isa.cc revision 14000:d85c61dc0b5c
1/*
2 * Copyright (c) 2010-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 *          Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "arch/arm/tlbi_op.hh"
46#include "cpu/base.hh"
47#include "cpu/checker/cpu.hh"
48#include "debug/Arm.hh"
49#include "debug/MiscRegs.hh"
50#include "dev/arm/generic_timer.hh"
51#include "dev/arm/gic_v3.hh"
52#include "dev/arm/gic_v3_cpu_interface.hh"
53#include "params/ArmISA.hh"
54#include "sim/faults.hh"
55#include "sim/stat_control.hh"
56#include "sim/system.hh"
57
58namespace ArmISA
59{
60
61ISA::ISA(Params *p)
62    : SimObject(p),
63      system(NULL),
64      _decoderFlavour(p->decoderFlavour),
65      _vecRegRenameMode(Enums::Full),
66      pmu(p->pmu),
67      haveGICv3CPUInterface(false),
68      impdefAsNop(p->impdef_nop),
69      afterStartup(false)
70{
71    miscRegs[MISCREG_SCTLR_RST] = 0;
72
73    // Hook up a dummy device if we haven't been configured with a
74    // real PMU. By using a dummy device, we don't need to check that
75    // the PMU exist every time we try to access a PMU register.
76    if (!pmu)
77        pmu = &dummyDevice;
78
79    // Give all ISA devices a pointer to this ISA
80    pmu->setISA(this);
81
82    system = dynamic_cast<ArmSystem *>(p->system);
83
84    // Cache system-level properties
85    if (FullSystem && system) {
86        highestELIs64 = system->highestELIs64();
87        haveSecurity = system->haveSecurity();
88        haveLPAE = system->haveLPAE();
89        haveCrypto = system->haveCrypto();
90        haveVirtualization = system->haveVirtualization();
91        haveLargeAsid64 = system->haveLargeAsid64();
92        physAddrRange = system->physAddrRange();
93        haveSVE = system->haveSVE();
94        sveVL = system->sveVL();
95    } else {
96        highestELIs64 = true; // ArmSystem::highestELIs64 does the same
97        haveSecurity = haveLPAE = haveVirtualization = false;
98        haveCrypto = true;
99        haveLargeAsid64 = false;
100        physAddrRange = 32;  // dummy value
101        haveSVE = true;
102        sveVL = p->sve_vl_se;
103    }
104
105    // Initial rename mode depends on highestEL
106    const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) =
107        highestELIs64 ? Enums::Full : Enums::Elem;
108
109    initializeMiscRegMetadata();
110    preUnflattenMiscReg();
111
112    clear();
113}
114
115std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
116
117const ArmISAParams *
118ISA::params() const
119{
120    return dynamic_cast<const Params *>(_params);
121}
122
123void
124ISA::clear()
125{
126    const Params *p(params());
127
128    SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
129    memset(miscRegs, 0, sizeof(miscRegs));
130
131    initID32(p);
132
133    // We always initialize AArch64 ID registers even
134    // if we are in AArch32. This is done since if we
135    // are in SE mode we don't know if our ArmProcess is
136    // AArch32 or AArch64
137    initID64(p);
138
139    // Start with an event in the mailbox
140    miscRegs[MISCREG_SEV_MAILBOX] = 1;
141
142    // Separate Instruction and Data TLBs
143    miscRegs[MISCREG_TLBTR] = 1;
144
145    MVFR0 mvfr0 = 0;
146    mvfr0.advSimdRegisters = 2;
147    mvfr0.singlePrecision = 2;
148    mvfr0.doublePrecision = 2;
149    mvfr0.vfpExceptionTrapping = 0;
150    mvfr0.divide = 1;
151    mvfr0.squareRoot = 1;
152    mvfr0.shortVectors = 1;
153    mvfr0.roundingModes = 1;
154    miscRegs[MISCREG_MVFR0] = mvfr0;
155
156    MVFR1 mvfr1 = 0;
157    mvfr1.flushToZero = 1;
158    mvfr1.defaultNaN = 1;
159    mvfr1.advSimdLoadStore = 1;
160    mvfr1.advSimdInteger = 1;
161    mvfr1.advSimdSinglePrecision = 1;
162    mvfr1.advSimdHalfPrecision = 1;
163    mvfr1.vfpHalfPrecision = 1;
164    miscRegs[MISCREG_MVFR1] = mvfr1;
165
166    // Reset values of PRRR and NMRR are implementation dependent
167
168    // @todo: PRRR and NMRR in secure state?
169    miscRegs[MISCREG_PRRR_NS] =
170        (1 << 19) | // 19
171        (0 << 18) | // 18
172        (0 << 17) | // 17
173        (1 << 16) | // 16
174        (2 << 14) | // 15:14
175        (0 << 12) | // 13:12
176        (2 << 10) | // 11:10
177        (2 << 8)  | // 9:8
178        (2 << 6)  | // 7:6
179        (2 << 4)  | // 5:4
180        (1 << 2)  | // 3:2
181        0;          // 1:0
182
183    miscRegs[MISCREG_NMRR_NS] =
184        (1 << 30) | // 31:30
185        (0 << 26) | // 27:26
186        (0 << 24) | // 25:24
187        (3 << 22) | // 23:22
188        (2 << 20) | // 21:20
189        (0 << 18) | // 19:18
190        (0 << 16) | // 17:16
191        (1 << 14) | // 15:14
192        (0 << 12) | // 13:12
193        (2 << 10) | // 11:10
194        (0 << 8)  | // 9:8
195        (3 << 6)  | // 7:6
196        (2 << 4)  | // 5:4
197        (0 << 2)  | // 3:2
198        0;          // 1:0
199
200    if (FullSystem && system->highestELIs64()) {
201        // Initialize AArch64 state
202        clear64(p);
203        return;
204    }
205
206    // Initialize AArch32 state...
207    clear32(p, sctlr_rst);
208}
209
210void
211ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst)
212{
213    CPSR cpsr = 0;
214    cpsr.mode = MODE_USER;
215
216    if (FullSystem) {
217        miscRegs[MISCREG_MVBAR] = system->resetAddr();
218    }
219
220    miscRegs[MISCREG_CPSR] = cpsr;
221    updateRegMap(cpsr);
222
223    SCTLR sctlr = 0;
224    sctlr.te = (bool) sctlr_rst.te;
225    sctlr.nmfi = (bool) sctlr_rst.nmfi;
226    sctlr.v = (bool) sctlr_rst.v;
227    sctlr.u = 1;
228    sctlr.xp = 1;
229    sctlr.rao2 = 1;
230    sctlr.rao3 = 1;
231    sctlr.rao4 = 0xf;  // SCTLR[6:3]
232    sctlr.uci = 1;
233    sctlr.dze = 1;
234    miscRegs[MISCREG_SCTLR_NS] = sctlr;
235    miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
236    miscRegs[MISCREG_HCPTR] = 0;
237
238    miscRegs[MISCREG_CPACR] = 0;
239
240    miscRegs[MISCREG_FPSID] = p->fpsid;
241
242    if (haveLPAE) {
243        TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
244        ttbcr.eae = 0;
245        miscRegs[MISCREG_TTBCR_NS] = ttbcr;
246        // Enforce consistency with system-level settings
247        miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
248    }
249
250    if (haveSecurity) {
251        miscRegs[MISCREG_SCTLR_S] = sctlr;
252        miscRegs[MISCREG_SCR] = 0;
253        miscRegs[MISCREG_VBAR_S] = 0;
254    } else {
255        // we're always non-secure
256        miscRegs[MISCREG_SCR] = 1;
257    }
258
259    //XXX We need to initialize the rest of the state.
260}
261
262void
263ISA::clear64(const ArmISAParams *p)
264{
265    CPSR cpsr = 0;
266    Addr rvbar = system->resetAddr();
267    switch (system->highestEL()) {
268        // Set initial EL to highest implemented EL using associated stack
269        // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
270        // value
271      case EL3:
272        cpsr.mode = MODE_EL3H;
273        miscRegs[MISCREG_RVBAR_EL3] = rvbar;
274        break;
275      case EL2:
276        cpsr.mode = MODE_EL2H;
277        miscRegs[MISCREG_RVBAR_EL2] = rvbar;
278        break;
279      case EL1:
280        cpsr.mode = MODE_EL1H;
281        miscRegs[MISCREG_RVBAR_EL1] = rvbar;
282        break;
283      default:
284        panic("Invalid highest implemented exception level");
285        break;
286    }
287
288    // Initialize rest of CPSR
289    cpsr.daif = 0xf;  // Mask all interrupts
290    cpsr.ss = 0;
291    cpsr.il = 0;
292    miscRegs[MISCREG_CPSR] = cpsr;
293    updateRegMap(cpsr);
294
295    // Initialize other control registers
296    miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
297    if (haveSecurity) {
298        miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
299        miscRegs[MISCREG_SCR_EL3]   = 0x00000030;  // RES1 fields
300    } else if (haveVirtualization) {
301        // also  MISCREG_SCTLR_EL2 (by mapping)
302        miscRegs[MISCREG_HSCTLR] = 0x30c50830;
303    } else {
304        // also  MISCREG_SCTLR_EL1 (by mapping)
305        miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
306        // Always non-secure
307        miscRegs[MISCREG_SCR_EL3] = 1;
308    }
309}
310
311void
312ISA::initID32(const ArmISAParams *p)
313{
314    // Initialize configurable default values
315    miscRegs[MISCREG_MIDR] = p->midr;
316    miscRegs[MISCREG_MIDR_EL1] = p->midr;
317    miscRegs[MISCREG_VPIDR] = p->midr;
318
319    miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
320    miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
321    miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
322    miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
323    miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
324    miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
325
326    miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
327    miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
328    miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
329    miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
330
331    miscRegs[MISCREG_ID_ISAR5] = insertBits(
332        miscRegs[MISCREG_ID_ISAR5], 19, 4,
333        haveCrypto ? 0x1112 : 0x0);
334}
335
336void
337ISA::initID64(const ArmISAParams *p)
338{
339    // Initialize configurable id registers
340    miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
341    miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
342    miscRegs[MISCREG_ID_AA64DFR0_EL1] =
343        (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
344        (p->pmu ?             0x0000000000000100ULL : 0); // Enable PMUv3
345
346    miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
347    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
348    miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
349    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
350    miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
351    miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1;
352
353    miscRegs[MISCREG_ID_DFR0_EL1] =
354        (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
355
356    miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
357
358    // SVE
359    miscRegs[MISCREG_ID_AA64ZFR0_EL1] = 0;  // SVEver 0
360    if (haveSecurity) {
361        miscRegs[MISCREG_ZCR_EL3] = sveVL - 1;
362    } else if (haveVirtualization) {
363        miscRegs[MISCREG_ZCR_EL2] = sveVL - 1;
364    } else {
365        miscRegs[MISCREG_ZCR_EL1] = sveVL - 1;
366    }
367
368    // Enforce consistency with system-level settings...
369
370    // EL3
371    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
372        miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
373        haveSecurity ? 0x2 : 0x0);
374    // EL2
375    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
376        miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
377        haveVirtualization ? 0x2 : 0x0);
378    // SVE
379    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
380        miscRegs[MISCREG_ID_AA64PFR0_EL1], 35, 32,
381        haveSVE ? 0x1 : 0x0);
382    // Large ASID support
383    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
384        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
385        haveLargeAsid64 ? 0x2 : 0x0);
386    // Physical address size
387    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
388        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
389        encodePhysAddrRange64(physAddrRange));
390    // Crypto
391    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
392        miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4,
393        haveCrypto ? 0x1112 : 0x0);
394}
395
396void
397ISA::startup(ThreadContext *tc)
398{
399    pmu->setThreadContext(tc);
400
401    if (system) {
402        Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC());
403        if (gicv3) {
404            haveGICv3CPUInterface = true;
405            gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId()));
406            gicv3CpuInterface->setISA(this);
407            gicv3CpuInterface->setThreadContext(tc);
408        }
409    }
410
411    afterStartup = true;
412}
413
414
415RegVal
416ISA::readMiscRegNoEffect(int misc_reg) const
417{
418    assert(misc_reg < NumMiscRegs);
419
420    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
421    const auto &map = getMiscIndices(misc_reg);
422    int lower = map.first, upper = map.second;
423    // NB!: apply architectural masks according to desired register,
424    // despite possibly getting value from different (mapped) register.
425    auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
426                                          |(miscRegs[upper] << 32));
427    if (val & reg.res0()) {
428        DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
429                miscRegName[misc_reg], val & reg.res0());
430    }
431    if ((val & reg.res1()) != reg.res1()) {
432        DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
433                miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
434    }
435    return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
436}
437
438
439RegVal
440ISA::readMiscReg(int misc_reg, ThreadContext *tc)
441{
442    CPSR cpsr = 0;
443    PCState pc = 0;
444    SCR scr = 0;
445
446    if (misc_reg == MISCREG_CPSR) {
447        cpsr = miscRegs[misc_reg];
448        pc = tc->pcState();
449        cpsr.j = pc.jazelle() ? 1 : 0;
450        cpsr.t = pc.thumb() ? 1 : 0;
451        return cpsr;
452    }
453
454#ifndef NDEBUG
455    if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
456        if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
457            warn("Unimplemented system register %s read.\n",
458                 miscRegName[misc_reg]);
459        else
460            panic("Unimplemented system register %s read.\n",
461                  miscRegName[misc_reg]);
462    }
463#endif
464
465    switch (unflattenMiscReg(misc_reg)) {
466      case MISCREG_HCR:
467        {
468            if (!haveVirtualization)
469                return 0;
470            else
471                return readMiscRegNoEffect(MISCREG_HCR);
472        }
473      case MISCREG_CPACR:
474        {
475            const uint32_t ones = (uint32_t)(-1);
476            CPACR cpacrMask = 0;
477            // Only cp10, cp11, and ase are implemented, nothing else should
478            // be readable? (straight copy from the write code)
479            cpacrMask.cp10 = ones;
480            cpacrMask.cp11 = ones;
481            cpacrMask.asedis = ones;
482
483            // Security Extensions may limit the readability of CPACR
484            if (haveSecurity) {
485                scr = readMiscRegNoEffect(MISCREG_SCR);
486                cpsr = readMiscRegNoEffect(MISCREG_CPSR);
487                if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
488                    NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
489                    // NB: Skipping the full loop, here
490                    if (!nsacr.cp10) cpacrMask.cp10 = 0;
491                    if (!nsacr.cp11) cpacrMask.cp11 = 0;
492                }
493            }
494            RegVal val = readMiscRegNoEffect(MISCREG_CPACR);
495            val &= cpacrMask;
496            DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
497                    miscRegName[misc_reg], val);
498            return val;
499        }
500      case MISCREG_MPIDR:
501      case MISCREG_MPIDR_EL1:
502        return readMPIDR(system, tc);
503      case MISCREG_VMPIDR:
504      case MISCREG_VMPIDR_EL2:
505        // top bit defined as RES1
506        return readMiscRegNoEffect(misc_reg) | 0x80000000;
507      case MISCREG_ID_AFR0: // not implemented, so alias MIDR
508      case MISCREG_REVIDR:  // not implemented, so alias MIDR
509      case MISCREG_MIDR:
510        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
511        scr  = readMiscRegNoEffect(MISCREG_SCR);
512        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
513            return readMiscRegNoEffect(misc_reg);
514        } else {
515            return readMiscRegNoEffect(MISCREG_VPIDR);
516        }
517        break;
518      case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
519      case MISCREG_JMCR:  // Jazelle trivial implementation, RAZ/WI
520      case MISCREG_JIDR:  // Jazelle trivial implementation, RAZ/WI
521      case MISCREG_AIDR:  // AUX ID set to 0
522      case MISCREG_TCMTR: // No TCM's
523        return 0;
524
525      case MISCREG_CLIDR:
526        warn_once("The clidr register always reports 0 caches.\n");
527        warn_once("clidr LoUIS field of 0b001 to match current "
528                  "ARM implementations.\n");
529        return 0x00200000;
530      case MISCREG_CCSIDR:
531        warn_once("The ccsidr register isn't implemented and "
532                "always reads as 0.\n");
533        break;
534      case MISCREG_CTR:                 // AArch32, ARMv7, top bit set
535      case MISCREG_CTR_EL0:             // AArch64
536        {
537            //all caches have the same line size in gem5
538            //4 byte words in ARM
539            unsigned lineSizeWords =
540                tc->getSystemPtr()->cacheLineSize() / 4;
541            unsigned log2LineSizeWords = 0;
542
543            while (lineSizeWords >>= 1) {
544                ++log2LineSizeWords;
545            }
546
547            CTR ctr = 0;
548            //log2 of minimun i-cache line size (words)
549            ctr.iCacheLineSize = log2LineSizeWords;
550            //b11 - gem5 uses pipt
551            ctr.l1IndexPolicy = 0x3;
552            //log2 of minimum d-cache line size (words)
553            ctr.dCacheLineSize = log2LineSizeWords;
554            //log2 of max reservation size (words)
555            ctr.erg = log2LineSizeWords;
556            //log2 of max writeback size (words)
557            ctr.cwg = log2LineSizeWords;
558            //b100 - gem5 format is ARMv7
559            ctr.format = 0x4;
560
561            return ctr;
562        }
563      case MISCREG_ACTLR:
564        warn("Not doing anything for miscreg ACTLR\n");
565        break;
566
567      case MISCREG_PMXEVTYPER_PMCCFILTR:
568      case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
569      case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
570      case MISCREG_PMCR ... MISCREG_PMOVSSET:
571        return pmu->readMiscReg(misc_reg);
572
573      case MISCREG_CPSR_Q:
574        panic("shouldn't be reading this register seperately\n");
575      case MISCREG_FPSCR_QC:
576        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
577      case MISCREG_FPSCR_EXC:
578        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
579      case MISCREG_FPSR:
580        {
581            const uint32_t ones = (uint32_t)(-1);
582            FPSCR fpscrMask = 0;
583            fpscrMask.ioc = ones;
584            fpscrMask.dzc = ones;
585            fpscrMask.ofc = ones;
586            fpscrMask.ufc = ones;
587            fpscrMask.ixc = ones;
588            fpscrMask.idc = ones;
589            fpscrMask.qc = ones;
590            fpscrMask.v = ones;
591            fpscrMask.c = ones;
592            fpscrMask.z = ones;
593            fpscrMask.n = ones;
594            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
595        }
596      case MISCREG_FPCR:
597        {
598            const uint32_t ones = (uint32_t)(-1);
599            FPSCR fpscrMask  = 0;
600            fpscrMask.len    = ones;
601            fpscrMask.fz16   = ones;
602            fpscrMask.stride = ones;
603            fpscrMask.rMode  = ones;
604            fpscrMask.fz     = ones;
605            fpscrMask.dn     = ones;
606            fpscrMask.ahp    = ones;
607            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
608        }
609      case MISCREG_NZCV:
610        {
611            CPSR cpsr = 0;
612            cpsr.nz   = tc->readCCReg(CCREG_NZ);
613            cpsr.c    = tc->readCCReg(CCREG_C);
614            cpsr.v    = tc->readCCReg(CCREG_V);
615            return cpsr;
616        }
617      case MISCREG_DAIF:
618        {
619            CPSR cpsr = 0;
620            cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
621            return cpsr;
622        }
623      case MISCREG_SP_EL0:
624        {
625            return tc->readIntReg(INTREG_SP0);
626        }
627      case MISCREG_SP_EL1:
628        {
629            return tc->readIntReg(INTREG_SP1);
630        }
631      case MISCREG_SP_EL2:
632        {
633            return tc->readIntReg(INTREG_SP2);
634        }
635      case MISCREG_SPSEL:
636        {
637            return miscRegs[MISCREG_CPSR] & 0x1;
638        }
639      case MISCREG_CURRENTEL:
640        {
641            return miscRegs[MISCREG_CPSR] & 0xc;
642        }
643      case MISCREG_L2CTLR:
644        {
645            // mostly unimplemented, just set NumCPUs field from sim and return
646            L2CTLR l2ctlr = 0;
647            // b00:1CPU to b11:4CPUs
648            l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
649            return l2ctlr;
650        }
651      case MISCREG_DBGDIDR:
652        /* For now just implement the version number.
653         * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
654         */
655        return 0x5 << 16;
656      case MISCREG_DBGDSCRint:
657        return 0;
658      case MISCREG_ISR:
659        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
660            readMiscRegNoEffect(MISCREG_HCR),
661            readMiscRegNoEffect(MISCREG_CPSR),
662            readMiscRegNoEffect(MISCREG_SCR));
663      case MISCREG_ISR_EL1:
664        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
665            readMiscRegNoEffect(MISCREG_HCR_EL2),
666            readMiscRegNoEffect(MISCREG_CPSR),
667            readMiscRegNoEffect(MISCREG_SCR_EL3));
668      case MISCREG_DCZID_EL0:
669        return 0x04;  // DC ZVA clear 64-byte chunks
670      case MISCREG_HCPTR:
671        {
672            RegVal val = readMiscRegNoEffect(misc_reg);
673            // The trap bit associated with CP14 is defined as RAZ
674            val &= ~(1 << 14);
675            // If a CP bit in NSACR is 0 then the corresponding bit in
676            // HCPTR is RAO/WI
677            bool secure_lookup = haveSecurity &&
678                inSecureState(readMiscRegNoEffect(MISCREG_SCR),
679                              readMiscRegNoEffect(MISCREG_CPSR));
680            if (!secure_lookup) {
681                RegVal mask = readMiscRegNoEffect(MISCREG_NSACR);
682                val |= (mask ^ 0x7FFF) & 0xBFFF;
683            }
684            // Set the bits for unimplemented coprocessors to RAO/WI
685            val |= 0x33FF;
686            return (val);
687        }
688      case MISCREG_HDFAR: // alias for secure DFAR
689        return readMiscRegNoEffect(MISCREG_DFAR_S);
690      case MISCREG_HIFAR: // alias for secure IFAR
691        return readMiscRegNoEffect(MISCREG_IFAR_S);
692
693      case MISCREG_ID_PFR0:
694        // !ThumbEE | !Jazelle | Thumb | ARM
695        return 0x00000031;
696      case MISCREG_ID_PFR1:
697        {   // Timer | Virti | !M Profile | TrustZone | ARMv4
698            bool haveTimer = (system->getGenericTimer() != NULL);
699            return 0x00000001
700                 | (haveSecurity       ? 0x00000010 : 0x0)
701                 | (haveVirtualization ? 0x00001000 : 0x0)
702                 | (haveTimer          ? 0x00010000 : 0x0);
703        }
704      case MISCREG_ID_AA64PFR0_EL1:
705        return 0x0000000000000002 | // AArch{64,32} supported at EL0
706               0x0000000000000020                               | // EL1
707               (haveVirtualization    ? 0x0000000000000200 : 0) | // EL2
708               (haveSecurity          ? 0x0000000000002000 : 0) | // EL3
709               (haveSVE               ? 0x0000000100000000 : 0) | // SVE
710               (haveGICv3CPUInterface ? 0x0000000001000000 : 0);
711      case MISCREG_ID_AA64PFR1_EL1:
712        return 0; // bits [63:0] RES0 (reserved for future use)
713
714      // Generic Timer registers
715      case MISCREG_CNTHV_CTL_EL2:
716      case MISCREG_CNTHV_CVAL_EL2:
717      case MISCREG_CNTHV_TVAL_EL2:
718      case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
719      case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
720      case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
721      case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
722        return getGenericTimer(tc).readMiscReg(misc_reg);
723
724      case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
725      case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
726        return getGICv3CPUInterface(tc).readMiscReg(misc_reg);
727
728      default:
729        break;
730
731    }
732    return readMiscRegNoEffect(misc_reg);
733}
734
735void
736ISA::setMiscRegNoEffect(int misc_reg, RegVal val)
737{
738    assert(misc_reg < NumMiscRegs);
739
740    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
741    const auto &map = getMiscIndices(misc_reg);
742    int lower = map.first, upper = map.second;
743
744    auto v = (val & ~reg.wi()) | reg.rao();
745    if (upper > 0) {
746        miscRegs[lower] = bits(v, 31, 0);
747        miscRegs[upper] = bits(v, 63, 32);
748        DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
749                misc_reg, lower, upper, v);
750    } else {
751        miscRegs[lower] = v;
752        DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
753                misc_reg, lower, v);
754    }
755}
756
757void
758ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc)
759{
760
761    RegVal newVal = val;
762    bool secure_lookup;
763    SCR scr;
764
765    if (misc_reg == MISCREG_CPSR) {
766        updateRegMap(val);
767
768
769        CPSR old_cpsr = miscRegs[MISCREG_CPSR];
770        int old_mode = old_cpsr.mode;
771        CPSR cpsr = val;
772        if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
773            getITBPtr(tc)->invalidateMiscReg();
774            getDTBPtr(tc)->invalidateMiscReg();
775        }
776
777        DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
778                miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
779        PCState pc = tc->pcState();
780        pc.nextThumb(cpsr.t);
781        pc.nextJazelle(cpsr.j);
782        pc.illegalExec(cpsr.il == 1);
783
784        tc->getDecoderPtr()->setSveLen((getCurSveVecLenInBits(tc) >> 7) - 1);
785
786        // Follow slightly different semantics if a CheckerCPU object
787        // is connected
788        CheckerCPU *checker = tc->getCheckerCpuPtr();
789        if (checker) {
790            tc->pcStateNoRecord(pc);
791        } else {
792            tc->pcState(pc);
793        }
794    } else {
795#ifndef NDEBUG
796        if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
797            if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
798                warn("Unimplemented system register %s write with %#x.\n",
799                    miscRegName[misc_reg], val);
800            else
801                panic("Unimplemented system register %s write with %#x.\n",
802                    miscRegName[misc_reg], val);
803        }
804#endif
805        switch (unflattenMiscReg(misc_reg)) {
806          case MISCREG_CPACR:
807            {
808
809                const uint32_t ones = (uint32_t)(-1);
810                CPACR cpacrMask = 0;
811                // Only cp10, cp11, and ase are implemented, nothing else should
812                // be writable
813                cpacrMask.cp10 = ones;
814                cpacrMask.cp11 = ones;
815                cpacrMask.asedis = ones;
816
817                // Security Extensions may limit the writability of CPACR
818                if (haveSecurity) {
819                    scr = readMiscRegNoEffect(MISCREG_SCR);
820                    CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
821                    if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
822                        NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
823                        // NB: Skipping the full loop, here
824                        if (!nsacr.cp10) cpacrMask.cp10 = 0;
825                        if (!nsacr.cp11) cpacrMask.cp11 = 0;
826                    }
827                }
828
829                RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR);
830                newVal &= cpacrMask;
831                newVal |= old_val & ~cpacrMask;
832                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
833                        miscRegName[misc_reg], newVal);
834            }
835            break;
836          case MISCREG_CPACR_EL1:
837            {
838                const uint32_t ones = (uint32_t)(-1);
839                CPACR cpacrMask = 0;
840                cpacrMask.tta = ones;
841                cpacrMask.fpen = ones;
842                if (haveSVE) {
843                    cpacrMask.zen = ones;
844                }
845                newVal &= cpacrMask;
846                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
847                        miscRegName[misc_reg], newVal);
848            }
849            break;
850          case MISCREG_CPTR_EL2:
851            {
852                const uint32_t ones = (uint32_t)(-1);
853                CPTR cptrMask = 0;
854                cptrMask.tcpac = ones;
855                cptrMask.tta = ones;
856                cptrMask.tfp = ones;
857                if (haveSVE) {
858                    cptrMask.tz = ones;
859                }
860                newVal &= cptrMask;
861                cptrMask = 0;
862                cptrMask.res1_13_12_el2 = ones;
863                cptrMask.res1_7_0_el2 = ones;
864                if (!haveSVE) {
865                    cptrMask.res1_8_el2 = ones;
866                }
867                cptrMask.res1_9_el2 = ones;
868                newVal |= cptrMask;
869                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
870                        miscRegName[misc_reg], newVal);
871            }
872            break;
873          case MISCREG_CPTR_EL3:
874            {
875                const uint32_t ones = (uint32_t)(-1);
876                CPTR cptrMask = 0;
877                cptrMask.tcpac = ones;
878                cptrMask.tta = ones;
879                cptrMask.tfp = ones;
880                if (haveSVE) {
881                    cptrMask.ez = ones;
882                }
883                newVal &= cptrMask;
884                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
885                        miscRegName[misc_reg], newVal);
886            }
887            break;
888          case MISCREG_CSSELR:
889            warn_once("The csselr register isn't implemented.\n");
890            return;
891
892          case MISCREG_DC_ZVA_Xt:
893            warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
894            return;
895
896          case MISCREG_FPSCR:
897            {
898                const uint32_t ones = (uint32_t)(-1);
899                FPSCR fpscrMask = 0;
900                fpscrMask.ioc = ones;
901                fpscrMask.dzc = ones;
902                fpscrMask.ofc = ones;
903                fpscrMask.ufc = ones;
904                fpscrMask.ixc = ones;
905                fpscrMask.idc = ones;
906                fpscrMask.ioe = ones;
907                fpscrMask.dze = ones;
908                fpscrMask.ofe = ones;
909                fpscrMask.ufe = ones;
910                fpscrMask.ixe = ones;
911                fpscrMask.ide = ones;
912                fpscrMask.len = ones;
913                fpscrMask.fz16 = ones;
914                fpscrMask.stride = ones;
915                fpscrMask.rMode = ones;
916                fpscrMask.fz = ones;
917                fpscrMask.dn = ones;
918                fpscrMask.ahp = ones;
919                fpscrMask.qc = ones;
920                fpscrMask.v = ones;
921                fpscrMask.c = ones;
922                fpscrMask.z = ones;
923                fpscrMask.n = ones;
924                newVal = (newVal & (uint32_t)fpscrMask) |
925                         (readMiscRegNoEffect(MISCREG_FPSCR) &
926                          ~(uint32_t)fpscrMask);
927                tc->getDecoderPtr()->setContext(newVal);
928            }
929            break;
930          case MISCREG_FPSR:
931            {
932                const uint32_t ones = (uint32_t)(-1);
933                FPSCR fpscrMask = 0;
934                fpscrMask.ioc = ones;
935                fpscrMask.dzc = ones;
936                fpscrMask.ofc = ones;
937                fpscrMask.ufc = ones;
938                fpscrMask.ixc = ones;
939                fpscrMask.idc = ones;
940                fpscrMask.qc = ones;
941                fpscrMask.v = ones;
942                fpscrMask.c = ones;
943                fpscrMask.z = ones;
944                fpscrMask.n = ones;
945                newVal = (newVal & (uint32_t)fpscrMask) |
946                         (readMiscRegNoEffect(MISCREG_FPSCR) &
947                          ~(uint32_t)fpscrMask);
948                misc_reg = MISCREG_FPSCR;
949            }
950            break;
951          case MISCREG_FPCR:
952            {
953                const uint32_t ones = (uint32_t)(-1);
954                FPSCR fpscrMask  = 0;
955                fpscrMask.len    = ones;
956                fpscrMask.fz16   = ones;
957                fpscrMask.stride = ones;
958                fpscrMask.rMode  = ones;
959                fpscrMask.fz     = ones;
960                fpscrMask.dn     = ones;
961                fpscrMask.ahp    = ones;
962                newVal = (newVal & (uint32_t)fpscrMask) |
963                         (readMiscRegNoEffect(MISCREG_FPSCR) &
964                          ~(uint32_t)fpscrMask);
965                misc_reg = MISCREG_FPSCR;
966            }
967            break;
968          case MISCREG_CPSR_Q:
969            {
970                assert(!(newVal & ~CpsrMaskQ));
971                newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
972                misc_reg = MISCREG_CPSR;
973            }
974            break;
975          case MISCREG_FPSCR_QC:
976            {
977                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
978                         (newVal & FpscrQcMask);
979                misc_reg = MISCREG_FPSCR;
980            }
981            break;
982          case MISCREG_FPSCR_EXC:
983            {
984                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
985                         (newVal & FpscrExcMask);
986                misc_reg = MISCREG_FPSCR;
987            }
988            break;
989          case MISCREG_FPEXC:
990            {
991                // vfpv3 architecture, section B.6.1 of DDI04068
992                // bit 29 - valid only if fpexc[31] is 0
993                const uint32_t fpexcMask = 0x60000000;
994                newVal = (newVal & fpexcMask) |
995                         (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
996            }
997            break;
998          case MISCREG_HCR:
999            {
1000                if (!haveVirtualization)
1001                    return;
1002            }
1003            break;
1004          case MISCREG_IFSR:
1005            {
1006                // ARM ARM (ARM DDI 0406C.b) B4.1.96
1007                const uint32_t ifsrMask =
1008                    mask(31, 13) | mask(11, 11) | mask(8, 6);
1009                newVal = newVal & ~ifsrMask;
1010            }
1011            break;
1012          case MISCREG_DFSR:
1013            {
1014                // ARM ARM (ARM DDI 0406C.b) B4.1.52
1015                const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1016                newVal = newVal & ~dfsrMask;
1017            }
1018            break;
1019          case MISCREG_AMAIR0:
1020          case MISCREG_AMAIR1:
1021            {
1022                // ARM ARM (ARM DDI 0406C.b) B4.1.5
1023                // Valid only with LPAE
1024                if (!haveLPAE)
1025                    return;
1026                DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1027            }
1028            break;
1029          case MISCREG_SCR:
1030            getITBPtr(tc)->invalidateMiscReg();
1031            getDTBPtr(tc)->invalidateMiscReg();
1032            break;
1033          case MISCREG_SCTLR:
1034            {
1035                DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1036                scr = readMiscRegNoEffect(MISCREG_SCR);
1037
1038                MiscRegIndex sctlr_idx;
1039                if (haveSecurity && !highestELIs64 && !scr.ns) {
1040                    sctlr_idx = MISCREG_SCTLR_S;
1041                } else {
1042                    sctlr_idx =  MISCREG_SCTLR_NS;
1043                }
1044
1045                SCTLR sctlr = miscRegs[sctlr_idx];
1046                SCTLR new_sctlr = newVal;
1047                new_sctlr.nmfi =  ((bool)sctlr.nmfi) && !haveVirtualization;
1048                miscRegs[sctlr_idx] = (RegVal)new_sctlr;
1049                getITBPtr(tc)->invalidateMiscReg();
1050                getDTBPtr(tc)->invalidateMiscReg();
1051            }
1052          case MISCREG_MIDR:
1053          case MISCREG_ID_PFR0:
1054          case MISCREG_ID_PFR1:
1055          case MISCREG_ID_DFR0:
1056          case MISCREG_ID_MMFR0:
1057          case MISCREG_ID_MMFR1:
1058          case MISCREG_ID_MMFR2:
1059          case MISCREG_ID_MMFR3:
1060          case MISCREG_ID_ISAR0:
1061          case MISCREG_ID_ISAR1:
1062          case MISCREG_ID_ISAR2:
1063          case MISCREG_ID_ISAR3:
1064          case MISCREG_ID_ISAR4:
1065          case MISCREG_ID_ISAR5:
1066
1067          case MISCREG_MPIDR:
1068          case MISCREG_FPSID:
1069          case MISCREG_TLBTR:
1070          case MISCREG_MVFR0:
1071          case MISCREG_MVFR1:
1072
1073          case MISCREG_ID_AA64AFR0_EL1:
1074          case MISCREG_ID_AA64AFR1_EL1:
1075          case MISCREG_ID_AA64DFR0_EL1:
1076          case MISCREG_ID_AA64DFR1_EL1:
1077          case MISCREG_ID_AA64ISAR0_EL1:
1078          case MISCREG_ID_AA64ISAR1_EL1:
1079          case MISCREG_ID_AA64MMFR0_EL1:
1080          case MISCREG_ID_AA64MMFR1_EL1:
1081          case MISCREG_ID_AA64MMFR2_EL1:
1082          case MISCREG_ID_AA64PFR0_EL1:
1083          case MISCREG_ID_AA64PFR1_EL1:
1084            // ID registers are constants.
1085            return;
1086
1087          // TLB Invalidate All
1088          case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1089            {
1090                assert32(tc);
1091                scr = readMiscReg(MISCREG_SCR, tc);
1092
1093                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1094                tlbiOp(tc);
1095                return;
1096            }
1097          // TLB Invalidate All, Inner Shareable
1098          case MISCREG_TLBIALLIS:
1099            {
1100                assert32(tc);
1101                scr = readMiscReg(MISCREG_SCR, tc);
1102
1103                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1104                tlbiOp.broadcast(tc);
1105                return;
1106            }
1107          // Instruction TLB Invalidate All
1108          case MISCREG_ITLBIALL:
1109            {
1110                assert32(tc);
1111                scr = readMiscReg(MISCREG_SCR, tc);
1112
1113                ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1114                tlbiOp(tc);
1115                return;
1116            }
1117          // Data TLB Invalidate All
1118          case MISCREG_DTLBIALL:
1119            {
1120                assert32(tc);
1121                scr = readMiscReg(MISCREG_SCR, tc);
1122
1123                DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1124                tlbiOp(tc);
1125                return;
1126            }
1127          // TLB Invalidate by VA
1128          // mcr tlbimval(is) is invalidating all matching entries
1129          // regardless of the level of lookup, since in gem5 we cache
1130          // in the tlb the last level of lookup only.
1131          case MISCREG_TLBIMVA:
1132          case MISCREG_TLBIMVAL:
1133            {
1134                assert32(tc);
1135                scr = readMiscReg(MISCREG_SCR, tc);
1136
1137                TLBIMVA tlbiOp(EL1,
1138                               haveSecurity && !scr.ns,
1139                               mbits(newVal, 31, 12),
1140                               bits(newVal, 7,0));
1141
1142                tlbiOp(tc);
1143                return;
1144            }
1145          // TLB Invalidate by VA, Inner Shareable
1146          case MISCREG_TLBIMVAIS:
1147          case MISCREG_TLBIMVALIS:
1148            {
1149                assert32(tc);
1150                scr = readMiscReg(MISCREG_SCR, tc);
1151
1152                TLBIMVA tlbiOp(EL1,
1153                               haveSecurity && !scr.ns,
1154                               mbits(newVal, 31, 12),
1155                               bits(newVal, 7,0));
1156
1157                tlbiOp.broadcast(tc);
1158                return;
1159            }
1160          // TLB Invalidate by ASID match
1161          case MISCREG_TLBIASID:
1162            {
1163                assert32(tc);
1164                scr = readMiscReg(MISCREG_SCR, tc);
1165
1166                TLBIASID tlbiOp(EL1,
1167                                haveSecurity && !scr.ns,
1168                                bits(newVal, 7,0));
1169
1170                tlbiOp(tc);
1171                return;
1172            }
1173          // TLB Invalidate by ASID match, Inner Shareable
1174          case MISCREG_TLBIASIDIS:
1175            {
1176                assert32(tc);
1177                scr = readMiscReg(MISCREG_SCR, tc);
1178
1179                TLBIASID tlbiOp(EL1,
1180                                haveSecurity && !scr.ns,
1181                                bits(newVal, 7,0));
1182
1183                tlbiOp.broadcast(tc);
1184                return;
1185            }
1186          // mcr tlbimvaal(is) is invalidating all matching entries
1187          // regardless of the level of lookup, since in gem5 we cache
1188          // in the tlb the last level of lookup only.
1189          // TLB Invalidate by VA, All ASID
1190          case MISCREG_TLBIMVAA:
1191          case MISCREG_TLBIMVAAL:
1192            {
1193                assert32(tc);
1194                scr = readMiscReg(MISCREG_SCR, tc);
1195
1196                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1197                                mbits(newVal, 31,12));
1198
1199                tlbiOp(tc);
1200                return;
1201            }
1202          // TLB Invalidate by VA, All ASID, Inner Shareable
1203          case MISCREG_TLBIMVAAIS:
1204          case MISCREG_TLBIMVAALIS:
1205            {
1206                assert32(tc);
1207                scr = readMiscReg(MISCREG_SCR, tc);
1208
1209                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1210                                mbits(newVal, 31,12));
1211
1212                tlbiOp.broadcast(tc);
1213                return;
1214            }
1215          // mcr tlbimvalh(is) is invalidating all matching entries
1216          // regardless of the level of lookup, since in gem5 we cache
1217          // in the tlb the last level of lookup only.
1218          // TLB Invalidate by VA, Hyp mode
1219          case MISCREG_TLBIMVAH:
1220          case MISCREG_TLBIMVALH:
1221            {
1222                assert32(tc);
1223                scr = readMiscReg(MISCREG_SCR, tc);
1224
1225                TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1226                                mbits(newVal, 31,12));
1227
1228                tlbiOp(tc);
1229                return;
1230            }
1231          // TLB Invalidate by VA, Hyp mode, Inner Shareable
1232          case MISCREG_TLBIMVAHIS:
1233          case MISCREG_TLBIMVALHIS:
1234            {
1235                assert32(tc);
1236                scr = readMiscReg(MISCREG_SCR, tc);
1237
1238                TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1239                                mbits(newVal, 31,12));
1240
1241                tlbiOp.broadcast(tc);
1242                return;
1243            }
1244          // mcr tlbiipas2l(is) is invalidating all matching entries
1245          // regardless of the level of lookup, since in gem5 we cache
1246          // in the tlb the last level of lookup only.
1247          // TLB Invalidate by Intermediate Physical Address, Stage 2
1248          case MISCREG_TLBIIPAS2:
1249          case MISCREG_TLBIIPAS2L:
1250            {
1251                assert32(tc);
1252                scr = readMiscReg(MISCREG_SCR, tc);
1253
1254                TLBIIPA tlbiOp(EL1,
1255                               haveSecurity && !scr.ns,
1256                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1257
1258                tlbiOp(tc);
1259                return;
1260            }
1261          // TLB Invalidate by Intermediate Physical Address, Stage 2,
1262          // Inner Shareable
1263          case MISCREG_TLBIIPAS2IS:
1264          case MISCREG_TLBIIPAS2LIS:
1265            {
1266                assert32(tc);
1267                scr = readMiscReg(MISCREG_SCR, tc);
1268
1269                TLBIIPA tlbiOp(EL1,
1270                               haveSecurity && !scr.ns,
1271                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1272
1273                tlbiOp.broadcast(tc);
1274                return;
1275            }
1276          // Instruction TLB Invalidate by VA
1277          case MISCREG_ITLBIMVA:
1278            {
1279                assert32(tc);
1280                scr = readMiscReg(MISCREG_SCR, tc);
1281
1282                ITLBIMVA tlbiOp(EL1,
1283                                haveSecurity && !scr.ns,
1284                                mbits(newVal, 31, 12),
1285                                bits(newVal, 7,0));
1286
1287                tlbiOp(tc);
1288                return;
1289            }
1290          // Data TLB Invalidate by VA
1291          case MISCREG_DTLBIMVA:
1292            {
1293                assert32(tc);
1294                scr = readMiscReg(MISCREG_SCR, tc);
1295
1296                DTLBIMVA tlbiOp(EL1,
1297                                haveSecurity && !scr.ns,
1298                                mbits(newVal, 31, 12),
1299                                bits(newVal, 7,0));
1300
1301                tlbiOp(tc);
1302                return;
1303            }
1304          // Instruction TLB Invalidate by ASID match
1305          case MISCREG_ITLBIASID:
1306            {
1307                assert32(tc);
1308                scr = readMiscReg(MISCREG_SCR, tc);
1309
1310                ITLBIASID tlbiOp(EL1,
1311                                 haveSecurity && !scr.ns,
1312                                 bits(newVal, 7,0));
1313
1314                tlbiOp(tc);
1315                return;
1316            }
1317          // Data TLB Invalidate by ASID match
1318          case MISCREG_DTLBIASID:
1319            {
1320                assert32(tc);
1321                scr = readMiscReg(MISCREG_SCR, tc);
1322
1323                DTLBIASID tlbiOp(EL1,
1324                                 haveSecurity && !scr.ns,
1325                                 bits(newVal, 7,0));
1326
1327                tlbiOp(tc);
1328                return;
1329            }
1330          // TLB Invalidate All, Non-Secure Non-Hyp
1331          case MISCREG_TLBIALLNSNH:
1332            {
1333                assert32(tc);
1334
1335                TLBIALLN tlbiOp(EL1);
1336                tlbiOp(tc);
1337                return;
1338            }
1339          // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
1340          case MISCREG_TLBIALLNSNHIS:
1341            {
1342                assert32(tc);
1343
1344                TLBIALLN tlbiOp(EL1);
1345                tlbiOp.broadcast(tc);
1346                return;
1347            }
1348          // TLB Invalidate All, Hyp mode
1349          case MISCREG_TLBIALLH:
1350            {
1351                assert32(tc);
1352
1353                TLBIALLN tlbiOp(EL2);
1354                tlbiOp(tc);
1355                return;
1356            }
1357          // TLB Invalidate All, Hyp mode, Inner Shareable
1358          case MISCREG_TLBIALLHIS:
1359            {
1360                assert32(tc);
1361
1362                TLBIALLN tlbiOp(EL2);
1363                tlbiOp.broadcast(tc);
1364                return;
1365            }
1366          // AArch64 TLB Invalidate All, EL3
1367          case MISCREG_TLBI_ALLE3:
1368            {
1369                assert64(tc);
1370
1371                TLBIALL tlbiOp(EL3, true);
1372                tlbiOp(tc);
1373                return;
1374            }
1375          // AArch64 TLB Invalidate All, EL3, Inner Shareable
1376          case MISCREG_TLBI_ALLE3IS:
1377            {
1378                assert64(tc);
1379
1380                TLBIALL tlbiOp(EL3, true);
1381                tlbiOp.broadcast(tc);
1382                return;
1383            }
1384          // AArch64 TLB Invalidate All, EL2, Inner Shareable
1385          case MISCREG_TLBI_ALLE2:
1386          case MISCREG_TLBI_ALLE2IS:
1387            {
1388                assert64(tc);
1389                scr = readMiscReg(MISCREG_SCR, tc);
1390
1391                TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns);
1392                tlbiOp(tc);
1393                return;
1394            }
1395          // AArch64 TLB Invalidate All, EL1
1396          case MISCREG_TLBI_ALLE1:
1397          case MISCREG_TLBI_VMALLE1:
1398          case MISCREG_TLBI_VMALLS12E1:
1399            // @todo: handle VMID and stage 2 to enable Virtualization
1400            {
1401                assert64(tc);
1402                scr = readMiscReg(MISCREG_SCR, tc);
1403
1404                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1405                tlbiOp(tc);
1406                return;
1407            }
1408          // AArch64 TLB Invalidate All, EL1, Inner Shareable
1409          case MISCREG_TLBI_ALLE1IS:
1410          case MISCREG_TLBI_VMALLE1IS:
1411          case MISCREG_TLBI_VMALLS12E1IS:
1412            // @todo: handle VMID and stage 2 to enable Virtualization
1413            {
1414                assert64(tc);
1415                scr = readMiscReg(MISCREG_SCR, tc);
1416
1417                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1418                tlbiOp.broadcast(tc);
1419                return;
1420            }
1421          // VAEx(IS) and VALEx(IS) are the same because TLBs
1422          // only store entries
1423          // from the last level of translation table walks
1424          // @todo: handle VMID to enable Virtualization
1425          // AArch64 TLB Invalidate by VA, EL3
1426          case MISCREG_TLBI_VAE3_Xt:
1427          case MISCREG_TLBI_VALE3_Xt:
1428            {
1429                assert64(tc);
1430
1431                TLBIMVA tlbiOp(EL3, true,
1432                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1433                               0xbeef);
1434                tlbiOp(tc);
1435                return;
1436            }
1437          // AArch64 TLB Invalidate by VA, EL3, Inner Shareable
1438          case MISCREG_TLBI_VAE3IS_Xt:
1439          case MISCREG_TLBI_VALE3IS_Xt:
1440            {
1441                assert64(tc);
1442
1443                TLBIMVA tlbiOp(EL3, true,
1444                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1445                               0xbeef);
1446
1447                tlbiOp.broadcast(tc);
1448                return;
1449            }
1450          // AArch64 TLB Invalidate by VA, EL2
1451          case MISCREG_TLBI_VAE2_Xt:
1452          case MISCREG_TLBI_VALE2_Xt:
1453            {
1454                assert64(tc);
1455                scr = readMiscReg(MISCREG_SCR, tc);
1456
1457                TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1458                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1459                               0xbeef);
1460                tlbiOp(tc);
1461                return;
1462            }
1463          // AArch64 TLB Invalidate by VA, EL2, Inner Shareable
1464          case MISCREG_TLBI_VAE2IS_Xt:
1465          case MISCREG_TLBI_VALE2IS_Xt:
1466            {
1467                assert64(tc);
1468                scr = readMiscReg(MISCREG_SCR, tc);
1469
1470                TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1471                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1472                               0xbeef);
1473
1474                tlbiOp.broadcast(tc);
1475                return;
1476            }
1477          // AArch64 TLB Invalidate by VA, EL1
1478          case MISCREG_TLBI_VAE1_Xt:
1479          case MISCREG_TLBI_VALE1_Xt:
1480            {
1481                assert64(tc);
1482                scr = readMiscReg(MISCREG_SCR, tc);
1483                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1484                                              bits(newVal, 55, 48);
1485
1486                TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1487                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1488                               asid);
1489
1490                tlbiOp(tc);
1491                return;
1492            }
1493          // AArch64 TLB Invalidate by VA, EL1, Inner Shareable
1494          case MISCREG_TLBI_VAE1IS_Xt:
1495          case MISCREG_TLBI_VALE1IS_Xt:
1496            {
1497                assert64(tc);
1498                scr = readMiscReg(MISCREG_SCR, tc);
1499                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1500                                              bits(newVal, 55, 48);
1501
1502                TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1503                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1504                               asid);
1505
1506                tlbiOp.broadcast(tc);
1507                return;
1508            }
1509          // AArch64 TLB Invalidate by ASID, EL1
1510          // @todo: handle VMID to enable Virtualization
1511          case MISCREG_TLBI_ASIDE1_Xt:
1512            {
1513                assert64(tc);
1514                scr = readMiscReg(MISCREG_SCR, tc);
1515                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1516                                              bits(newVal, 55, 48);
1517
1518                TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1519                tlbiOp(tc);
1520                return;
1521            }
1522          // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
1523          case MISCREG_TLBI_ASIDE1IS_Xt:
1524            {
1525                assert64(tc);
1526                scr = readMiscReg(MISCREG_SCR, tc);
1527                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1528                                              bits(newVal, 55, 48);
1529
1530                TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1531                tlbiOp.broadcast(tc);
1532                return;
1533            }
1534          // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1535          // entries from the last level of translation table walks
1536          // AArch64 TLB Invalidate by VA, All ASID, EL1
1537          case MISCREG_TLBI_VAAE1_Xt:
1538          case MISCREG_TLBI_VAALE1_Xt:
1539            {
1540                assert64(tc);
1541                scr = readMiscReg(MISCREG_SCR, tc);
1542
1543                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1544                    static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1545
1546                tlbiOp(tc);
1547                return;
1548            }
1549          // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
1550          case MISCREG_TLBI_VAAE1IS_Xt:
1551          case MISCREG_TLBI_VAALE1IS_Xt:
1552            {
1553                assert64(tc);
1554                scr = readMiscReg(MISCREG_SCR, tc);
1555
1556                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1557                    static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1558
1559                tlbiOp.broadcast(tc);
1560                return;
1561            }
1562          // AArch64 TLB Invalidate by Intermediate Physical Address,
1563          // Stage 2, EL1
1564          case MISCREG_TLBI_IPAS2E1_Xt:
1565          case MISCREG_TLBI_IPAS2LE1_Xt:
1566            {
1567                assert64(tc);
1568                scr = readMiscReg(MISCREG_SCR, tc);
1569
1570                TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1571                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1572
1573                tlbiOp(tc);
1574                return;
1575            }
1576          // AArch64 TLB Invalidate by Intermediate Physical Address,
1577          // Stage 2, EL1, Inner Shareable
1578          case MISCREG_TLBI_IPAS2E1IS_Xt:
1579          case MISCREG_TLBI_IPAS2LE1IS_Xt:
1580            {
1581                assert64(tc);
1582                scr = readMiscReg(MISCREG_SCR, tc);
1583
1584                TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1585                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1586
1587                tlbiOp.broadcast(tc);
1588                return;
1589            }
1590          case MISCREG_ACTLR:
1591            warn("Not doing anything for write of miscreg ACTLR\n");
1592            break;
1593
1594          case MISCREG_PMXEVTYPER_PMCCFILTR:
1595          case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1596          case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1597          case MISCREG_PMCR ... MISCREG_PMOVSSET:
1598            pmu->setMiscReg(misc_reg, newVal);
1599            break;
1600
1601
1602          case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1603            {
1604                HSTR hstrMask = 0;
1605                hstrMask.tjdbx = 1;
1606                newVal &= ~((uint32_t) hstrMask);
1607                break;
1608            }
1609          case MISCREG_HCPTR:
1610            {
1611                // If a CP bit in NSACR is 0 then the corresponding bit in
1612                // HCPTR is RAO/WI. Same applies to NSASEDIS
1613                secure_lookup = haveSecurity &&
1614                    inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1615                                  readMiscRegNoEffect(MISCREG_CPSR));
1616                if (!secure_lookup) {
1617                    RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1618                    RegVal mask =
1619                        (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1620                    newVal = (newVal & ~mask) | (oldValue & mask);
1621                }
1622                break;
1623            }
1624          case MISCREG_HDFAR: // alias for secure DFAR
1625            misc_reg = MISCREG_DFAR_S;
1626            break;
1627          case MISCREG_HIFAR: // alias for secure IFAR
1628            misc_reg = MISCREG_IFAR_S;
1629            break;
1630          case MISCREG_ATS1CPR:
1631          case MISCREG_ATS1CPW:
1632          case MISCREG_ATS1CUR:
1633          case MISCREG_ATS1CUW:
1634          case MISCREG_ATS12NSOPR:
1635          case MISCREG_ATS12NSOPW:
1636          case MISCREG_ATS12NSOUR:
1637          case MISCREG_ATS12NSOUW:
1638          case MISCREG_ATS1HR:
1639          case MISCREG_ATS1HW:
1640            {
1641              Request::Flags flags = 0;
1642              BaseTLB::Mode mode = BaseTLB::Read;
1643              TLB::ArmTranslationType tranType = TLB::NormalTran;
1644              Fault fault;
1645              switch(misc_reg) {
1646                case MISCREG_ATS1CPR:
1647                  flags    = TLB::MustBeOne;
1648                  tranType = TLB::S1CTran;
1649                  mode     = BaseTLB::Read;
1650                  break;
1651                case MISCREG_ATS1CPW:
1652                  flags    = TLB::MustBeOne;
1653                  tranType = TLB::S1CTran;
1654                  mode     = BaseTLB::Write;
1655                  break;
1656                case MISCREG_ATS1CUR:
1657                  flags    = TLB::MustBeOne | TLB::UserMode;
1658                  tranType = TLB::S1CTran;
1659                  mode     = BaseTLB::Read;
1660                  break;
1661                case MISCREG_ATS1CUW:
1662                  flags    = TLB::MustBeOne | TLB::UserMode;
1663                  tranType = TLB::S1CTran;
1664                  mode     = BaseTLB::Write;
1665                  break;
1666                case MISCREG_ATS12NSOPR:
1667                  if (!haveSecurity)
1668                      panic("Security Extensions required for ATS12NSOPR");
1669                  flags    = TLB::MustBeOne;
1670                  tranType = TLB::S1S2NsTran;
1671                  mode     = BaseTLB::Read;
1672                  break;
1673                case MISCREG_ATS12NSOPW:
1674                  if (!haveSecurity)
1675                      panic("Security Extensions required for ATS12NSOPW");
1676                  flags    = TLB::MustBeOne;
1677                  tranType = TLB::S1S2NsTran;
1678                  mode     = BaseTLB::Write;
1679                  break;
1680                case MISCREG_ATS12NSOUR:
1681                  if (!haveSecurity)
1682                      panic("Security Extensions required for ATS12NSOUR");
1683                  flags    = TLB::MustBeOne | TLB::UserMode;
1684                  tranType = TLB::S1S2NsTran;
1685                  mode     = BaseTLB::Read;
1686                  break;
1687                case MISCREG_ATS12NSOUW:
1688                  if (!haveSecurity)
1689                      panic("Security Extensions required for ATS12NSOUW");
1690                  flags    = TLB::MustBeOne | TLB::UserMode;
1691                  tranType = TLB::S1S2NsTran;
1692                  mode     = BaseTLB::Write;
1693                  break;
1694                case MISCREG_ATS1HR: // only really useful from secure mode.
1695                  flags    = TLB::MustBeOne;
1696                  tranType = TLB::HypMode;
1697                  mode     = BaseTLB::Read;
1698                  break;
1699                case MISCREG_ATS1HW:
1700                  flags    = TLB::MustBeOne;
1701                  tranType = TLB::HypMode;
1702                  mode     = BaseTLB::Write;
1703                  break;
1704              }
1705              // If we're in timing mode then doing the translation in
1706              // functional mode then we're slightly distorting performance
1707              // results obtained from simulations. The translation should be
1708              // done in the same mode the core is running in. NOTE: This
1709              // can't be an atomic translation because that causes problems
1710              // with unexpected atomic snoop requests.
1711              warn("Translating via %s in functional mode! Fix Me!\n",
1712                   miscRegName[misc_reg]);
1713
1714              auto req = std::make_shared<Request>(
1715                  0, val, 0, flags,  Request::funcMasterId,
1716                  tc->pcState().pc(), tc->contextId());
1717
1718              fault = getDTBPtr(tc)->translateFunctional(
1719                      req, tc, mode, tranType);
1720
1721              TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1722              HCR   hcr   = readMiscRegNoEffect(MISCREG_HCR);
1723
1724              RegVal newVal;
1725              if (fault == NoFault) {
1726                  Addr paddr = req->getPaddr();
1727                  if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1728                     ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1729                      newVal = (paddr & mask(39, 12)) |
1730                               (getDTBPtr(tc)->getAttr());
1731                  } else {
1732                      newVal = (paddr & 0xfffff000) |
1733                               (getDTBPtr(tc)->getAttr());
1734                  }
1735                  DPRINTF(MiscRegs,
1736                          "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1737                          val, newVal);
1738              } else {
1739                  ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1740                  armFault->update(tc);
1741                  // Set fault bit and FSR
1742                  FSR fsr = armFault->getFsr(tc);
1743
1744                  newVal = ((fsr >> 9) & 1) << 11;
1745                  if (newVal) {
1746                    // LPAE - rearange fault status
1747                    newVal |= ((fsr >>  0) & 0x3f) << 1;
1748                  } else {
1749                    // VMSA - rearange fault status
1750                    newVal |= ((fsr >>  0) & 0xf) << 1;
1751                    newVal |= ((fsr >> 10) & 0x1) << 5;
1752                    newVal |= ((fsr >> 12) & 0x1) << 6;
1753                  }
1754                  newVal |= 0x1; // F bit
1755                  newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1756                  newVal |= armFault->isStage2() ? 0x200 : 0;
1757                  DPRINTF(MiscRegs,
1758                          "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1759                          val, fsr, newVal);
1760              }
1761              setMiscRegNoEffect(MISCREG_PAR, newVal);
1762              return;
1763            }
1764          case MISCREG_TTBCR:
1765            {
1766                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1767                const uint32_t ones = (uint32_t)(-1);
1768                TTBCR ttbcrMask = 0;
1769                TTBCR ttbcrNew = newVal;
1770
1771                // ARM DDI 0406C.b, ARMv7-32
1772                ttbcrMask.n = ones; // T0SZ
1773                if (haveSecurity) {
1774                    ttbcrMask.pd0 = ones;
1775                    ttbcrMask.pd1 = ones;
1776                }
1777                ttbcrMask.epd0 = ones;
1778                ttbcrMask.irgn0 = ones;
1779                ttbcrMask.orgn0 = ones;
1780                ttbcrMask.sh0 = ones;
1781                ttbcrMask.ps = ones; // T1SZ
1782                ttbcrMask.a1 = ones;
1783                ttbcrMask.epd1 = ones;
1784                ttbcrMask.irgn1 = ones;
1785                ttbcrMask.orgn1 = ones;
1786                ttbcrMask.sh1 = ones;
1787                if (haveLPAE)
1788                    ttbcrMask.eae = ones;
1789
1790                if (haveLPAE && ttbcrNew.eae) {
1791                    newVal = newVal & ttbcrMask;
1792                } else {
1793                    newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1794                }
1795                // Invalidate TLB MiscReg
1796                getITBPtr(tc)->invalidateMiscReg();
1797                getDTBPtr(tc)->invalidateMiscReg();
1798                break;
1799            }
1800          case MISCREG_TTBR0:
1801          case MISCREG_TTBR1:
1802            {
1803                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1804                if (haveLPAE) {
1805                    if (ttbcr.eae) {
1806                        // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1807                        // ARMv8 AArch32 bit 63-56 only
1808                        uint64_t ttbrMask = mask(63,56) | mask(47,40);
1809                        newVal = (newVal & (~ttbrMask));
1810                    }
1811                }
1812                // Invalidate TLB MiscReg
1813                getITBPtr(tc)->invalidateMiscReg();
1814                getDTBPtr(tc)->invalidateMiscReg();
1815                break;
1816            }
1817          case MISCREG_SCTLR_EL1:
1818          case MISCREG_CONTEXTIDR:
1819          case MISCREG_PRRR:
1820          case MISCREG_NMRR:
1821          case MISCREG_MAIR0:
1822          case MISCREG_MAIR1:
1823          case MISCREG_DACR:
1824          case MISCREG_VTTBR:
1825          case MISCREG_SCR_EL3:
1826          case MISCREG_HCR_EL2:
1827          case MISCREG_TCR_EL1:
1828          case MISCREG_TCR_EL2:
1829          case MISCREG_TCR_EL3:
1830          case MISCREG_SCTLR_EL2:
1831          case MISCREG_SCTLR_EL3:
1832          case MISCREG_HSCTLR:
1833          case MISCREG_TTBR0_EL1:
1834          case MISCREG_TTBR1_EL1:
1835          case MISCREG_TTBR0_EL2:
1836          case MISCREG_TTBR1_EL2:
1837          case MISCREG_TTBR0_EL3:
1838            getITBPtr(tc)->invalidateMiscReg();
1839            getDTBPtr(tc)->invalidateMiscReg();
1840            break;
1841          case MISCREG_NZCV:
1842            {
1843                CPSR cpsr = val;
1844
1845                tc->setCCReg(CCREG_NZ, cpsr.nz);
1846                tc->setCCReg(CCREG_C,  cpsr.c);
1847                tc->setCCReg(CCREG_V,  cpsr.v);
1848            }
1849            break;
1850          case MISCREG_DAIF:
1851            {
1852                CPSR cpsr = miscRegs[MISCREG_CPSR];
1853                cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1854                newVal = cpsr;
1855                misc_reg = MISCREG_CPSR;
1856            }
1857            break;
1858          case MISCREG_SP_EL0:
1859            tc->setIntReg(INTREG_SP0, newVal);
1860            break;
1861          case MISCREG_SP_EL1:
1862            tc->setIntReg(INTREG_SP1, newVal);
1863            break;
1864          case MISCREG_SP_EL2:
1865            tc->setIntReg(INTREG_SP2, newVal);
1866            break;
1867          case MISCREG_SPSEL:
1868            {
1869                CPSR cpsr = miscRegs[MISCREG_CPSR];
1870                cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1871                newVal = cpsr;
1872                misc_reg = MISCREG_CPSR;
1873            }
1874            break;
1875          case MISCREG_CURRENTEL:
1876            {
1877                CPSR cpsr = miscRegs[MISCREG_CPSR];
1878                cpsr.el = (uint8_t) ((CPSR) newVal).el;
1879                newVal = cpsr;
1880                misc_reg = MISCREG_CPSR;
1881            }
1882            break;
1883          case MISCREG_AT_S1E1R_Xt:
1884          case MISCREG_AT_S1E1W_Xt:
1885          case MISCREG_AT_S1E0R_Xt:
1886          case MISCREG_AT_S1E0W_Xt:
1887          case MISCREG_AT_S1E2R_Xt:
1888          case MISCREG_AT_S1E2W_Xt:
1889          case MISCREG_AT_S12E1R_Xt:
1890          case MISCREG_AT_S12E1W_Xt:
1891          case MISCREG_AT_S12E0R_Xt:
1892          case MISCREG_AT_S12E0W_Xt:
1893          case MISCREG_AT_S1E3R_Xt:
1894          case MISCREG_AT_S1E3W_Xt:
1895            {
1896                RequestPtr req = std::make_shared<Request>();
1897                Request::Flags flags = 0;
1898                BaseTLB::Mode mode = BaseTLB::Read;
1899                TLB::ArmTranslationType tranType = TLB::NormalTran;
1900                Fault fault;
1901                switch(misc_reg) {
1902                  case MISCREG_AT_S1E1R_Xt:
1903                    flags    = TLB::MustBeOne;
1904                    tranType = TLB::S1E1Tran;
1905                    mode     = BaseTLB::Read;
1906                    break;
1907                  case MISCREG_AT_S1E1W_Xt:
1908                    flags    = TLB::MustBeOne;
1909                    tranType = TLB::S1E1Tran;
1910                    mode     = BaseTLB::Write;
1911                    break;
1912                  case MISCREG_AT_S1E0R_Xt:
1913                    flags    = TLB::MustBeOne | TLB::UserMode;
1914                    tranType = TLB::S1E0Tran;
1915                    mode     = BaseTLB::Read;
1916                    break;
1917                  case MISCREG_AT_S1E0W_Xt:
1918                    flags    = TLB::MustBeOne | TLB::UserMode;
1919                    tranType = TLB::S1E0Tran;
1920                    mode     = BaseTLB::Write;
1921                    break;
1922                  case MISCREG_AT_S1E2R_Xt:
1923                    flags    = TLB::MustBeOne;
1924                    tranType = TLB::S1E2Tran;
1925                    mode     = BaseTLB::Read;
1926                    break;
1927                  case MISCREG_AT_S1E2W_Xt:
1928                    flags    = TLB::MustBeOne;
1929                    tranType = TLB::S1E2Tran;
1930                    mode     = BaseTLB::Write;
1931                    break;
1932                  case MISCREG_AT_S12E0R_Xt:
1933                    flags    = TLB::MustBeOne | TLB::UserMode;
1934                    tranType = TLB::S12E0Tran;
1935                    mode     = BaseTLB::Read;
1936                    break;
1937                  case MISCREG_AT_S12E0W_Xt:
1938                    flags    = TLB::MustBeOne | TLB::UserMode;
1939                    tranType = TLB::S12E0Tran;
1940                    mode     = BaseTLB::Write;
1941                    break;
1942                  case MISCREG_AT_S12E1R_Xt:
1943                    flags    = TLB::MustBeOne;
1944                    tranType = TLB::S12E1Tran;
1945                    mode     = BaseTLB::Read;
1946                    break;
1947                  case MISCREG_AT_S12E1W_Xt:
1948                    flags    = TLB::MustBeOne;
1949                    tranType = TLB::S12E1Tran;
1950                    mode     = BaseTLB::Write;
1951                    break;
1952                  case MISCREG_AT_S1E3R_Xt:
1953                    flags    = TLB::MustBeOne;
1954                    tranType = TLB::S1E3Tran;
1955                    mode     = BaseTLB::Read;
1956                    break;
1957                  case MISCREG_AT_S1E3W_Xt:
1958                    flags    = TLB::MustBeOne;
1959                    tranType = TLB::S1E3Tran;
1960                    mode     = BaseTLB::Write;
1961                    break;
1962                }
1963                // If we're in timing mode then doing the translation in
1964                // functional mode then we're slightly distorting performance
1965                // results obtained from simulations. The translation should be
1966                // done in the same mode the core is running in. NOTE: This
1967                // can't be an atomic translation because that causes problems
1968                // with unexpected atomic snoop requests.
1969                warn("Translating via %s in functional mode! Fix Me!\n",
1970                     miscRegName[misc_reg]);
1971
1972                req->setVirt(0, val, 0, flags,  Request::funcMasterId,
1973                               tc->pcState().pc());
1974                req->setContext(tc->contextId());
1975                fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
1976                                                           tranType);
1977
1978                RegVal newVal;
1979                if (fault == NoFault) {
1980                    Addr paddr = req->getPaddr();
1981                    uint64_t attr = getDTBPtr(tc)->getAttr();
1982                    uint64_t attr1 = attr >> 56;
1983                    if (!attr1 || attr1 ==0x44) {
1984                        attr |= 0x100;
1985                        attr &= ~ uint64_t(0x80);
1986                    }
1987                    newVal = (paddr & mask(47, 12)) | attr;
1988                    DPRINTF(MiscRegs,
1989                          "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1990                          val, newVal);
1991                } else {
1992                    ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1993                    armFault->update(tc);
1994                    // Set fault bit and FSR
1995                    FSR fsr = armFault->getFsr(tc);
1996
1997                    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1998                    if (cpsr.width) { // AArch32
1999                        newVal = ((fsr >> 9) & 1) << 11;
2000                        // rearrange fault status
2001                        newVal |= ((fsr >>  0) & 0x3f) << 1;
2002                        newVal |= 0x1; // F bit
2003                        newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
2004                        newVal |= armFault->isStage2() ? 0x200 : 0;
2005                    } else { // AArch64
2006                        newVal = 1; // F bit
2007                        newVal |= fsr << 1; // FST
2008                        // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
2009                        newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
2010                        newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
2011                        newVal |= 1 << 11; // RES1
2012                    }
2013                    DPRINTF(MiscRegs,
2014                            "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
2015                            val, fsr, newVal);
2016                }
2017                setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
2018                return;
2019            }
2020          case MISCREG_SPSR_EL3:
2021          case MISCREG_SPSR_EL2:
2022          case MISCREG_SPSR_EL1:
2023            // Force bits 23:21 to 0
2024            newVal = val & ~(0x7 << 21);
2025            break;
2026          case MISCREG_L2CTLR:
2027            warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
2028                 miscRegName[misc_reg], uint32_t(val));
2029            break;
2030
2031          // Generic Timer registers
2032          case MISCREG_CNTHV_CTL_EL2:
2033          case MISCREG_CNTHV_CVAL_EL2:
2034          case MISCREG_CNTHV_TVAL_EL2:
2035          case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
2036          case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
2037          case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
2038          case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
2039            getGenericTimer(tc).setMiscReg(misc_reg, newVal);
2040            break;
2041          case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
2042          case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
2043            getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal);
2044            return;
2045          case MISCREG_ZCR_EL3:
2046          case MISCREG_ZCR_EL2:
2047          case MISCREG_ZCR_EL1:
2048            tc->getDecoderPtr()->setSveLen(
2049                (getCurSveVecLenInBits(tc) >> 7) - 1);
2050            break;
2051        }
2052    }
2053    setMiscRegNoEffect(misc_reg, newVal);
2054}
2055
2056BaseISADevice &
2057ISA::getGenericTimer(ThreadContext *tc)
2058{
2059    // We only need to create an ISA interface the first time we try
2060    // to access the timer.
2061    if (timer)
2062        return *timer.get();
2063
2064    assert(system);
2065    GenericTimer *generic_timer(system->getGenericTimer());
2066    if (!generic_timer) {
2067        panic("Trying to get a generic timer from a system that hasn't "
2068              "been configured to use a generic timer.\n");
2069    }
2070
2071    timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2072    timer->setThreadContext(tc);
2073
2074    return *timer.get();
2075}
2076
2077BaseISADevice &
2078ISA::getGICv3CPUInterface(ThreadContext *tc)
2079{
2080    panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!");
2081    return *gicv3CpuInterface.get();
2082}
2083
2084unsigned
2085ISA::getCurSveVecLenInBits(ThreadContext *tc) const
2086{
2087    if (!FullSystem) {
2088        return sveVL * 128;
2089    }
2090
2091    panic_if(!tc,
2092             "A ThreadContext is needed to determine the SVE vector length "
2093             "in full-system mode");
2094
2095    CPSR cpsr = miscRegs[MISCREG_CPSR];
2096    ExceptionLevel el = (ExceptionLevel) (uint8_t) cpsr.el;
2097
2098    unsigned len = 0;
2099
2100    if (el == EL1 || (el == EL0 && !ELIsInHost(tc, el))) {
2101        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL1]).len;
2102    }
2103
2104    if (el == EL2 || (el == EL0 && ELIsInHost(tc, el))) {
2105        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len;
2106    } else if (haveVirtualization && !inSecureState(tc) &&
2107               (el == EL0 || el == EL1)) {
2108        len = std::min(
2109            len,
2110            static_cast<unsigned>(
2111                static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len));
2112    }
2113
2114    if (el == EL3) {
2115        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len;
2116    } else if (haveSecurity) {
2117        len = std::min(
2118            len,
2119            static_cast<unsigned>(
2120                static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len));
2121    }
2122
2123    len = std::min(len, sveVL - 1);
2124
2125    return (len + 1) * 128;
2126}
2127
2128void
2129ISA::zeroSveVecRegUpperPart(VecRegContainer &vc, unsigned eCount)
2130{
2131    auto vv = vc.as<uint64_t>();
2132    for (int i = 2; i < eCount; ++i) {
2133        vv[i] = 0;
2134    }
2135}
2136
2137}  // namespace ArmISA
2138
2139ArmISA::ISA *
2140ArmISAParams::create()
2141{
2142    return new ArmISA::ISA(this);
2143}
2144