isa.cc revision 13599:05e9234fef20
1/*
2 * Copyright (c) 2010-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 *          Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "arch/arm/tlbi_op.hh"
46#include "cpu/base.hh"
47#include "cpu/checker/cpu.hh"
48#include "debug/Arm.hh"
49#include "debug/MiscRegs.hh"
50#include "dev/arm/generic_timer.hh"
51#include "dev/arm/gic_v3.hh"
52#include "dev/arm/gic_v3_cpu_interface.hh"
53#include "params/ArmISA.hh"
54#include "sim/faults.hh"
55#include "sim/stat_control.hh"
56#include "sim/system.hh"
57
58namespace ArmISA
59{
60
61ISA::ISA(Params *p)
62    : SimObject(p),
63      system(NULL),
64      _decoderFlavour(p->decoderFlavour),
65      _vecRegRenameMode(Enums::Full),
66      pmu(p->pmu),
67      impdefAsNop(p->impdef_nop)
68{
69    miscRegs[MISCREG_SCTLR_RST] = 0;
70
71    // Hook up a dummy device if we haven't been configured with a
72    // real PMU. By using a dummy device, we don't need to check that
73    // the PMU exist every time we try to access a PMU register.
74    if (!pmu)
75        pmu = &dummyDevice;
76
77    // Give all ISA devices a pointer to this ISA
78    pmu->setISA(this);
79
80    system = dynamic_cast<ArmSystem *>(p->system);
81
82    // Cache system-level properties
83    if (FullSystem && system) {
84        highestELIs64 = system->highestELIs64();
85        haveSecurity = system->haveSecurity();
86        haveLPAE = system->haveLPAE();
87        haveCrypto = system->haveCrypto();
88        haveVirtualization = system->haveVirtualization();
89        haveLargeAsid64 = system->haveLargeAsid64();
90        physAddrRange = system->physAddrRange();
91    } else {
92        highestELIs64 = true; // ArmSystem::highestELIs64 does the same
93        haveSecurity = haveLPAE = haveVirtualization = false;
94        haveCrypto = true;
95        haveLargeAsid64 = false;
96        physAddrRange = 32;  // dummy value
97    }
98
99    // GICv3 CPU interface system registers are supported
100    haveGICv3CPUInterface = false;
101
102    if (system && dynamic_cast<Gicv3 *>(system->getGIC())) {
103        haveGICv3CPUInterface = true;
104    }
105
106    // Initial rename mode depends on highestEL
107    const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) =
108        highestELIs64 ? Enums::Full : Enums::Elem;
109
110    initializeMiscRegMetadata();
111    preUnflattenMiscReg();
112
113    clear();
114}
115
116std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
117
118const ArmISAParams *
119ISA::params() const
120{
121    return dynamic_cast<const Params *>(_params);
122}
123
124void
125ISA::clear()
126{
127    const Params *p(params());
128
129    SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
130    memset(miscRegs, 0, sizeof(miscRegs));
131
132    initID32(p);
133
134    // We always initialize AArch64 ID registers even
135    // if we are in AArch32. This is done since if we
136    // are in SE mode we don't know if our ArmProcess is
137    // AArch32 or AArch64
138    initID64(p);
139
140    // Start with an event in the mailbox
141    miscRegs[MISCREG_SEV_MAILBOX] = 1;
142
143    // Separate Instruction and Data TLBs
144    miscRegs[MISCREG_TLBTR] = 1;
145
146    MVFR0 mvfr0 = 0;
147    mvfr0.advSimdRegisters = 2;
148    mvfr0.singlePrecision = 2;
149    mvfr0.doublePrecision = 2;
150    mvfr0.vfpExceptionTrapping = 0;
151    mvfr0.divide = 1;
152    mvfr0.squareRoot = 1;
153    mvfr0.shortVectors = 1;
154    mvfr0.roundingModes = 1;
155    miscRegs[MISCREG_MVFR0] = mvfr0;
156
157    MVFR1 mvfr1 = 0;
158    mvfr1.flushToZero = 1;
159    mvfr1.defaultNaN = 1;
160    mvfr1.advSimdLoadStore = 1;
161    mvfr1.advSimdInteger = 1;
162    mvfr1.advSimdSinglePrecision = 1;
163    mvfr1.advSimdHalfPrecision = 1;
164    mvfr1.vfpHalfPrecision = 1;
165    miscRegs[MISCREG_MVFR1] = mvfr1;
166
167    // Reset values of PRRR and NMRR are implementation dependent
168
169    // @todo: PRRR and NMRR in secure state?
170    miscRegs[MISCREG_PRRR_NS] =
171        (1 << 19) | // 19
172        (0 << 18) | // 18
173        (0 << 17) | // 17
174        (1 << 16) | // 16
175        (2 << 14) | // 15:14
176        (0 << 12) | // 13:12
177        (2 << 10) | // 11:10
178        (2 << 8)  | // 9:8
179        (2 << 6)  | // 7:6
180        (2 << 4)  | // 5:4
181        (1 << 2)  | // 3:2
182        0;          // 1:0
183
184    miscRegs[MISCREG_NMRR_NS] =
185        (1 << 30) | // 31:30
186        (0 << 26) | // 27:26
187        (0 << 24) | // 25:24
188        (3 << 22) | // 23:22
189        (2 << 20) | // 21:20
190        (0 << 18) | // 19:18
191        (0 << 16) | // 17:16
192        (1 << 14) | // 15:14
193        (0 << 12) | // 13:12
194        (2 << 10) | // 11:10
195        (0 << 8)  | // 9:8
196        (3 << 6)  | // 7:6
197        (2 << 4)  | // 5:4
198        (0 << 2)  | // 3:2
199        0;          // 1:0
200
201    if (FullSystem && system->highestELIs64()) {
202        // Initialize AArch64 state
203        clear64(p);
204        return;
205    }
206
207    // Initialize AArch32 state...
208    clear32(p, sctlr_rst);
209}
210
211void
212ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst)
213{
214    CPSR cpsr = 0;
215    cpsr.mode = MODE_USER;
216
217    if (FullSystem) {
218        miscRegs[MISCREG_MVBAR] = system->resetAddr();
219    }
220
221    miscRegs[MISCREG_CPSR] = cpsr;
222    updateRegMap(cpsr);
223
224    SCTLR sctlr = 0;
225    sctlr.te = (bool) sctlr_rst.te;
226    sctlr.nmfi = (bool) sctlr_rst.nmfi;
227    sctlr.v = (bool) sctlr_rst.v;
228    sctlr.u = 1;
229    sctlr.xp = 1;
230    sctlr.rao2 = 1;
231    sctlr.rao3 = 1;
232    sctlr.rao4 = 0xf;  // SCTLR[6:3]
233    sctlr.uci = 1;
234    sctlr.dze = 1;
235    miscRegs[MISCREG_SCTLR_NS] = sctlr;
236    miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
237    miscRegs[MISCREG_HCPTR] = 0;
238
239    miscRegs[MISCREG_CPACR] = 0;
240
241    miscRegs[MISCREG_FPSID] = p->fpsid;
242
243    if (haveLPAE) {
244        TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
245        ttbcr.eae = 0;
246        miscRegs[MISCREG_TTBCR_NS] = ttbcr;
247        // Enforce consistency with system-level settings
248        miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
249    }
250
251    if (haveSecurity) {
252        miscRegs[MISCREG_SCTLR_S] = sctlr;
253        miscRegs[MISCREG_SCR] = 0;
254        miscRegs[MISCREG_VBAR_S] = 0;
255    } else {
256        // we're always non-secure
257        miscRegs[MISCREG_SCR] = 1;
258    }
259
260    //XXX We need to initialize the rest of the state.
261}
262
263void
264ISA::clear64(const ArmISAParams *p)
265{
266    CPSR cpsr = 0;
267    Addr rvbar = system->resetAddr();
268    switch (system->highestEL()) {
269        // Set initial EL to highest implemented EL using associated stack
270        // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
271        // value
272      case EL3:
273        cpsr.mode = MODE_EL3H;
274        miscRegs[MISCREG_RVBAR_EL3] = rvbar;
275        break;
276      case EL2:
277        cpsr.mode = MODE_EL2H;
278        miscRegs[MISCREG_RVBAR_EL2] = rvbar;
279        break;
280      case EL1:
281        cpsr.mode = MODE_EL1H;
282        miscRegs[MISCREG_RVBAR_EL1] = rvbar;
283        break;
284      default:
285        panic("Invalid highest implemented exception level");
286        break;
287    }
288
289    // Initialize rest of CPSR
290    cpsr.daif = 0xf;  // Mask all interrupts
291    cpsr.ss = 0;
292    cpsr.il = 0;
293    miscRegs[MISCREG_CPSR] = cpsr;
294    updateRegMap(cpsr);
295
296    // Initialize other control registers
297    miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
298    if (haveSecurity) {
299        miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
300        miscRegs[MISCREG_SCR_EL3]   = 0x00000030;  // RES1 fields
301    } else if (haveVirtualization) {
302        // also  MISCREG_SCTLR_EL2 (by mapping)
303        miscRegs[MISCREG_HSCTLR] = 0x30c50830;
304    } else {
305        // also  MISCREG_SCTLR_EL1 (by mapping)
306        miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
307        // Always non-secure
308        miscRegs[MISCREG_SCR_EL3] = 1;
309    }
310}
311
312void
313ISA::initID32(const ArmISAParams *p)
314{
315    // Initialize configurable default values
316    miscRegs[MISCREG_MIDR] = p->midr;
317    miscRegs[MISCREG_MIDR_EL1] = p->midr;
318    miscRegs[MISCREG_VPIDR] = p->midr;
319
320    miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
321    miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
322    miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
323    miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
324    miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
325    miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
326
327    miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
328    miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
329    miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
330    miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
331
332    miscRegs[MISCREG_ID_ISAR5] = insertBits(
333        miscRegs[MISCREG_ID_ISAR5], 19, 4,
334        haveCrypto ? 0x1112 : 0x0);
335}
336
337void
338ISA::initID64(const ArmISAParams *p)
339{
340    // Initialize configurable id registers
341    miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
342    miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
343    miscRegs[MISCREG_ID_AA64DFR0_EL1] =
344        (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
345        (p->pmu ?             0x0000000000000100ULL : 0); // Enable PMUv3
346
347    miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
348    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
349    miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
350    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
351    miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
352    miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1;
353
354    miscRegs[MISCREG_ID_DFR0_EL1] =
355        (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
356
357    miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
358
359    // Enforce consistency with system-level settings...
360
361    // EL3
362    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
363        miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
364        haveSecurity ? 0x2 : 0x0);
365    // EL2
366    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
367        miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
368        haveVirtualization ? 0x2 : 0x0);
369    // Large ASID support
370    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
371        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
372        haveLargeAsid64 ? 0x2 : 0x0);
373    // Physical address size
374    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
375        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
376        encodePhysAddrRange64(physAddrRange));
377    // Crypto
378    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
379        miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4,
380        haveCrypto ? 0x1112 : 0x0);
381}
382
383void
384ISA::startup(ThreadContext *tc)
385{
386    pmu->setThreadContext(tc);
387
388    if (system) {
389        Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC());
390        if (gicv3) {
391            gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId()));
392            gicv3CpuInterface->setISA(this);
393        }
394    }
395}
396
397
398RegVal
399ISA::readMiscRegNoEffect(int misc_reg) const
400{
401    assert(misc_reg < NumMiscRegs);
402
403    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
404    const auto &map = getMiscIndices(misc_reg);
405    int lower = map.first, upper = map.second;
406    // NB!: apply architectural masks according to desired register,
407    // despite possibly getting value from different (mapped) register.
408    auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
409                                          |(miscRegs[upper] << 32));
410    if (val & reg.res0()) {
411        DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
412                miscRegName[misc_reg], val & reg.res0());
413    }
414    if ((val & reg.res1()) != reg.res1()) {
415        DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
416                miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
417    }
418    return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
419}
420
421
422RegVal
423ISA::readMiscReg(int misc_reg, ThreadContext *tc)
424{
425    CPSR cpsr = 0;
426    PCState pc = 0;
427    SCR scr = 0;
428
429    if (misc_reg == MISCREG_CPSR) {
430        cpsr = miscRegs[misc_reg];
431        pc = tc->pcState();
432        cpsr.j = pc.jazelle() ? 1 : 0;
433        cpsr.t = pc.thumb() ? 1 : 0;
434        return cpsr;
435    }
436
437#ifndef NDEBUG
438    if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
439        if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
440            warn("Unimplemented system register %s read.\n",
441                 miscRegName[misc_reg]);
442        else
443            panic("Unimplemented system register %s read.\n",
444                  miscRegName[misc_reg]);
445    }
446#endif
447
448    switch (unflattenMiscReg(misc_reg)) {
449      case MISCREG_HCR:
450        {
451            if (!haveVirtualization)
452                return 0;
453            else
454                return readMiscRegNoEffect(MISCREG_HCR);
455        }
456      case MISCREG_CPACR:
457        {
458            const uint32_t ones = (uint32_t)(-1);
459            CPACR cpacrMask = 0;
460            // Only cp10, cp11, and ase are implemented, nothing else should
461            // be readable? (straight copy from the write code)
462            cpacrMask.cp10 = ones;
463            cpacrMask.cp11 = ones;
464            cpacrMask.asedis = ones;
465
466            // Security Extensions may limit the readability of CPACR
467            if (haveSecurity) {
468                scr = readMiscRegNoEffect(MISCREG_SCR);
469                cpsr = readMiscRegNoEffect(MISCREG_CPSR);
470                if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
471                    NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
472                    // NB: Skipping the full loop, here
473                    if (!nsacr.cp10) cpacrMask.cp10 = 0;
474                    if (!nsacr.cp11) cpacrMask.cp11 = 0;
475                }
476            }
477            RegVal val = readMiscRegNoEffect(MISCREG_CPACR);
478            val &= cpacrMask;
479            DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
480                    miscRegName[misc_reg], val);
481            return val;
482        }
483      case MISCREG_MPIDR:
484      case MISCREG_MPIDR_EL1:
485        return readMPIDR(system, tc);
486      case MISCREG_VMPIDR:
487      case MISCREG_VMPIDR_EL2:
488        // top bit defined as RES1
489        return readMiscRegNoEffect(misc_reg) | 0x80000000;
490      case MISCREG_ID_AFR0: // not implemented, so alias MIDR
491      case MISCREG_REVIDR:  // not implemented, so alias MIDR
492      case MISCREG_MIDR:
493        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
494        scr  = readMiscRegNoEffect(MISCREG_SCR);
495        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
496            return readMiscRegNoEffect(misc_reg);
497        } else {
498            return readMiscRegNoEffect(MISCREG_VPIDR);
499        }
500        break;
501      case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
502      case MISCREG_JMCR:  // Jazelle trivial implementation, RAZ/WI
503      case MISCREG_JIDR:  // Jazelle trivial implementation, RAZ/WI
504      case MISCREG_AIDR:  // AUX ID set to 0
505      case MISCREG_TCMTR: // No TCM's
506        return 0;
507
508      case MISCREG_CLIDR:
509        warn_once("The clidr register always reports 0 caches.\n");
510        warn_once("clidr LoUIS field of 0b001 to match current "
511                  "ARM implementations.\n");
512        return 0x00200000;
513      case MISCREG_CCSIDR:
514        warn_once("The ccsidr register isn't implemented and "
515                "always reads as 0.\n");
516        break;
517      case MISCREG_CTR:                 // AArch32, ARMv7, top bit set
518      case MISCREG_CTR_EL0:             // AArch64
519        {
520            //all caches have the same line size in gem5
521            //4 byte words in ARM
522            unsigned lineSizeWords =
523                tc->getSystemPtr()->cacheLineSize() / 4;
524            unsigned log2LineSizeWords = 0;
525
526            while (lineSizeWords >>= 1) {
527                ++log2LineSizeWords;
528            }
529
530            CTR ctr = 0;
531            //log2 of minimun i-cache line size (words)
532            ctr.iCacheLineSize = log2LineSizeWords;
533            //b11 - gem5 uses pipt
534            ctr.l1IndexPolicy = 0x3;
535            //log2 of minimum d-cache line size (words)
536            ctr.dCacheLineSize = log2LineSizeWords;
537            //log2 of max reservation size (words)
538            ctr.erg = log2LineSizeWords;
539            //log2 of max writeback size (words)
540            ctr.cwg = log2LineSizeWords;
541            //b100 - gem5 format is ARMv7
542            ctr.format = 0x4;
543
544            return ctr;
545        }
546      case MISCREG_ACTLR:
547        warn("Not doing anything for miscreg ACTLR\n");
548        break;
549
550      case MISCREG_PMXEVTYPER_PMCCFILTR:
551      case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
552      case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
553      case MISCREG_PMCR ... MISCREG_PMOVSSET:
554        return pmu->readMiscReg(misc_reg);
555
556      case MISCREG_CPSR_Q:
557        panic("shouldn't be reading this register seperately\n");
558      case MISCREG_FPSCR_QC:
559        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
560      case MISCREG_FPSCR_EXC:
561        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
562      case MISCREG_FPSR:
563        {
564            const uint32_t ones = (uint32_t)(-1);
565            FPSCR fpscrMask = 0;
566            fpscrMask.ioc = ones;
567            fpscrMask.dzc = ones;
568            fpscrMask.ofc = ones;
569            fpscrMask.ufc = ones;
570            fpscrMask.ixc = ones;
571            fpscrMask.idc = ones;
572            fpscrMask.qc = ones;
573            fpscrMask.v = ones;
574            fpscrMask.c = ones;
575            fpscrMask.z = ones;
576            fpscrMask.n = ones;
577            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
578        }
579      case MISCREG_FPCR:
580        {
581            const uint32_t ones = (uint32_t)(-1);
582            FPSCR fpscrMask  = 0;
583            fpscrMask.len    = ones;
584            fpscrMask.stride = ones;
585            fpscrMask.rMode  = ones;
586            fpscrMask.fz     = ones;
587            fpscrMask.dn     = ones;
588            fpscrMask.ahp    = ones;
589            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
590        }
591      case MISCREG_NZCV:
592        {
593            CPSR cpsr = 0;
594            cpsr.nz   = tc->readCCReg(CCREG_NZ);
595            cpsr.c    = tc->readCCReg(CCREG_C);
596            cpsr.v    = tc->readCCReg(CCREG_V);
597            return cpsr;
598        }
599      case MISCREG_DAIF:
600        {
601            CPSR cpsr = 0;
602            cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
603            return cpsr;
604        }
605      case MISCREG_SP_EL0:
606        {
607            return tc->readIntReg(INTREG_SP0);
608        }
609      case MISCREG_SP_EL1:
610        {
611            return tc->readIntReg(INTREG_SP1);
612        }
613      case MISCREG_SP_EL2:
614        {
615            return tc->readIntReg(INTREG_SP2);
616        }
617      case MISCREG_SPSEL:
618        {
619            return miscRegs[MISCREG_CPSR] & 0x1;
620        }
621      case MISCREG_CURRENTEL:
622        {
623            return miscRegs[MISCREG_CPSR] & 0xc;
624        }
625      case MISCREG_L2CTLR:
626        {
627            // mostly unimplemented, just set NumCPUs field from sim and return
628            L2CTLR l2ctlr = 0;
629            // b00:1CPU to b11:4CPUs
630            l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
631            return l2ctlr;
632        }
633      case MISCREG_DBGDIDR:
634        /* For now just implement the version number.
635         * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
636         */
637        return 0x5 << 16;
638      case MISCREG_DBGDSCRint:
639        return 0;
640      case MISCREG_ISR:
641        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
642            readMiscRegNoEffect(MISCREG_HCR),
643            readMiscRegNoEffect(MISCREG_CPSR),
644            readMiscRegNoEffect(MISCREG_SCR));
645      case MISCREG_ISR_EL1:
646        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
647            readMiscRegNoEffect(MISCREG_HCR_EL2),
648            readMiscRegNoEffect(MISCREG_CPSR),
649            readMiscRegNoEffect(MISCREG_SCR_EL3));
650      case MISCREG_DCZID_EL0:
651        return 0x04;  // DC ZVA clear 64-byte chunks
652      case MISCREG_HCPTR:
653        {
654            RegVal val = readMiscRegNoEffect(misc_reg);
655            // The trap bit associated with CP14 is defined as RAZ
656            val &= ~(1 << 14);
657            // If a CP bit in NSACR is 0 then the corresponding bit in
658            // HCPTR is RAO/WI
659            bool secure_lookup = haveSecurity &&
660                inSecureState(readMiscRegNoEffect(MISCREG_SCR),
661                              readMiscRegNoEffect(MISCREG_CPSR));
662            if (!secure_lookup) {
663                RegVal mask = readMiscRegNoEffect(MISCREG_NSACR);
664                val |= (mask ^ 0x7FFF) & 0xBFFF;
665            }
666            // Set the bits for unimplemented coprocessors to RAO/WI
667            val |= 0x33FF;
668            return (val);
669        }
670      case MISCREG_HDFAR: // alias for secure DFAR
671        return readMiscRegNoEffect(MISCREG_DFAR_S);
672      case MISCREG_HIFAR: // alias for secure IFAR
673        return readMiscRegNoEffect(MISCREG_IFAR_S);
674
675      case MISCREG_ID_PFR0:
676        // !ThumbEE | !Jazelle | Thumb | ARM
677        return 0x00000031;
678      case MISCREG_ID_PFR1:
679        {   // Timer | Virti | !M Profile | TrustZone | ARMv4
680            bool haveTimer = (system->getGenericTimer() != NULL);
681            return 0x00000001
682                 | (haveSecurity       ? 0x00000010 : 0x0)
683                 | (haveVirtualization ? 0x00001000 : 0x0)
684                 | (haveTimer          ? 0x00010000 : 0x0);
685        }
686      case MISCREG_ID_AA64PFR0_EL1:
687        return 0x0000000000000002 | // AArch{64,32} supported at EL0
688               0x0000000000000020                               | // EL1
689               (haveVirtualization    ? 0x0000000000000200 : 0) | // EL2
690               (haveSecurity          ? 0x0000000000002000 : 0) | // EL3
691               (haveGICv3CPUInterface ? 0x0000000001000000 : 0);
692      case MISCREG_ID_AA64PFR1_EL1:
693        return 0; // bits [63:0] RES0 (reserved for future use)
694
695      // Generic Timer registers
696      case MISCREG_CNTHV_CTL_EL2:
697      case MISCREG_CNTHV_CVAL_EL2:
698      case MISCREG_CNTHV_TVAL_EL2:
699      case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
700      case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
701      case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
702      case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
703        return getGenericTimer(tc).readMiscReg(misc_reg);
704
705      case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
706      case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
707        return getGICv3CPUInterface(tc).readMiscReg(misc_reg);
708
709      default:
710        break;
711
712    }
713    return readMiscRegNoEffect(misc_reg);
714}
715
716void
717ISA::setMiscRegNoEffect(int misc_reg, RegVal val)
718{
719    assert(misc_reg < NumMiscRegs);
720
721    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
722    const auto &map = getMiscIndices(misc_reg);
723    int lower = map.first, upper = map.second;
724
725    auto v = (val & ~reg.wi()) | reg.rao();
726    if (upper > 0) {
727        miscRegs[lower] = bits(v, 31, 0);
728        miscRegs[upper] = bits(v, 63, 32);
729        DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
730                misc_reg, lower, upper, v);
731    } else {
732        miscRegs[lower] = v;
733        DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
734                misc_reg, lower, v);
735    }
736}
737
738void
739ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc)
740{
741
742    RegVal newVal = val;
743    bool secure_lookup;
744    SCR scr;
745
746    if (misc_reg == MISCREG_CPSR) {
747        updateRegMap(val);
748
749
750        CPSR old_cpsr = miscRegs[MISCREG_CPSR];
751        int old_mode = old_cpsr.mode;
752        CPSR cpsr = val;
753        if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
754            getITBPtr(tc)->invalidateMiscReg();
755            getDTBPtr(tc)->invalidateMiscReg();
756        }
757
758        DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
759                miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
760        PCState pc = tc->pcState();
761        pc.nextThumb(cpsr.t);
762        pc.nextJazelle(cpsr.j);
763        pc.illegalExec(cpsr.il == 1);
764
765        // Follow slightly different semantics if a CheckerCPU object
766        // is connected
767        CheckerCPU *checker = tc->getCheckerCpuPtr();
768        if (checker) {
769            tc->pcStateNoRecord(pc);
770        } else {
771            tc->pcState(pc);
772        }
773    } else {
774#ifndef NDEBUG
775        if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
776            if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
777                warn("Unimplemented system register %s write with %#x.\n",
778                    miscRegName[misc_reg], val);
779            else
780                panic("Unimplemented system register %s write with %#x.\n",
781                    miscRegName[misc_reg], val);
782        }
783#endif
784        switch (unflattenMiscReg(misc_reg)) {
785          case MISCREG_CPACR:
786            {
787
788                const uint32_t ones = (uint32_t)(-1);
789                CPACR cpacrMask = 0;
790                // Only cp10, cp11, and ase are implemented, nothing else should
791                // be writable
792                cpacrMask.cp10 = ones;
793                cpacrMask.cp11 = ones;
794                cpacrMask.asedis = ones;
795
796                // Security Extensions may limit the writability of CPACR
797                if (haveSecurity) {
798                    scr = readMiscRegNoEffect(MISCREG_SCR);
799                    CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
800                    if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
801                        NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
802                        // NB: Skipping the full loop, here
803                        if (!nsacr.cp10) cpacrMask.cp10 = 0;
804                        if (!nsacr.cp11) cpacrMask.cp11 = 0;
805                    }
806                }
807
808                RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR);
809                newVal &= cpacrMask;
810                newVal |= old_val & ~cpacrMask;
811                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
812                        miscRegName[misc_reg], newVal);
813            }
814            break;
815          case MISCREG_CPTR_EL2:
816            {
817                const uint32_t ones = (uint32_t)(-1);
818                CPTR cptrMask = 0;
819                cptrMask.tcpac = ones;
820                cptrMask.tta = ones;
821                cptrMask.tfp = ones;
822                newVal &= cptrMask;
823                cptrMask = 0;
824                cptrMask.res1_13_12_el2 = ones;
825                cptrMask.res1_9_0_el2 = ones;
826                newVal |= cptrMask;
827                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
828                        miscRegName[misc_reg], newVal);
829            }
830            break;
831          case MISCREG_CPTR_EL3:
832            {
833                const uint32_t ones = (uint32_t)(-1);
834                CPTR cptrMask = 0;
835                cptrMask.tcpac = ones;
836                cptrMask.tta = ones;
837                cptrMask.tfp = ones;
838                newVal &= cptrMask;
839                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
840                        miscRegName[misc_reg], newVal);
841            }
842            break;
843          case MISCREG_CSSELR:
844            warn_once("The csselr register isn't implemented.\n");
845            return;
846
847          case MISCREG_DC_ZVA_Xt:
848            warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
849            return;
850
851          case MISCREG_FPSCR:
852            {
853                const uint32_t ones = (uint32_t)(-1);
854                FPSCR fpscrMask = 0;
855                fpscrMask.ioc = ones;
856                fpscrMask.dzc = ones;
857                fpscrMask.ofc = ones;
858                fpscrMask.ufc = ones;
859                fpscrMask.ixc = ones;
860                fpscrMask.idc = ones;
861                fpscrMask.ioe = ones;
862                fpscrMask.dze = ones;
863                fpscrMask.ofe = ones;
864                fpscrMask.ufe = ones;
865                fpscrMask.ixe = ones;
866                fpscrMask.ide = ones;
867                fpscrMask.len = ones;
868                fpscrMask.stride = ones;
869                fpscrMask.rMode = ones;
870                fpscrMask.fz = ones;
871                fpscrMask.dn = ones;
872                fpscrMask.ahp = ones;
873                fpscrMask.qc = ones;
874                fpscrMask.v = ones;
875                fpscrMask.c = ones;
876                fpscrMask.z = ones;
877                fpscrMask.n = ones;
878                newVal = (newVal & (uint32_t)fpscrMask) |
879                         (readMiscRegNoEffect(MISCREG_FPSCR) &
880                          ~(uint32_t)fpscrMask);
881                tc->getDecoderPtr()->setContext(newVal);
882            }
883            break;
884          case MISCREG_FPSR:
885            {
886                const uint32_t ones = (uint32_t)(-1);
887                FPSCR fpscrMask = 0;
888                fpscrMask.ioc = ones;
889                fpscrMask.dzc = ones;
890                fpscrMask.ofc = ones;
891                fpscrMask.ufc = ones;
892                fpscrMask.ixc = ones;
893                fpscrMask.idc = ones;
894                fpscrMask.qc = ones;
895                fpscrMask.v = ones;
896                fpscrMask.c = ones;
897                fpscrMask.z = ones;
898                fpscrMask.n = ones;
899                newVal = (newVal & (uint32_t)fpscrMask) |
900                         (readMiscRegNoEffect(MISCREG_FPSCR) &
901                          ~(uint32_t)fpscrMask);
902                misc_reg = MISCREG_FPSCR;
903            }
904            break;
905          case MISCREG_FPCR:
906            {
907                const uint32_t ones = (uint32_t)(-1);
908                FPSCR fpscrMask  = 0;
909                fpscrMask.len    = ones;
910                fpscrMask.stride = ones;
911                fpscrMask.rMode  = ones;
912                fpscrMask.fz     = ones;
913                fpscrMask.dn     = ones;
914                fpscrMask.ahp    = ones;
915                newVal = (newVal & (uint32_t)fpscrMask) |
916                         (readMiscRegNoEffect(MISCREG_FPSCR) &
917                          ~(uint32_t)fpscrMask);
918                misc_reg = MISCREG_FPSCR;
919            }
920            break;
921          case MISCREG_CPSR_Q:
922            {
923                assert(!(newVal & ~CpsrMaskQ));
924                newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
925                misc_reg = MISCREG_CPSR;
926            }
927            break;
928          case MISCREG_FPSCR_QC:
929            {
930                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
931                         (newVal & FpscrQcMask);
932                misc_reg = MISCREG_FPSCR;
933            }
934            break;
935          case MISCREG_FPSCR_EXC:
936            {
937                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
938                         (newVal & FpscrExcMask);
939                misc_reg = MISCREG_FPSCR;
940            }
941            break;
942          case MISCREG_FPEXC:
943            {
944                // vfpv3 architecture, section B.6.1 of DDI04068
945                // bit 29 - valid only if fpexc[31] is 0
946                const uint32_t fpexcMask = 0x60000000;
947                newVal = (newVal & fpexcMask) |
948                         (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
949            }
950            break;
951          case MISCREG_HCR:
952            {
953                if (!haveVirtualization)
954                    return;
955            }
956            break;
957          case MISCREG_IFSR:
958            {
959                // ARM ARM (ARM DDI 0406C.b) B4.1.96
960                const uint32_t ifsrMask =
961                    mask(31, 13) | mask(11, 11) | mask(8, 6);
962                newVal = newVal & ~ifsrMask;
963            }
964            break;
965          case MISCREG_DFSR:
966            {
967                // ARM ARM (ARM DDI 0406C.b) B4.1.52
968                const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
969                newVal = newVal & ~dfsrMask;
970            }
971            break;
972          case MISCREG_AMAIR0:
973          case MISCREG_AMAIR1:
974            {
975                // ARM ARM (ARM DDI 0406C.b) B4.1.5
976                // Valid only with LPAE
977                if (!haveLPAE)
978                    return;
979                DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
980            }
981            break;
982          case MISCREG_SCR:
983            getITBPtr(tc)->invalidateMiscReg();
984            getDTBPtr(tc)->invalidateMiscReg();
985            break;
986          case MISCREG_SCTLR:
987            {
988                DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
989                scr = readMiscRegNoEffect(MISCREG_SCR);
990
991                MiscRegIndex sctlr_idx;
992                if (haveSecurity && !highestELIs64 && !scr.ns) {
993                    sctlr_idx = MISCREG_SCTLR_S;
994                } else {
995                    sctlr_idx =  MISCREG_SCTLR_NS;
996                }
997
998                SCTLR sctlr = miscRegs[sctlr_idx];
999                SCTLR new_sctlr = newVal;
1000                new_sctlr.nmfi =  ((bool)sctlr.nmfi) && !haveVirtualization;
1001                miscRegs[sctlr_idx] = (RegVal)new_sctlr;
1002                getITBPtr(tc)->invalidateMiscReg();
1003                getDTBPtr(tc)->invalidateMiscReg();
1004            }
1005          case MISCREG_MIDR:
1006          case MISCREG_ID_PFR0:
1007          case MISCREG_ID_PFR1:
1008          case MISCREG_ID_DFR0:
1009          case MISCREG_ID_MMFR0:
1010          case MISCREG_ID_MMFR1:
1011          case MISCREG_ID_MMFR2:
1012          case MISCREG_ID_MMFR3:
1013          case MISCREG_ID_ISAR0:
1014          case MISCREG_ID_ISAR1:
1015          case MISCREG_ID_ISAR2:
1016          case MISCREG_ID_ISAR3:
1017          case MISCREG_ID_ISAR4:
1018          case MISCREG_ID_ISAR5:
1019
1020          case MISCREG_MPIDR:
1021          case MISCREG_FPSID:
1022          case MISCREG_TLBTR:
1023          case MISCREG_MVFR0:
1024          case MISCREG_MVFR1:
1025
1026          case MISCREG_ID_AA64AFR0_EL1:
1027          case MISCREG_ID_AA64AFR1_EL1:
1028          case MISCREG_ID_AA64DFR0_EL1:
1029          case MISCREG_ID_AA64DFR1_EL1:
1030          case MISCREG_ID_AA64ISAR0_EL1:
1031          case MISCREG_ID_AA64ISAR1_EL1:
1032          case MISCREG_ID_AA64MMFR0_EL1:
1033          case MISCREG_ID_AA64MMFR1_EL1:
1034          case MISCREG_ID_AA64MMFR2_EL1:
1035          case MISCREG_ID_AA64PFR0_EL1:
1036          case MISCREG_ID_AA64PFR1_EL1:
1037            // ID registers are constants.
1038            return;
1039
1040          // TLB Invalidate All
1041          case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1042            {
1043                assert32(tc);
1044                scr = readMiscReg(MISCREG_SCR, tc);
1045
1046                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1047                tlbiOp(tc);
1048                return;
1049            }
1050          // TLB Invalidate All, Inner Shareable
1051          case MISCREG_TLBIALLIS:
1052            {
1053                assert32(tc);
1054                scr = readMiscReg(MISCREG_SCR, tc);
1055
1056                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1057                tlbiOp.broadcast(tc);
1058                return;
1059            }
1060          // Instruction TLB Invalidate All
1061          case MISCREG_ITLBIALL:
1062            {
1063                assert32(tc);
1064                scr = readMiscReg(MISCREG_SCR, tc);
1065
1066                ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1067                tlbiOp(tc);
1068                return;
1069            }
1070          // Data TLB Invalidate All
1071          case MISCREG_DTLBIALL:
1072            {
1073                assert32(tc);
1074                scr = readMiscReg(MISCREG_SCR, tc);
1075
1076                DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1077                tlbiOp(tc);
1078                return;
1079            }
1080          // TLB Invalidate by VA
1081          // mcr tlbimval(is) is invalidating all matching entries
1082          // regardless of the level of lookup, since in gem5 we cache
1083          // in the tlb the last level of lookup only.
1084          case MISCREG_TLBIMVA:
1085          case MISCREG_TLBIMVAL:
1086            {
1087                assert32(tc);
1088                scr = readMiscReg(MISCREG_SCR, tc);
1089
1090                TLBIMVA tlbiOp(EL1,
1091                               haveSecurity && !scr.ns,
1092                               mbits(newVal, 31, 12),
1093                               bits(newVal, 7,0));
1094
1095                tlbiOp(tc);
1096                return;
1097            }
1098          // TLB Invalidate by VA, Inner Shareable
1099          case MISCREG_TLBIMVAIS:
1100          case MISCREG_TLBIMVALIS:
1101            {
1102                assert32(tc);
1103                scr = readMiscReg(MISCREG_SCR, tc);
1104
1105                TLBIMVA tlbiOp(EL1,
1106                               haveSecurity && !scr.ns,
1107                               mbits(newVal, 31, 12),
1108                               bits(newVal, 7,0));
1109
1110                tlbiOp.broadcast(tc);
1111                return;
1112            }
1113          // TLB Invalidate by ASID match
1114          case MISCREG_TLBIASID:
1115            {
1116                assert32(tc);
1117                scr = readMiscReg(MISCREG_SCR, tc);
1118
1119                TLBIASID tlbiOp(EL1,
1120                                haveSecurity && !scr.ns,
1121                                bits(newVal, 7,0));
1122
1123                tlbiOp(tc);
1124                return;
1125            }
1126          // TLB Invalidate by ASID match, Inner Shareable
1127          case MISCREG_TLBIASIDIS:
1128            {
1129                assert32(tc);
1130                scr = readMiscReg(MISCREG_SCR, tc);
1131
1132                TLBIASID tlbiOp(EL1,
1133                                haveSecurity && !scr.ns,
1134                                bits(newVal, 7,0));
1135
1136                tlbiOp.broadcast(tc);
1137                return;
1138            }
1139          // mcr tlbimvaal(is) is invalidating all matching entries
1140          // regardless of the level of lookup, since in gem5 we cache
1141          // in the tlb the last level of lookup only.
1142          // TLB Invalidate by VA, All ASID
1143          case MISCREG_TLBIMVAA:
1144          case MISCREG_TLBIMVAAL:
1145            {
1146                assert32(tc);
1147                scr = readMiscReg(MISCREG_SCR, tc);
1148
1149                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1150                                mbits(newVal, 31,12), false);
1151
1152                tlbiOp(tc);
1153                return;
1154            }
1155          // TLB Invalidate by VA, All ASID, Inner Shareable
1156          case MISCREG_TLBIMVAAIS:
1157          case MISCREG_TLBIMVAALIS:
1158            {
1159                assert32(tc);
1160                scr = readMiscReg(MISCREG_SCR, tc);
1161
1162                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1163                                mbits(newVal, 31,12), false);
1164
1165                tlbiOp.broadcast(tc);
1166                return;
1167            }
1168          // mcr tlbimvalh(is) is invalidating all matching entries
1169          // regardless of the level of lookup, since in gem5 we cache
1170          // in the tlb the last level of lookup only.
1171          // TLB Invalidate by VA, Hyp mode
1172          case MISCREG_TLBIMVAH:
1173          case MISCREG_TLBIMVALH:
1174            {
1175                assert32(tc);
1176                scr = readMiscReg(MISCREG_SCR, tc);
1177
1178                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1179                                mbits(newVal, 31,12), true);
1180
1181                tlbiOp(tc);
1182                return;
1183            }
1184          // TLB Invalidate by VA, Hyp mode, Inner Shareable
1185          case MISCREG_TLBIMVAHIS:
1186          case MISCREG_TLBIMVALHIS:
1187            {
1188                assert32(tc);
1189                scr = readMiscReg(MISCREG_SCR, tc);
1190
1191                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1192                                mbits(newVal, 31,12), true);
1193
1194                tlbiOp.broadcast(tc);
1195                return;
1196            }
1197          // mcr tlbiipas2l(is) is invalidating all matching entries
1198          // regardless of the level of lookup, since in gem5 we cache
1199          // in the tlb the last level of lookup only.
1200          // TLB Invalidate by Intermediate Physical Address, Stage 2
1201          case MISCREG_TLBIIPAS2:
1202          case MISCREG_TLBIIPAS2L:
1203            {
1204                assert32(tc);
1205                scr = readMiscReg(MISCREG_SCR, tc);
1206
1207                TLBIIPA tlbiOp(EL1,
1208                               haveSecurity && !scr.ns,
1209                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1210
1211                tlbiOp(tc);
1212                return;
1213            }
1214          // TLB Invalidate by Intermediate Physical Address, Stage 2,
1215          // Inner Shareable
1216          case MISCREG_TLBIIPAS2IS:
1217          case MISCREG_TLBIIPAS2LIS:
1218            {
1219                assert32(tc);
1220                scr = readMiscReg(MISCREG_SCR, tc);
1221
1222                TLBIIPA tlbiOp(EL1,
1223                               haveSecurity && !scr.ns,
1224                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1225
1226                tlbiOp.broadcast(tc);
1227                return;
1228            }
1229          // Instruction TLB Invalidate by VA
1230          case MISCREG_ITLBIMVA:
1231            {
1232                assert32(tc);
1233                scr = readMiscReg(MISCREG_SCR, tc);
1234
1235                ITLBIMVA tlbiOp(EL1,
1236                                haveSecurity && !scr.ns,
1237                                mbits(newVal, 31, 12),
1238                                bits(newVal, 7,0));
1239
1240                tlbiOp(tc);
1241                return;
1242            }
1243          // Data TLB Invalidate by VA
1244          case MISCREG_DTLBIMVA:
1245            {
1246                assert32(tc);
1247                scr = readMiscReg(MISCREG_SCR, tc);
1248
1249                DTLBIMVA tlbiOp(EL1,
1250                                haveSecurity && !scr.ns,
1251                                mbits(newVal, 31, 12),
1252                                bits(newVal, 7,0));
1253
1254                tlbiOp(tc);
1255                return;
1256            }
1257          // Instruction TLB Invalidate by ASID match
1258          case MISCREG_ITLBIASID:
1259            {
1260                assert32(tc);
1261                scr = readMiscReg(MISCREG_SCR, tc);
1262
1263                ITLBIASID tlbiOp(EL1,
1264                                 haveSecurity && !scr.ns,
1265                                 bits(newVal, 7,0));
1266
1267                tlbiOp(tc);
1268                return;
1269            }
1270          // Data TLB Invalidate by ASID match
1271          case MISCREG_DTLBIASID:
1272            {
1273                assert32(tc);
1274                scr = readMiscReg(MISCREG_SCR, tc);
1275
1276                DTLBIASID tlbiOp(EL1,
1277                                 haveSecurity && !scr.ns,
1278                                 bits(newVal, 7,0));
1279
1280                tlbiOp(tc);
1281                return;
1282            }
1283          // TLB Invalidate All, Non-Secure Non-Hyp
1284          case MISCREG_TLBIALLNSNH:
1285            {
1286                assert32(tc);
1287
1288                TLBIALLN tlbiOp(EL1, false);
1289                tlbiOp(tc);
1290                return;
1291            }
1292          // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
1293          case MISCREG_TLBIALLNSNHIS:
1294            {
1295                assert32(tc);
1296
1297                TLBIALLN tlbiOp(EL1, false);
1298                tlbiOp.broadcast(tc);
1299                return;
1300            }
1301          // TLB Invalidate All, Hyp mode
1302          case MISCREG_TLBIALLH:
1303            {
1304                assert32(tc);
1305
1306                TLBIALLN tlbiOp(EL1, true);
1307                tlbiOp(tc);
1308                return;
1309            }
1310          // TLB Invalidate All, Hyp mode, Inner Shareable
1311          case MISCREG_TLBIALLHIS:
1312            {
1313                assert32(tc);
1314
1315                TLBIALLN tlbiOp(EL1, true);
1316                tlbiOp.broadcast(tc);
1317                return;
1318            }
1319          // AArch64 TLB Invalidate All, EL3
1320          case MISCREG_TLBI_ALLE3:
1321            {
1322                assert64(tc);
1323
1324                TLBIALL tlbiOp(EL3, true);
1325                tlbiOp(tc);
1326                return;
1327            }
1328          // AArch64 TLB Invalidate All, EL3, Inner Shareable
1329          case MISCREG_TLBI_ALLE3IS:
1330            {
1331                assert64(tc);
1332
1333                TLBIALL tlbiOp(EL3, true);
1334                tlbiOp.broadcast(tc);
1335                return;
1336            }
1337          // AArch64 TLB Invalidate All, EL2, Inner Shareable
1338          case MISCREG_TLBI_ALLE2:
1339          case MISCREG_TLBI_ALLE2IS:
1340            {
1341                assert64(tc);
1342                scr = readMiscReg(MISCREG_SCR, tc);
1343
1344                TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns);
1345                tlbiOp(tc);
1346                return;
1347            }
1348          // AArch64 TLB Invalidate All, EL1
1349          case MISCREG_TLBI_ALLE1:
1350          case MISCREG_TLBI_VMALLE1:
1351          case MISCREG_TLBI_VMALLS12E1:
1352            // @todo: handle VMID and stage 2 to enable Virtualization
1353            {
1354                assert64(tc);
1355                scr = readMiscReg(MISCREG_SCR, tc);
1356
1357                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1358                tlbiOp(tc);
1359                return;
1360            }
1361          // AArch64 TLB Invalidate All, EL1, Inner Shareable
1362          case MISCREG_TLBI_ALLE1IS:
1363          case MISCREG_TLBI_VMALLE1IS:
1364          case MISCREG_TLBI_VMALLS12E1IS:
1365            // @todo: handle VMID and stage 2 to enable Virtualization
1366            {
1367                assert64(tc);
1368                scr = readMiscReg(MISCREG_SCR, tc);
1369
1370                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1371                tlbiOp.broadcast(tc);
1372                return;
1373            }
1374          // VAEx(IS) and VALEx(IS) are the same because TLBs
1375          // only store entries
1376          // from the last level of translation table walks
1377          // @todo: handle VMID to enable Virtualization
1378          // AArch64 TLB Invalidate by VA, EL3
1379          case MISCREG_TLBI_VAE3_Xt:
1380          case MISCREG_TLBI_VALE3_Xt:
1381            {
1382                assert64(tc);
1383
1384                TLBIMVA tlbiOp(EL3, true,
1385                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1386                               0xbeef);
1387                tlbiOp(tc);
1388                return;
1389            }
1390          // AArch64 TLB Invalidate by VA, EL3, Inner Shareable
1391          case MISCREG_TLBI_VAE3IS_Xt:
1392          case MISCREG_TLBI_VALE3IS_Xt:
1393            {
1394                assert64(tc);
1395
1396                TLBIMVA tlbiOp(EL3, true,
1397                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1398                               0xbeef);
1399
1400                tlbiOp.broadcast(tc);
1401                return;
1402            }
1403          // AArch64 TLB Invalidate by VA, EL2
1404          case MISCREG_TLBI_VAE2_Xt:
1405          case MISCREG_TLBI_VALE2_Xt:
1406            {
1407                assert64(tc);
1408                scr = readMiscReg(MISCREG_SCR, tc);
1409
1410                TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1411                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1412                               0xbeef);
1413                tlbiOp(tc);
1414                return;
1415            }
1416          // AArch64 TLB Invalidate by VA, EL2, Inner Shareable
1417          case MISCREG_TLBI_VAE2IS_Xt:
1418          case MISCREG_TLBI_VALE2IS_Xt:
1419            {
1420                assert64(tc);
1421                scr = readMiscReg(MISCREG_SCR, tc);
1422
1423                TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1424                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1425                               0xbeef);
1426
1427                tlbiOp.broadcast(tc);
1428                return;
1429            }
1430          // AArch64 TLB Invalidate by VA, EL1
1431          case MISCREG_TLBI_VAE1_Xt:
1432          case MISCREG_TLBI_VALE1_Xt:
1433            {
1434                assert64(tc);
1435                scr = readMiscReg(MISCREG_SCR, tc);
1436                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1437                                              bits(newVal, 55, 48);
1438
1439                TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1440                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1441                               asid);
1442
1443                tlbiOp(tc);
1444                return;
1445            }
1446          // AArch64 TLB Invalidate by VA, EL1, Inner Shareable
1447          case MISCREG_TLBI_VAE1IS_Xt:
1448          case MISCREG_TLBI_VALE1IS_Xt:
1449            {
1450                assert64(tc);
1451                scr = readMiscReg(MISCREG_SCR, tc);
1452                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1453                                              bits(newVal, 55, 48);
1454
1455                TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1456                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1457                               asid);
1458
1459                tlbiOp.broadcast(tc);
1460                return;
1461            }
1462          // AArch64 TLB Invalidate by ASID, EL1
1463          // @todo: handle VMID to enable Virtualization
1464          case MISCREG_TLBI_ASIDE1_Xt:
1465            {
1466                assert64(tc);
1467                scr = readMiscReg(MISCREG_SCR, tc);
1468                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1469                                              bits(newVal, 55, 48);
1470
1471                TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1472                tlbiOp(tc);
1473                return;
1474            }
1475          // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
1476          case MISCREG_TLBI_ASIDE1IS_Xt:
1477            {
1478                assert64(tc);
1479                scr = readMiscReg(MISCREG_SCR, tc);
1480                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1481                                              bits(newVal, 55, 48);
1482
1483                TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1484                tlbiOp.broadcast(tc);
1485                return;
1486            }
1487          // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1488          // entries from the last level of translation table walks
1489          // AArch64 TLB Invalidate by VA, All ASID, EL1
1490          case MISCREG_TLBI_VAAE1_Xt:
1491          case MISCREG_TLBI_VAALE1_Xt:
1492            {
1493                assert64(tc);
1494                scr = readMiscReg(MISCREG_SCR, tc);
1495
1496                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1497                    static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
1498
1499                tlbiOp(tc);
1500                return;
1501            }
1502          // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
1503          case MISCREG_TLBI_VAAE1IS_Xt:
1504          case MISCREG_TLBI_VAALE1IS_Xt:
1505            {
1506                assert64(tc);
1507                scr = readMiscReg(MISCREG_SCR, tc);
1508
1509                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1510                    static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
1511
1512                tlbiOp.broadcast(tc);
1513                return;
1514            }
1515          // AArch64 TLB Invalidate by Intermediate Physical Address,
1516          // Stage 2, EL1
1517          case MISCREG_TLBI_IPAS2E1_Xt:
1518          case MISCREG_TLBI_IPAS2LE1_Xt:
1519            {
1520                assert64(tc);
1521                scr = readMiscReg(MISCREG_SCR, tc);
1522
1523                TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1524                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1525
1526                tlbiOp(tc);
1527                return;
1528            }
1529          // AArch64 TLB Invalidate by Intermediate Physical Address,
1530          // Stage 2, EL1, Inner Shareable
1531          case MISCREG_TLBI_IPAS2E1IS_Xt:
1532          case MISCREG_TLBI_IPAS2LE1IS_Xt:
1533            {
1534                assert64(tc);
1535                scr = readMiscReg(MISCREG_SCR, tc);
1536
1537                TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1538                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1539
1540                tlbiOp.broadcast(tc);
1541                return;
1542            }
1543          case MISCREG_ACTLR:
1544            warn("Not doing anything for write of miscreg ACTLR\n");
1545            break;
1546
1547          case MISCREG_PMXEVTYPER_PMCCFILTR:
1548          case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1549          case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1550          case MISCREG_PMCR ... MISCREG_PMOVSSET:
1551            pmu->setMiscReg(misc_reg, newVal);
1552            break;
1553
1554
1555          case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1556            {
1557                HSTR hstrMask = 0;
1558                hstrMask.tjdbx = 1;
1559                newVal &= ~((uint32_t) hstrMask);
1560                break;
1561            }
1562          case MISCREG_HCPTR:
1563            {
1564                // If a CP bit in NSACR is 0 then the corresponding bit in
1565                // HCPTR is RAO/WI. Same applies to NSASEDIS
1566                secure_lookup = haveSecurity &&
1567                    inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1568                                  readMiscRegNoEffect(MISCREG_CPSR));
1569                if (!secure_lookup) {
1570                    RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1571                    RegVal mask =
1572                        (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1573                    newVal = (newVal & ~mask) | (oldValue & mask);
1574                }
1575                break;
1576            }
1577          case MISCREG_HDFAR: // alias for secure DFAR
1578            misc_reg = MISCREG_DFAR_S;
1579            break;
1580          case MISCREG_HIFAR: // alias for secure IFAR
1581            misc_reg = MISCREG_IFAR_S;
1582            break;
1583          case MISCREG_ATS1CPR:
1584          case MISCREG_ATS1CPW:
1585          case MISCREG_ATS1CUR:
1586          case MISCREG_ATS1CUW:
1587          case MISCREG_ATS12NSOPR:
1588          case MISCREG_ATS12NSOPW:
1589          case MISCREG_ATS12NSOUR:
1590          case MISCREG_ATS12NSOUW:
1591          case MISCREG_ATS1HR:
1592          case MISCREG_ATS1HW:
1593            {
1594              Request::Flags flags = 0;
1595              BaseTLB::Mode mode = BaseTLB::Read;
1596              TLB::ArmTranslationType tranType = TLB::NormalTran;
1597              Fault fault;
1598              switch(misc_reg) {
1599                case MISCREG_ATS1CPR:
1600                  flags    = TLB::MustBeOne;
1601                  tranType = TLB::S1CTran;
1602                  mode     = BaseTLB::Read;
1603                  break;
1604                case MISCREG_ATS1CPW:
1605                  flags    = TLB::MustBeOne;
1606                  tranType = TLB::S1CTran;
1607                  mode     = BaseTLB::Write;
1608                  break;
1609                case MISCREG_ATS1CUR:
1610                  flags    = TLB::MustBeOne | TLB::UserMode;
1611                  tranType = TLB::S1CTran;
1612                  mode     = BaseTLB::Read;
1613                  break;
1614                case MISCREG_ATS1CUW:
1615                  flags    = TLB::MustBeOne | TLB::UserMode;
1616                  tranType = TLB::S1CTran;
1617                  mode     = BaseTLB::Write;
1618                  break;
1619                case MISCREG_ATS12NSOPR:
1620                  if (!haveSecurity)
1621                      panic("Security Extensions required for ATS12NSOPR");
1622                  flags    = TLB::MustBeOne;
1623                  tranType = TLB::S1S2NsTran;
1624                  mode     = BaseTLB::Read;
1625                  break;
1626                case MISCREG_ATS12NSOPW:
1627                  if (!haveSecurity)
1628                      panic("Security Extensions required for ATS12NSOPW");
1629                  flags    = TLB::MustBeOne;
1630                  tranType = TLB::S1S2NsTran;
1631                  mode     = BaseTLB::Write;
1632                  break;
1633                case MISCREG_ATS12NSOUR:
1634                  if (!haveSecurity)
1635                      panic("Security Extensions required for ATS12NSOUR");
1636                  flags    = TLB::MustBeOne | TLB::UserMode;
1637                  tranType = TLB::S1S2NsTran;
1638                  mode     = BaseTLB::Read;
1639                  break;
1640                case MISCREG_ATS12NSOUW:
1641                  if (!haveSecurity)
1642                      panic("Security Extensions required for ATS12NSOUW");
1643                  flags    = TLB::MustBeOne | TLB::UserMode;
1644                  tranType = TLB::S1S2NsTran;
1645                  mode     = BaseTLB::Write;
1646                  break;
1647                case MISCREG_ATS1HR: // only really useful from secure mode.
1648                  flags    = TLB::MustBeOne;
1649                  tranType = TLB::HypMode;
1650                  mode     = BaseTLB::Read;
1651                  break;
1652                case MISCREG_ATS1HW:
1653                  flags    = TLB::MustBeOne;
1654                  tranType = TLB::HypMode;
1655                  mode     = BaseTLB::Write;
1656                  break;
1657              }
1658              // If we're in timing mode then doing the translation in
1659              // functional mode then we're slightly distorting performance
1660              // results obtained from simulations. The translation should be
1661              // done in the same mode the core is running in. NOTE: This
1662              // can't be an atomic translation because that causes problems
1663              // with unexpected atomic snoop requests.
1664              warn("Translating via %s in functional mode! Fix Me!\n",
1665                   miscRegName[misc_reg]);
1666
1667              auto req = std::make_shared<Request>(
1668                  0, val, 0, flags,  Request::funcMasterId,
1669                  tc->pcState().pc(), tc->contextId());
1670
1671              fault = getDTBPtr(tc)->translateFunctional(
1672                      req, tc, mode, tranType);
1673
1674              TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1675              HCR   hcr   = readMiscRegNoEffect(MISCREG_HCR);
1676
1677              RegVal newVal;
1678              if (fault == NoFault) {
1679                  Addr paddr = req->getPaddr();
1680                  if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1681                     ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1682                      newVal = (paddr & mask(39, 12)) |
1683                               (getDTBPtr(tc)->getAttr());
1684                  } else {
1685                      newVal = (paddr & 0xfffff000) |
1686                               (getDTBPtr(tc)->getAttr());
1687                  }
1688                  DPRINTF(MiscRegs,
1689                          "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1690                          val, newVal);
1691              } else {
1692                  ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1693                  armFault->update(tc);
1694                  // Set fault bit and FSR
1695                  FSR fsr = armFault->getFsr(tc);
1696
1697                  newVal = ((fsr >> 9) & 1) << 11;
1698                  if (newVal) {
1699                    // LPAE - rearange fault status
1700                    newVal |= ((fsr >>  0) & 0x3f) << 1;
1701                  } else {
1702                    // VMSA - rearange fault status
1703                    newVal |= ((fsr >>  0) & 0xf) << 1;
1704                    newVal |= ((fsr >> 10) & 0x1) << 5;
1705                    newVal |= ((fsr >> 12) & 0x1) << 6;
1706                  }
1707                  newVal |= 0x1; // F bit
1708                  newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1709                  newVal |= armFault->isStage2() ? 0x200 : 0;
1710                  DPRINTF(MiscRegs,
1711                          "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1712                          val, fsr, newVal);
1713              }
1714              setMiscRegNoEffect(MISCREG_PAR, newVal);
1715              return;
1716            }
1717          case MISCREG_TTBCR:
1718            {
1719                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1720                const uint32_t ones = (uint32_t)(-1);
1721                TTBCR ttbcrMask = 0;
1722                TTBCR ttbcrNew = newVal;
1723
1724                // ARM DDI 0406C.b, ARMv7-32
1725                ttbcrMask.n = ones; // T0SZ
1726                if (haveSecurity) {
1727                    ttbcrMask.pd0 = ones;
1728                    ttbcrMask.pd1 = ones;
1729                }
1730                ttbcrMask.epd0 = ones;
1731                ttbcrMask.irgn0 = ones;
1732                ttbcrMask.orgn0 = ones;
1733                ttbcrMask.sh0 = ones;
1734                ttbcrMask.ps = ones; // T1SZ
1735                ttbcrMask.a1 = ones;
1736                ttbcrMask.epd1 = ones;
1737                ttbcrMask.irgn1 = ones;
1738                ttbcrMask.orgn1 = ones;
1739                ttbcrMask.sh1 = ones;
1740                if (haveLPAE)
1741                    ttbcrMask.eae = ones;
1742
1743                if (haveLPAE && ttbcrNew.eae) {
1744                    newVal = newVal & ttbcrMask;
1745                } else {
1746                    newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1747                }
1748                // Invalidate TLB MiscReg
1749                getITBPtr(tc)->invalidateMiscReg();
1750                getDTBPtr(tc)->invalidateMiscReg();
1751                break;
1752            }
1753          case MISCREG_TTBR0:
1754          case MISCREG_TTBR1:
1755            {
1756                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1757                if (haveLPAE) {
1758                    if (ttbcr.eae) {
1759                        // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1760                        // ARMv8 AArch32 bit 63-56 only
1761                        uint64_t ttbrMask = mask(63,56) | mask(47,40);
1762                        newVal = (newVal & (~ttbrMask));
1763                    }
1764                }
1765                // Invalidate TLB MiscReg
1766                getITBPtr(tc)->invalidateMiscReg();
1767                getDTBPtr(tc)->invalidateMiscReg();
1768                break;
1769            }
1770          case MISCREG_SCTLR_EL1:
1771          case MISCREG_CONTEXTIDR:
1772          case MISCREG_PRRR:
1773          case MISCREG_NMRR:
1774          case MISCREG_MAIR0:
1775          case MISCREG_MAIR1:
1776          case MISCREG_DACR:
1777          case MISCREG_VTTBR:
1778          case MISCREG_SCR_EL3:
1779          case MISCREG_HCR_EL2:
1780          case MISCREG_TCR_EL1:
1781          case MISCREG_TCR_EL2:
1782          case MISCREG_TCR_EL3:
1783          case MISCREG_SCTLR_EL2:
1784          case MISCREG_SCTLR_EL3:
1785          case MISCREG_HSCTLR:
1786          case MISCREG_TTBR0_EL1:
1787          case MISCREG_TTBR1_EL1:
1788          case MISCREG_TTBR0_EL2:
1789          case MISCREG_TTBR1_EL2:
1790          case MISCREG_TTBR0_EL3:
1791            getITBPtr(tc)->invalidateMiscReg();
1792            getDTBPtr(tc)->invalidateMiscReg();
1793            break;
1794          case MISCREG_NZCV:
1795            {
1796                CPSR cpsr = val;
1797
1798                tc->setCCReg(CCREG_NZ, cpsr.nz);
1799                tc->setCCReg(CCREG_C,  cpsr.c);
1800                tc->setCCReg(CCREG_V,  cpsr.v);
1801            }
1802            break;
1803          case MISCREG_DAIF:
1804            {
1805                CPSR cpsr = miscRegs[MISCREG_CPSR];
1806                cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1807                newVal = cpsr;
1808                misc_reg = MISCREG_CPSR;
1809            }
1810            break;
1811          case MISCREG_SP_EL0:
1812            tc->setIntReg(INTREG_SP0, newVal);
1813            break;
1814          case MISCREG_SP_EL1:
1815            tc->setIntReg(INTREG_SP1, newVal);
1816            break;
1817          case MISCREG_SP_EL2:
1818            tc->setIntReg(INTREG_SP2, newVal);
1819            break;
1820          case MISCREG_SPSEL:
1821            {
1822                CPSR cpsr = miscRegs[MISCREG_CPSR];
1823                cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1824                newVal = cpsr;
1825                misc_reg = MISCREG_CPSR;
1826            }
1827            break;
1828          case MISCREG_CURRENTEL:
1829            {
1830                CPSR cpsr = miscRegs[MISCREG_CPSR];
1831                cpsr.el = (uint8_t) ((CPSR) newVal).el;
1832                newVal = cpsr;
1833                misc_reg = MISCREG_CPSR;
1834            }
1835            break;
1836          case MISCREG_AT_S1E1R_Xt:
1837          case MISCREG_AT_S1E1W_Xt:
1838          case MISCREG_AT_S1E0R_Xt:
1839          case MISCREG_AT_S1E0W_Xt:
1840          case MISCREG_AT_S1E2R_Xt:
1841          case MISCREG_AT_S1E2W_Xt:
1842          case MISCREG_AT_S12E1R_Xt:
1843          case MISCREG_AT_S12E1W_Xt:
1844          case MISCREG_AT_S12E0R_Xt:
1845          case MISCREG_AT_S12E0W_Xt:
1846          case MISCREG_AT_S1E3R_Xt:
1847          case MISCREG_AT_S1E3W_Xt:
1848            {
1849                RequestPtr req = std::make_shared<Request>();
1850                Request::Flags flags = 0;
1851                BaseTLB::Mode mode = BaseTLB::Read;
1852                TLB::ArmTranslationType tranType = TLB::NormalTran;
1853                Fault fault;
1854                switch(misc_reg) {
1855                  case MISCREG_AT_S1E1R_Xt:
1856                    flags    = TLB::MustBeOne;
1857                    tranType = TLB::S1E1Tran;
1858                    mode     = BaseTLB::Read;
1859                    break;
1860                  case MISCREG_AT_S1E1W_Xt:
1861                    flags    = TLB::MustBeOne;
1862                    tranType = TLB::S1E1Tran;
1863                    mode     = BaseTLB::Write;
1864                    break;
1865                  case MISCREG_AT_S1E0R_Xt:
1866                    flags    = TLB::MustBeOne | TLB::UserMode;
1867                    tranType = TLB::S1E0Tran;
1868                    mode     = BaseTLB::Read;
1869                    break;
1870                  case MISCREG_AT_S1E0W_Xt:
1871                    flags    = TLB::MustBeOne | TLB::UserMode;
1872                    tranType = TLB::S1E0Tran;
1873                    mode     = BaseTLB::Write;
1874                    break;
1875                  case MISCREG_AT_S1E2R_Xt:
1876                    flags    = TLB::MustBeOne;
1877                    tranType = TLB::S1E2Tran;
1878                    mode     = BaseTLB::Read;
1879                    break;
1880                  case MISCREG_AT_S1E2W_Xt:
1881                    flags    = TLB::MustBeOne;
1882                    tranType = TLB::S1E2Tran;
1883                    mode     = BaseTLB::Write;
1884                    break;
1885                  case MISCREG_AT_S12E0R_Xt:
1886                    flags    = TLB::MustBeOne | TLB::UserMode;
1887                    tranType = TLB::S12E0Tran;
1888                    mode     = BaseTLB::Read;
1889                    break;
1890                  case MISCREG_AT_S12E0W_Xt:
1891                    flags    = TLB::MustBeOne | TLB::UserMode;
1892                    tranType = TLB::S12E0Tran;
1893                    mode     = BaseTLB::Write;
1894                    break;
1895                  case MISCREG_AT_S12E1R_Xt:
1896                    flags    = TLB::MustBeOne;
1897                    tranType = TLB::S12E1Tran;
1898                    mode     = BaseTLB::Read;
1899                    break;
1900                  case MISCREG_AT_S12E1W_Xt:
1901                    flags    = TLB::MustBeOne;
1902                    tranType = TLB::S12E1Tran;
1903                    mode     = BaseTLB::Write;
1904                    break;
1905                  case MISCREG_AT_S1E3R_Xt:
1906                    flags    = TLB::MustBeOne;
1907                    tranType = TLB::S1E3Tran;
1908                    mode     = BaseTLB::Read;
1909                    break;
1910                  case MISCREG_AT_S1E3W_Xt:
1911                    flags    = TLB::MustBeOne;
1912                    tranType = TLB::S1E3Tran;
1913                    mode     = BaseTLB::Write;
1914                    break;
1915                }
1916                // If we're in timing mode then doing the translation in
1917                // functional mode then we're slightly distorting performance
1918                // results obtained from simulations. The translation should be
1919                // done in the same mode the core is running in. NOTE: This
1920                // can't be an atomic translation because that causes problems
1921                // with unexpected atomic snoop requests.
1922                warn("Translating via %s in functional mode! Fix Me!\n",
1923                     miscRegName[misc_reg]);
1924
1925                req->setVirt(0, val, 0, flags,  Request::funcMasterId,
1926                               tc->pcState().pc());
1927                req->setContext(tc->contextId());
1928                fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
1929                                                           tranType);
1930
1931                RegVal newVal;
1932                if (fault == NoFault) {
1933                    Addr paddr = req->getPaddr();
1934                    uint64_t attr = getDTBPtr(tc)->getAttr();
1935                    uint64_t attr1 = attr >> 56;
1936                    if (!attr1 || attr1 ==0x44) {
1937                        attr |= 0x100;
1938                        attr &= ~ uint64_t(0x80);
1939                    }
1940                    newVal = (paddr & mask(47, 12)) | attr;
1941                    DPRINTF(MiscRegs,
1942                          "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1943                          val, newVal);
1944                } else {
1945                    ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1946                    armFault->update(tc);
1947                    // Set fault bit and FSR
1948                    FSR fsr = armFault->getFsr(tc);
1949
1950                    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1951                    if (cpsr.width) { // AArch32
1952                        newVal = ((fsr >> 9) & 1) << 11;
1953                        // rearrange fault status
1954                        newVal |= ((fsr >>  0) & 0x3f) << 1;
1955                        newVal |= 0x1; // F bit
1956                        newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1957                        newVal |= armFault->isStage2() ? 0x200 : 0;
1958                    } else { // AArch64
1959                        newVal = 1; // F bit
1960                        newVal |= fsr << 1; // FST
1961                        // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
1962                        newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
1963                        newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
1964                        newVal |= 1 << 11; // RES1
1965                    }
1966                    DPRINTF(MiscRegs,
1967                            "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1968                            val, fsr, newVal);
1969                }
1970                setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1971                return;
1972            }
1973          case MISCREG_SPSR_EL3:
1974          case MISCREG_SPSR_EL2:
1975          case MISCREG_SPSR_EL1:
1976            // Force bits 23:21 to 0
1977            newVal = val & ~(0x7 << 21);
1978            break;
1979          case MISCREG_L2CTLR:
1980            warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1981                 miscRegName[misc_reg], uint32_t(val));
1982            break;
1983
1984          // Generic Timer registers
1985          case MISCREG_CNTHV_CTL_EL2:
1986          case MISCREG_CNTHV_CVAL_EL2:
1987          case MISCREG_CNTHV_TVAL_EL2:
1988          case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
1989          case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
1990          case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
1991          case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
1992            getGenericTimer(tc).setMiscReg(misc_reg, newVal);
1993            break;
1994
1995          case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
1996          case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
1997            getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal);
1998            return;
1999        }
2000    }
2001    setMiscRegNoEffect(misc_reg, newVal);
2002}
2003
2004BaseISADevice &
2005ISA::getGenericTimer(ThreadContext *tc)
2006{
2007    // We only need to create an ISA interface the first time we try
2008    // to access the timer.
2009    if (timer)
2010        return *timer.get();
2011
2012    assert(system);
2013    GenericTimer *generic_timer(system->getGenericTimer());
2014    if (!generic_timer) {
2015        panic("Trying to get a generic timer from a system that hasn't "
2016              "been configured to use a generic timer.\n");
2017    }
2018
2019    timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2020    timer->setThreadContext(tc);
2021
2022    return *timer.get();
2023}
2024
2025BaseISADevice &
2026ISA::getGICv3CPUInterface(ThreadContext *tc)
2027{
2028    panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!");
2029    return *gicv3CpuInterface.get();
2030}
2031
2032}
2033
2034ArmISA::ISA *
2035ArmISAParams::create()
2036{
2037    return new ArmISA::ISA(this);
2038}
2039