate by VA 1287 case MISCREG_ITLBIMVA: 1288 { 1289 assert32(tc); 1290 scr = readMiscReg(MISCREG_SCR, tc); 1291 1292 ITLBIMVA tlbiOp(EL1, 1293 haveSecurity && !scr.ns, 1294 mbits(newVal, 31, 12), 1295 bits(newVal, 7,0)); 1296 1297 tlbiOp(tc); 1298 return; 1299 } 1300 // Data TLB Invalidate by VA 1301 case MISCREG_DTLBIMVA: 1302 { 1303 assert32(tc); 1304 scr = readMiscReg(MISCREG_SCR, tc); 1305 1306 DTLBIMVA tlbiOp(EL1, 1307 haveSecurity && !scr.ns, 1308 mbits(newVal, 31, 12), 1309 bits(newVal, 7,0)); 1310 1311 tlbiOp(tc); 1312 return; 1313 } 1314 // Instruction TLB Invalidate by ASID match 1315 case MISCREG_ITLBIASID: 1316 { 1317 assert32(tc); 1318 scr = readMiscReg(MISCREG_SCR, tc); 1319 1320 ITLBIASID tlbiOp(EL1, 1321 haveSecurity && !scr.ns, 1322 bits(newVal, 7,0)); 1323 1324 tlbiOp(tc); 1325 return; 1326 } 1327 // Data TLB Invalidate by ASID match 1328 case MISCREG_DTLBIASID: 1329 { 1330 assert32(tc); 1331 scr = readMiscReg(MISCREG_SCR, tc); 1332 1333 DTLBIASID tlbiOp(EL1, 1334 haveSecurity && !scr.ns, 1335 bits(newVal, 7,0)); 1336 1337 tlbiOp(tc); 1338 return; 1339 } 1340 // TLB Invalidate All, Non-Secure Non-Hyp 1341 case MISCREG_TLBIALLNSNH: 1342 { 1343 assert32(tc); 1344 1345 TLBIALLN tlbiOp(EL1); 1346 tlbiOp(tc); 1347 return; 1348 } 1349 // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable 1350 case MISCREG_TLBIALLNSNHIS: 1351 { 1352 assert32(tc); 1353 1354 TLBIALLN tlbiOp(EL1); 1355 tlbiOp.broadcast(tc); 1356 return; 1357 } 1358 // TLB Invalidate All, Hyp mode 1359 case MISCREG_TLBIALLH: 1360 { 1361 assert32(tc); 1362 1363 TLBIALLN tlbiOp(EL2); 1364 tlbiOp(tc); 1365 return; 1366 } 1367 // TLB Invalidate All, Hyp mode, Inner Shareable 1368 case MISCREG_TLBIALLHIS: 1369 { 1370 assert32(tc); 1371 1372 TLBIALLN tlbiOp(EL2); 1373 tlbiOp.broadcast(tc); 1374 return; 1375 } 1376 // AArch64 TLB Invalidate All, EL3 1377 case MISCREG_TLBI_ALLE3: 1378 { 1379 assert64(tc); 1380 1381 TLBIALL tlbiOp(EL3, true); 1382 tlbiOp(tc); 1383 return; 1384 } 1385 // AArch64 TLB Invalidate All, EL3, Inner Shareable 1386 case MISCREG_TLBI_ALLE3IS: 1387 { 1388 assert64(tc); 1389 1390 TLBIALL tlbiOp(EL3, true); 1391 tlbiOp.broadcast(tc); 1392 return; 1393 } 1394 // AArch64 TLB Invalidate All, EL2, Inner Shareable 1395 case MISCREG_TLBI_ALLE2: 1396 case MISCREG_TLBI_ALLE2IS: 1397 { 1398 assert64(tc); 1399 scr = readMiscReg(MISCREG_SCR, tc); 1400 1401 TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns); 1402 tlbiOp(tc); 1403 return; 1404 } 1405 // AArch64 TLB Invalidate All, EL1 1406 case MISCREG_TLBI_ALLE1: 1407 case MISCREG_TLBI_VMALLE1: 1408 case MISCREG_TLBI_VMALLS12E1: 1409 // @todo: handle VMID and stage 2 to enable Virtualization 1410 { 1411 assert64(tc); 1412 scr = readMiscReg(MISCREG_SCR, tc); 1413 1414 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1415 tlbiOp(tc); 1416 return; 1417 } 1418 // AArch64 TLB Invalidate All, EL1, Inner Shareable 1419 case MISCREG_TLBI_ALLE1IS: 1420 case MISCREG_TLBI_VMALLE1IS: 1421 case MISCREG_TLBI_VMALLS12E1IS: 1422 // @todo: handle VMID and stage 2 to enable Virtualization 1423 { 1424 assert64(tc); 1425 scr = readMiscReg(MISCREG_SCR, tc); 1426 1427 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1428 tlbiOp.broadcast(tc); 1429 return; 1430 } 1431 // VAEx(IS) and VALEx(IS) are the same because TLBs 1432 // only store entries 1433 // from the last level of translation table walks 1434 // @todo: handle VMID to enable Virtualization 1435 // AArch64 TLB Invalidate by VA, EL3 1436 case MISCREG_TLBI_VAE3_Xt: 1437 case MISCREG_TLBI_VALE3_Xt: 1438 { 1439 assert64(tc); 1440 1441 TLBIMVA tlbiOp(EL3, true, 1442 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1443 0xbeef); 1444 tlbiOp(tc); 1445 return; 1446 } 1447 // AArch64 TLB Invalidate by VA, EL3, Inner Shareable 1448 case MISCREG_TLBI_VAE3IS_Xt: 1449 case MISCREG_TLBI_VALE3IS_Xt: 1450 { 1451 assert64(tc); 1452 1453 TLBIMVA tlbiOp(EL3, true, 1454 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1455 0xbeef); 1456 1457 tlbiOp.broadcast(tc); 1458 return; 1459 } 1460 // AArch64 TLB Invalidate by VA, EL2 1461 case MISCREG_TLBI_VAE2_Xt: 1462 case MISCREG_TLBI_VALE2_Xt: 1463 { 1464 assert64(tc); 1465 scr = readMiscReg(MISCREG_SCR, tc); 1466 1467 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns, 1468 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1469 0xbeef); 1470 tlbiOp(tc); 1471 return; 1472 } 1473 // AArch64 TLB Invalidate by VA, EL2, Inner Shareable 1474 case MISCREG_TLBI_VAE2IS_Xt: 1475 case MISCREG_TLBI_VALE2IS_Xt: 1476 { 1477 assert64(tc); 1478 scr = readMiscReg(MISCREG_SCR, tc); 1479 1480 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns, 1481 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1482 0xbeef); 1483 1484 tlbiOp.broadcast(tc); 1485 return; 1486 } 1487 // AArch64 TLB Invalidate by VA, EL1 1488 case MISCREG_TLBI_VAE1_Xt: 1489 case MISCREG_TLBI_VALE1_Xt: 1490 { 1491 assert64(tc); 1492 scr = readMiscReg(MISCREG_SCR, tc); 1493 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : 1494 bits(newVal, 55, 48); 1495 1496 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns, 1497 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1498 asid); 1499 1500 tlbiOp(tc); 1501 return; 1502 } 1503 // AArch64 TLB Invalidate by VA, EL1, Inner Shareable 1504 case MISCREG_TLBI_VAE1IS_Xt: 1505 case MISCREG_TLBI_VALE1IS_Xt: 1506 { 1507 assert64(tc); 1508 scr = readMiscReg(MISCREG_SCR, tc); 1509 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : 1510 bits(newVal, 55, 48); 1511 1512 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns, 1513 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1514 asid); 1515 1516 tlbiOp.broadcast(tc); 1517 return; 1518 } 1519 // AArch64 TLB Invalidate by ASID, EL1 1520 // @todo: handle VMID to enable Virtualization 1521 case MISCREG_TLBI_ASIDE1_Xt: 1522 { 1523 assert64(tc); 1524 scr = readMiscReg(MISCREG_SCR, tc); 1525 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : 1526 bits(newVal, 55, 48); 1527 1528 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid); 1529 tlbiOp(tc); 1530 return; 1531 } 1532 // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable 1533 case MISCREG_TLBI_ASIDE1IS_Xt: 1534 { 1535 assert64(tc); 1536 scr = readMiscReg(MISCREG_SCR, tc); 1537 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : 1538 bits(newVal, 55, 48); 1539 1540 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid); 1541 tlbiOp.broadcast(tc); 1542 return; 1543 } 1544 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store 1545 // entries from the last level of translation table walks 1546 // AArch64 TLB Invalidate by VA, All ASID, EL1 1547 case MISCREG_TLBI_VAAE1_Xt: 1548 case MISCREG_TLBI_VAALE1_Xt: 1549 { 1550 assert64(tc); 1551 scr = readMiscReg(MISCREG_SCR, tc); 1552 1553 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, 1554 static_cast<Addr>(bits(newVal, 43, 0)) << 12); 1555 1556 tlbiOp(tc); 1557 return; 1558 } 1559 // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable 1560 case MISCREG_TLBI_VAAE1IS_Xt: 1561 case MISCREG_TLBI_VAALE1IS_Xt: 1562 { 1563 assert64(tc); 1564 scr = readMiscReg(MISCREG_SCR, tc); 1565 1566 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, 1567 static_cast<Addr>(bits(newVal, 43, 0)) << 12); 1568 1569 tlbiOp.broadcast(tc); 1570 return; 1571 } 1572 // AArch64 TLB Invalidate by Intermediate Physical Address, 1573 // Stage 2, EL1 1574 case MISCREG_TLBI_IPAS2E1_Xt: 1575 case MISCREG_TLBI_IPAS2LE1_Xt: 1576 { 1577 assert64(tc); 1578 scr = readMiscReg(MISCREG_SCR, tc); 1579 1580 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns, 1581 static_cast<Addr>(bits(newVal, 35, 0)) << 12); 1582 1583 tlbiOp(tc); 1584 return; 1585 } 1586 // AArch64 TLB Invalidate by Intermediate Physical Address, 1587 // Stage 2, EL1, Inner Shareable 1588 case MISCREG_TLBI_IPAS2E1IS_Xt: 1589 case MISCREG_TLBI_IPAS2LE1IS_Xt: 1590 { 1591 assert64(tc); 1592 scr = readMiscReg(MISCREG_SCR, tc); 1593 1594 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns, 1595 static_cast<Addr>(bits(newVal, 35, 0)) << 12); 1596 1597 tlbiOp.broadcast(tc); 1598 return; 1599 } 1600 case MISCREG_ACTLR: 1601 warn("Not doing anything for write of miscreg ACTLR\n"); 1602 break; 1603 1604 case MISCREG_PMXEVTYPER_PMCCFILTR: 1605 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0: 1606 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0: 1607 case MISCREG_PMCR ... MISCREG_PMOVSSET: 1608 pmu->setMiscReg(misc_reg, newVal); 1609 break; 1610 1611 1612 case MISCREG_HSTR: // TJDBX, now redifined to be RES0 1613 { 1614 HSTR hstrMask = 0; 1615 hstrMask.tjdbx = 1; 1616 newVal &= ~((uint32_t) hstrMask); 1617 break; 1618 } 1619 case MISCREG_HCPTR: 1620 { 1621 // If a CP bit in NSACR is 0 then the corresponding bit in 1622 // HCPTR is RAO/WI. Same applies to NSASEDIS 1623 secure_lookup = haveSecurity && 1624 inSecureState(readMiscRegNoEffect(MISCREG_SCR), 1625 readMiscRegNoEffect(MISCREG_CPSR)); 1626 if (!secure_lookup) { 1627 RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR); 1628 RegVal mask = 1629 (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF; 1630 newVal = (newVal & ~mask) | (oldValue & mask); 1631 } 1632 break; 1633 } 1634 case MISCREG_HDFAR: // alias for secure DFAR 1635 misc_reg = MISCREG_DFAR_S; 1636 break; 1637 case MISCREG_HIFAR: // alias for secure IFAR 1638 misc_reg = MISCREG_IFAR_S; 1639 break; 1640 case MISCREG_ATS1CPR: 1641 case MISCREG_ATS1CPW: 1642 case MISCREG_ATS1CUR: 1643 case MISCREG_ATS1CUW: 1644 case MISCREG_ATS12NSOPR: 1645 case MISCREG_ATS12NSOPW: 1646 case MISCREG_ATS12NSOUR: 1647 case MISCREG_ATS12NSOUW: 1648 case MISCREG_ATS1HR: 1649 case MISCREG_ATS1HW: 1650 { 1651 Request::Flags flags = 0; 1652 BaseTLB::Mode mode = BaseTLB::Read; 1653 TLB::ArmTranslationType tranType = TLB::NormalTran; 1654 Fault fault; 1655 switch(misc_reg) { 1656 case MISCREG_ATS1CPR: 1657 flags = TLB::MustBeOne; 1658 tranType = TLB::S1CTran; 1659 mode = BaseTLB::Read; 1660 break; 1661 case MISCREG_ATS1CPW: 1662 flags = TLB::MustBeOne; 1663 tranType = TLB::S1CTran; 1664 mode = BaseTLB::Write; 1665 break; 1666 case MISCREG_ATS1CUR: 1667 flags = TLB::MustBeOne | TLB::UserMode; 1668 tranType = TLB::S1CTran; 1669 mode = BaseTLB::Read; 1670 break; 1671 case MISCREG_ATS1CUW: 1672 flags = TLB::MustBeOne | TLB::UserMode; 1673 tranType = TLB::S1CTran; 1674 mode = BaseTLB::Write; 1675 break; 1676 case MISCREG_ATS12NSOPR: 1677 if (!haveSecurity) 1678 panic("Security Extensions required for ATS12NSOPR"); 1679 flags = TLB::MustBeOne; 1680 tranType = TLB::S1S2NsTran; 1681 mode = BaseTLB::Read; 1682 break; 1683 case MISCREG_ATS12NSOPW: 1684 if (!haveSecurity) 1685 panic("Security Extensions required for ATS12NSOPW"); 1686 flags = TLB::MustBeOne; 1687 tranType = TLB::S1S2NsTran; 1688 mode = BaseTLB::Write; 1689 break; 1690 case MISCREG_ATS12NSOUR: 1691 if (!haveSecurity) 1692 panic("Security Extensions required for ATS12NSOUR"); 1693 flags = TLB::MustBeOne | TLB::UserMode; 1694 tranType = TLB::S1S2NsTran; 1695 mode = BaseTLB::Read; 1696 break; 1697 case MISCREG_ATS12NSOUW: 1698 if (!haveSecurity) 1699 panic("Security Extensions required for ATS12NSOUW"); 1700 flags = TLB::MustBeOne | TLB::UserMode; 1701 tranType = TLB::S1S2NsTran; 1702 mode = BaseTLB::Write; 1703 break; 1704 case MISCREG_ATS1HR: // only really useful from secure mode. 1705 flags = TLB::MustBeOne; 1706 tranType = TLB::HypMode; 1707 mode = BaseTLB::Read; 1708 break; 1709 case MISCREG_ATS1HW: 1710 flags = TLB::MustBeOne; 1711 tranType = TLB::HypMode; 1712 mode = BaseTLB::Write; 1713 break; 1714 } 1715 // If we're in timing mode then doing the translation in 1716 // functional mode then we're slightly distorting performance 1717 // results obtained from simulations. The translation should be 1718 // done in the same mode the core is running in. NOTE: This 1719 // can't be an atomic translation because that causes problems 1720 // with unexpected atomic snoop requests. 1721 warn("Translating via %s in functional mode! Fix Me!\n", 1722 miscRegName[misc_reg]); 1723 1724 auto req = std::make_shared<Request>( 1725 0, val, 0, flags, Request::funcMasterId, 1726 tc->pcState().pc(), tc->contextId()); 1727 1728 fault = getDTBPtr(tc)->translateFunctional( 1729 req, tc, mode, tranType); 1730 1731 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1732 HCR hcr = readMiscRegNoEffect(MISCREG_HCR); 1733 1734 RegVal newVal; 1735 if (fault == NoFault) { 1736 Addr paddr = req->getPaddr(); 1737 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode || 1738 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) { 1739 newVal = (paddr & mask(39, 12)) | 1740 (getDTBPtr(tc)->getAttr()); 1741 } else { 1742 newVal = (paddr & 0xfffff000) | 1743 (getDTBPtr(tc)->getAttr()); 1744 } 1745 DPRINTF(MiscRegs, 1746 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n", 1747 val, newVal); 1748 } else { 1749 ArmFault *armFault = static_cast<ArmFault *>(fault.get()); 1750 armFault->update(tc); 1751 // Set fault bit and FSR 1752 FSR fsr = armFault->getFsr(tc); 1753 1754 newVal = ((fsr >> 9) & 1) << 11; 1755 if (newVal) { 1756 // LPAE - rearange fault status 1757 newVal |= ((fsr >> 0) & 0x3f) << 1; 1758 } else { 1759 // VMSA - rearange fault status 1760 newVal |= ((fsr >> 0) & 0xf) << 1; 1761 newVal |= ((fsr >> 10) & 0x1) << 5; 1762 newVal |= ((fsr >> 12) & 0x1) << 6; 1763 } 1764 newVal |= 0x1; // F bit 1765 newVal |= ((armFault->iss() >> 7) & 0x1) << 8; 1766 newVal |= armFault->isStage2() ? 0x200 : 0; 1767 DPRINTF(MiscRegs, 1768 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n", 1769 val, fsr, newVal); 1770 } 1771 setMiscRegNoEffect(MISCREG_PAR, newVal); 1772 return; 1773 } 1774 case MISCREG_TTBCR: 1775 { 1776 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1777 const uint32_t ones = (uint32_t)(-1); 1778 TTBCR ttbcrMask = 0; 1779 TTBCR ttbcrNew = newVal; 1780 1781 // ARM DDI 0406C.b, ARMv7-32 1782 ttbcrMask.n = ones; // T0SZ 1783 if (haveSecurity) { 1784 ttbcrMask.pd0 = ones; 1785 ttbcrMask.pd1 = ones; 1786 } 1787 ttbcrMask.epd0 = ones; 1788 ttbcrMask.irgn0 = ones; 1789 ttbcrMask.orgn0 = ones; 1790 ttbcrMask.sh0 = ones; 1791 ttbcrMask.ps = ones; // T1SZ 1792 ttbcrMask.a1 = ones; 1793 ttbcrMask.epd1 = ones; 1794 ttbcrMask.irgn1 = ones; 1795 ttbcrMask.orgn1 = ones; 1796 ttbcrMask.sh1 = ones; 1797 if (haveLPAE) 1798 ttbcrMask.eae = ones; 1799 1800 if (haveLPAE && ttbcrNew.eae) { 1801 newVal = newVal & ttbcrMask; 1802 } else { 1803 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask)); 1804 } 1805 // Invalidate TLB MiscReg 1806 getITBPtr(tc)->invalidateMiscReg(); 1807 getDTBPtr(tc)->invalidateMiscReg(); 1808 break; 1809 } 1810 case MISCREG_TTBR0: 1811 case MISCREG_TTBR1: 1812 { 1813 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1814 if (haveLPAE) { 1815 if (ttbcr.eae) { 1816 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP 1817 // ARMv8 AArch32 bit 63-56 only 1818 uint64_t ttbrMask = mask(63,56) | mask(47,40); 1819 newVal = (newVal & (~ttbrMask)); 1820 } 1821 } 1822 // Invalidate TLB MiscReg 1823 getITBPtr(tc)->invalidateMiscReg(); 1824 getDTBPtr(tc)->invalidateMiscReg(); 1825 break; 1826 } 1827 case MISCREG_SCTLR_EL1: 1828 case MISCREG_CONTEXTIDR: 1829 case MISCREG_PRRR: 1830 case MISCREG_NMRR: 1831 case MISCREG_MAIR0: 1832 case MISCREG_MAIR1: 1833 case MISCREG_DACR: 1834 case MISCREG_VTTBR: 1835 case MISCREG_SCR_EL3: 1836 case MISCREG_HCR_EL2: 1837 case MISCREG_TCR_EL1: 1838 case MISCREG_TCR_EL2: 1839 case MISCREG_TCR_EL3: 1840 case MISCREG_SCTLR_EL2: 1841 case MISCREG_SCTLR_EL3: 1842 case MISCREG_HSCTLR: 1843 case MISCREG_TTBR0_EL1: 1844 case MISCREG_TTBR1_EL1: 1845 case MISCREG_TTBR0_EL2: 1846 case MISCREG_TTBR1_EL2: 1847 case MISCREG_TTBR0_EL3: 1848 getITBPtr(tc)->invalidateMiscReg(); 1849 getDTBPtr(tc)->invalidateMiscReg(); 1850 break; 1851 case MISCREG_NZCV: 1852 { 1853 CPSR cpsr = val; 1854 1855 tc->setCCReg(CCREG_NZ, cpsr.nz); 1856 tc->setCCReg(CCREG_C, cpsr.c); 1857 tc->setCCReg(CCREG_V, cpsr.v); 1858 } 1859 break; 1860 case MISCREG_DAIF: 1861 { 1862 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1863 cpsr.daif = (uint8_t) ((CPSR) newVal).daif; 1864 newVal = cpsr; 1865 misc_reg = MISCREG_CPSR; 1866 } 1867 break; 1868 case MISCREG_SP_EL0: 1869 tc->setIntReg(INTREG_SP0, newVal); 1870 break; 1871 case MISCREG_SP_EL1: 1872 tc->setIntReg(INTREG_SP1, newVal); 1873 break; 1874 case MISCREG_SP_EL2: 1875 tc->setIntReg(INTREG_SP2, newVal); 1876 break; 1877 case MISCREG_SPSEL: 1878 { 1879 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1880 cpsr.sp = (uint8_t) ((CPSR) newVal).sp; 1881 newVal = cpsr; 1882 misc_reg = MISCREG_CPSR; 1883 } 1884 break; 1885 case MISCREG_CURRENTEL: 1886 { 1887 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1888 cpsr.el = (uint8_t) ((CPSR) newVal).el; 1889 newVal = cpsr; 1890 misc_reg = MISCREG_CPSR; 1891 } 1892 break; 1893 case MISCREG_PAN: 1894 { 1895 // PAN is affecting data accesses 1896 getDTBPtr(tc)->invalidateMiscReg(); 1897 1898 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1899 cpsr.pan = (uint8_t) ((CPSR) newVal).pan; 1900 newVal = cpsr; 1901 misc_reg = MISCREG_CPSR; 1902 } 1903 break; 1904 case MISCREG_AT_S1E1R_Xt: 1905 case MISCREG_AT_S1E1W_Xt: 1906 case MISCREG_AT_S1E0R_Xt: 1907 case MISCREG_AT_S1E0W_Xt: 1908 case MISCREG_AT_S1E2R_Xt: 1909 case MISCREG_AT_S1E2W_Xt: 1910 case MISCREG_AT_S12E1R_Xt: 1911 case MISCREG_AT_S12E1W_Xt: 1912 case MISCREG_AT_S12E0R_Xt: 1913 case MISCREG_AT_S12E0W_Xt: 1914 case MISCREG_AT_S1E3R_Xt: 1915 case MISCREG_AT_S1E3W_Xt: 1916 { 1917 RequestPtr req = std::make_shared<Request>(); 1918 Request::Flags flags = 0; 1919 BaseTLB::Mode mode = BaseTLB::Read; 1920 TLB::ArmTranslationType tranType = TLB::NormalTran; 1921 Fault fault; 1922 switch(misc_reg) { 1923 case MISCREG_AT_S1E1R_Xt: 1924 flags = TLB::MustBeOne; 1925 tranType = TLB::S1E1Tran; 1926 mode = BaseTLB::Read; 1927 break; 1928 case MISCREG_AT_S1E1W_Xt: 1929 flags = TLB::MustBeOne; 1930 tranType = TLB::S1E1Tran; 1931 mode = BaseTLB::Write; 1932 break; 1933 case MISCREG_AT_S1E0R_Xt: 1934 flags = TLB::MustBeOne | TLB::UserMode; 1935 tranType = TLB::S1E0Tran; 1936 mode = BaseTLB::Read; 1937 break; 1938 case MISCREG_AT_S1E0W_Xt: 1939 flags = TLB::MustBeOne | TLB::UserMode; 1940 tranType = TLB::S1E0Tran; 1941 mode = BaseTLB::Write; 1942 break; 1943 case MISCREG_AT_S1E2R_Xt: 1944 flags = TLB::MustBeOne; 1945 tranType = TLB::S1E2Tran; 1946 mode = BaseTLB::Read; 1947 break; 1948 case MISCREG_AT_S1E2W_Xt: 1949 flags = TLB::MustBeOne; 1950 tranType = TLB::S1E2Tran; 1951 mode = BaseTLB::Write; 1952 break; 1953 case MISCREG_AT_S12E0R_Xt: 1954 flags = TLB::MustBeOne | TLB::UserMode; 1955 tranType = TLB::S12E0Tran; 1956 mode = BaseTLB::Read; 1957 break; 1958 case MISCREG_AT_S12E0W_Xt: 1959 flags = TLB::MustBeOne | TLB::UserMode; 1960 tranType = TLB::S12E0Tran; 1961 mode = BaseTLB::Write; 1962 break; 1963 case MISCREG_AT_S12E1R_Xt: 1964 flags = TLB::MustBeOne; 1965 tranType = TLB::S12E1Tran; 1966 mode = BaseTLB::Read; 1967 break; 1968 case MISCREG_AT_S12E1W_Xt: 1969 flags = TLB::MustBeOne; 1970 tranType = TLB::S12E1Tran; 1971 mode = BaseTLB::Write; 1972 break; 1973 case MISCREG_AT_S1E3R_Xt: 1974 flags = TLB::MustBeOne; 1975 tranType = TLB::S1E3Tran; 1976 mode = BaseTLB::Read; 1977 break; 1978 case MISCREG_AT_S1E3W_Xt: 1979 flags = TLB::MustBeOne; 1980 tranType = TLB::S1E3Tran; 1981 mode = BaseTLB::Write; 1982 break; 1983 } 1984 // If we're in timing mode then doing the translation in 1985 // functional mode then we're slightly distorting performance 1986 // results obtained from simulations. The translation should be 1987 // done in the same mode the core is running in. NOTE: This 1988 // can't be an atomic translation because that causes problems 1989 // with unexpected atomic snoop requests. 1990 warn("Translating via %s in functional mode! Fix Me!\n", 1991 miscRegName[misc_reg]); 1992 1993 req->setVirt(0, val, 0, flags, Request::funcMasterId, 1994 tc->pcState().pc()); 1995 req->setContext(tc->contextId()); 1996 fault = getDTBPtr(tc)->translateFunctional(req, tc, mode, 1997 tranType); 1998 1999 RegVal newVal; 2000 if (fault == NoFault) { 2001 Addr paddr = req->getPaddr(); 2002 uint64_t attr = getDTBPtr(tc)->getAttr(); 2003 uint64_t attr1 = attr >> 56; 2004 if (!attr1 || attr1 ==0x44) { 2005 attr |= 0x100; 2006 attr &= ~ uint64_t(0x80); 2007 } 2008 newVal = (paddr & mask(47, 12)) | attr; 2009 DPRINTF(MiscRegs, 2010 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n", 2011 val, newVal); 2012 } else { 2013 ArmFault *armFault = static_cast<ArmFault *>(fault.get()); 2014 armFault->update(tc); 2015 // Set fault bit and FSR 2016 FSR fsr = armFault->getFsr(tc); 2017 2018 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 2019 if (cpsr.width) { // AArch32 2020 newVal = ((fsr >> 9) & 1) << 11; 2021 // rearrange fault status 2022 newVal |= ((fsr >> 0) & 0x3f) << 1; 2023 newVal |= 0x1; // F bit 2024 newVal |= ((armFault->iss() >> 7) & 0x1) << 8; 2025 newVal |= armFault->isStage2() ? 0x200 : 0; 2026 } else { // AArch64 2027 newVal = 1; // F bit 2028 newVal |= fsr << 1; // FST 2029 // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit. 2030 newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW 2031 newVal |= armFault->isStage2() ? 1 << 9 : 0; // S 2032 newVal |= 1 << 11; // RES1 2033 } 2034 DPRINTF(MiscRegs, 2035 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n", 2036 val, fsr, newVal); 2037 } 2038 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal); 2039 return; 2040 } 2041 case MISCREG_SPSR_EL3: 2042 case MISCREG_SPSR_EL2: 2043 case MISCREG_SPSR_EL1: 2044 { 2045 RegVal spsr_mask = havePAN ? 2046 ~(0x5 << 21) : ~(0x7 << 21); 2047 2048 newVal = val & spsr_mask; 2049 break; 2050 } 2051 case MISCREG_L2CTLR: 2052 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n", 2053 miscRegName[misc_reg], uint32_t(val)); 2054 break; 2055 2056 // Generic Timer registers 2057 case MISCREG_CNTHV_CTL_EL2: 2058 case MISCREG_CNTHV_CVAL_EL2: 2059 case MISCREG_CNTHV_TVAL_EL2: 2060 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL: 2061 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL: 2062 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0: 2063 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1: 2064 getGenericTimer(tc).setMiscReg(misc_reg, newVal); 2065 break; 2066 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3: 2067 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2: 2068 getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal); 2069 return; 2070 case MISCREG_ZCR_EL3: 2071 case MISCREG_ZCR_EL2: 2072 case MISCREG_ZCR_EL1: 2073 tc->getDecoderPtr()->setSveLen( 2074 (getCurSveVecLenInBits(tc) >> 7) - 1); 2075 break; 2076 } 2077 } 2078 setMiscRegNoEffect(misc_reg, newVal); 2079} 2080 2081BaseISADevice & 2082ISA::getGenericTimer(ThreadContext *tc) 2083{ 2084 // We only need to create an ISA interface the first time we try 2085 // to access the timer. 2086 if (timer) 2087 return *timer.get(); 2088 2089 assert(system); 2090 GenericTimer *generic_timer(system->getGenericTimer()); 2091 if (!generic_timer) { 2092 panic("Trying to get a generic timer from a system that hasn't " 2093 "been configured to use a generic timer.\n"); 2094 } 2095 2096 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId())); 2097 timer->setThreadContext(tc); 2098 2099 return *timer.get(); 2100} 2101 2102BaseISADevice & 2103ISA::getGICv3CPUInterface(ThreadContext *tc) 2104{ 2105 panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!"); 2106 return *gicv3CpuInterface.get(); 2107} 2108 2109unsigned 2110ISA::getCurSveVecLenInBits(ThreadContext *tc) const 2111{ 2112 if (!FullSystem) { 2113 return sveVL * 128; 2114 } 2115 2116 panic_if(!tc, 2117 "A ThreadContext is needed to determine the SVE vector length " 2118 "in full-system mode"); 2119 2120 CPSR cpsr = miscRegs[MISCREG_CPSR]; 2121 ExceptionLevel el = (ExceptionLevel) (uint8_t) cpsr.el; 2122 2123 unsigned len = 0; 2124 2125 if (el == EL1 || (el == EL0 && !ELIsInHost(tc, el))) { 2126 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL1]).len; 2127 } 2128 2129 if (el == EL2 || (el == EL0 && ELIsInHost(tc, el))) { 2130 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len; 2131 } else if (haveVirtualization && !inSecureState(tc) && 2132 (el == EL0 || el == EL1)) { 2133 len = std::min( 2134 len, 2135 static_cast<unsigned>( 2136 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len)); 2137 } 2138 2139 if (el == EL3) { 2140 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len; 2141 } else if (haveSecurity) { 2142 len = std::min( 2143 len, 2144 static_cast<unsigned>( 2145 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len)); 2146 } 2147 2148 len = std::min(len, sveVL - 1); 2149 2150 return (len + 1) * 128; 2151} 2152 2153void 2154ISA::zeroSveVecRegUpperPart(VecRegContainer &vc, unsigned eCount) 2155{ 2156 auto vv = vc.as<uint64_t>(); 2157 for (int i = 2; i < eCount; ++i) { 2158 vv[i] = 0; 2159 } 2160} 2161 2162} // namespace ArmISA 2163 2164ArmISA::ISA * 2165ArmISAParams::create() 2166{ 2167 return new ArmISA::ISA(this); 2168} 2169