isa.cc revision 12477:3d6c49bc7290
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 *          Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "cpu/base.hh"
46#include "cpu/checker/cpu.hh"
47#include "debug/Arm.hh"
48#include "debug/MiscRegs.hh"
49#include "dev/arm/generic_timer.hh"
50#include "params/ArmISA.hh"
51#include "sim/faults.hh"
52#include "sim/stat_control.hh"
53#include "sim/system.hh"
54
55namespace ArmISA
56{
57
58
59/**
60 * Some registers alias with others, and therefore need to be translated.
61 * When two mapping registers are given, they are the 32b lower and
62 * upper halves, respectively, of the 64b register being mapped.
63 * aligned with reference documentation ARM DDI 0487A.i pp 1540-1543
64 */
65void
66ISA::initializeMiscRegMetadata()
67{
68    InitReg(MISCREG_ACTLR_EL1).mapsTo(MISCREG_ACTLR_NS);
69    InitReg(MISCREG_AFSR0_EL1).mapsTo(MISCREG_ADFSR_NS);
70    InitReg(MISCREG_AFSR1_EL1).mapsTo(MISCREG_AIFSR_NS);
71    InitReg(MISCREG_AMAIR_EL1).mapsTo(MISCREG_AMAIR0_NS,
72                                      MISCREG_AMAIR1_NS);
73    InitReg(MISCREG_CONTEXTIDR_EL1).mapsTo(MISCREG_CONTEXTIDR_NS);
74    InitReg(MISCREG_CPACR_EL1).mapsTo(MISCREG_CPACR);
75    InitReg(MISCREG_CSSELR_EL1).mapsTo(MISCREG_CSSELR_NS);
76    InitReg(MISCREG_DACR32_EL2).mapsTo(MISCREG_DACR_NS);
77    InitReg(MISCREG_FAR_EL1).mapsTo(MISCREG_DFAR_NS,
78                                    MISCREG_IFAR_NS);
79    // ESR_EL1 -> DFSR
80    InitReg(MISCREG_HACR_EL2).mapsTo(MISCREG_HACR);
81    InitReg(MISCREG_ACTLR_EL2).mapsTo(MISCREG_HACTLR);
82    InitReg(MISCREG_AFSR0_EL2).mapsTo(MISCREG_HADFSR);
83    InitReg(MISCREG_AFSR1_EL2).mapsTo(MISCREG_HAIFSR);
84    InitReg(MISCREG_AMAIR_EL2).mapsTo(MISCREG_HAMAIR0,
85                                      MISCREG_HAMAIR1);
86    InitReg(MISCREG_CPTR_EL2).mapsTo(MISCREG_HCPTR);
87    InitReg(MISCREG_HCR_EL2).mapsTo(MISCREG_HCR /*,
88                                    MISCREG_HCR2*/);
89    InitReg(MISCREG_MDCR_EL2).mapsTo(MISCREG_HDCR);
90    InitReg(MISCREG_FAR_EL2).mapsTo(MISCREG_HDFAR,
91                                    MISCREG_HIFAR);
92    InitReg(MISCREG_MAIR_EL2).mapsTo(MISCREG_HMAIR0,
93                                     MISCREG_HMAIR1);
94    InitReg(MISCREG_HPFAR_EL2).mapsTo(MISCREG_HPFAR);
95    InitReg(MISCREG_SCTLR_EL2).mapsTo(MISCREG_HSCTLR);
96    InitReg(MISCREG_ESR_EL2).mapsTo(MISCREG_HSR);
97    InitReg(MISCREG_HSTR_EL2).mapsTo(MISCREG_HSTR);
98    InitReg(MISCREG_TCR_EL2).mapsTo(MISCREG_HTCR);
99    InitReg(MISCREG_TPIDR_EL2).mapsTo(MISCREG_HTPIDR);
100    InitReg(MISCREG_TTBR0_EL2).mapsTo(MISCREG_HTTBR);
101    InitReg(MISCREG_VBAR_EL2).mapsTo(MISCREG_HVBAR);
102    InitReg(MISCREG_IFSR32_EL2).mapsTo(MISCREG_IFSR_NS);
103    InitReg(MISCREG_MAIR_EL1).mapsTo(MISCREG_PRRR_NS,
104                                     MISCREG_NMRR_NS);
105    InitReg(MISCREG_PAR_EL1).mapsTo(MISCREG_PAR_NS);
106    // RMR_EL1 -> RMR
107    // RMR_EL2 -> HRMR
108    InitReg(MISCREG_SCTLR_EL1).mapsTo(MISCREG_SCTLR_NS);
109    InitReg(MISCREG_SDER32_EL3).mapsTo(MISCREG_SDER);
110    InitReg(MISCREG_TPIDR_EL1).mapsTo(MISCREG_TPIDRPRW_NS);
111    InitReg(MISCREG_TPIDRRO_EL0).mapsTo(MISCREG_TPIDRURO_NS);
112    InitReg(MISCREG_TPIDR_EL0).mapsTo(MISCREG_TPIDRURW_NS);
113    InitReg(MISCREG_TCR_EL1).mapsTo(MISCREG_TTBCR_NS);
114    InitReg(MISCREG_TTBR0_EL1).mapsTo(MISCREG_TTBR0_NS);
115    InitReg(MISCREG_TTBR1_EL1).mapsTo(MISCREG_TTBR1_NS);
116    InitReg(MISCREG_VBAR_EL1).mapsTo(MISCREG_VBAR_NS);
117    InitReg(MISCREG_VMPIDR_EL2).mapsTo(MISCREG_VMPIDR);
118    InitReg(MISCREG_VPIDR_EL2).mapsTo(MISCREG_VPIDR);
119    InitReg(MISCREG_VTCR_EL2).mapsTo(MISCREG_VTCR);
120    InitReg(MISCREG_VTTBR_EL2).mapsTo(MISCREG_VTTBR);
121    InitReg(MISCREG_CNTFRQ_EL0).mapsTo(MISCREG_CNTFRQ);
122    InitReg(MISCREG_CNTHCTL_EL2).mapsTo(MISCREG_CNTHCTL);
123    InitReg(MISCREG_CNTHP_CTL_EL2).mapsTo(MISCREG_CNTHP_CTL);
124    InitReg(MISCREG_CNTHP_CVAL_EL2).mapsTo(MISCREG_CNTHP_CVAL); /* 64b */
125    InitReg(MISCREG_CNTHP_TVAL_EL2).mapsTo(MISCREG_CNTHP_TVAL);
126    InitReg(MISCREG_CNTKCTL_EL1).mapsTo(MISCREG_CNTKCTL);
127    InitReg(MISCREG_CNTP_CTL_EL0).mapsTo(MISCREG_CNTP_CTL_NS);
128    InitReg(MISCREG_CNTP_CVAL_EL0).mapsTo(MISCREG_CNTP_CVAL_NS); /* 64b */
129    InitReg(MISCREG_CNTP_TVAL_EL0).mapsTo(MISCREG_CNTP_TVAL_NS);
130    InitReg(MISCREG_CNTPCT_EL0).mapsTo(MISCREG_CNTPCT); /* 64b */
131    InitReg(MISCREG_CNTV_CTL_EL0).mapsTo(MISCREG_CNTV_CTL);
132    InitReg(MISCREG_CNTV_CVAL_EL0).mapsTo(MISCREG_CNTV_CVAL); /* 64b */
133    InitReg(MISCREG_CNTV_TVAL_EL0).mapsTo(MISCREG_CNTV_TVAL);
134    InitReg(MISCREG_CNTVCT_EL0).mapsTo(MISCREG_CNTVCT); /* 64b */
135    InitReg(MISCREG_CNTVOFF_EL2).mapsTo(MISCREG_CNTVOFF); /* 64b */
136    InitReg(MISCREG_DBGAUTHSTATUS_EL1).mapsTo(MISCREG_DBGAUTHSTATUS);
137    InitReg(MISCREG_DBGBCR0_EL1).mapsTo(MISCREG_DBGBCR0);
138    InitReg(MISCREG_DBGBCR1_EL1).mapsTo(MISCREG_DBGBCR1);
139    InitReg(MISCREG_DBGBCR2_EL1).mapsTo(MISCREG_DBGBCR2);
140    InitReg(MISCREG_DBGBCR3_EL1).mapsTo(MISCREG_DBGBCR3);
141    InitReg(MISCREG_DBGBCR4_EL1).mapsTo(MISCREG_DBGBCR4);
142    InitReg(MISCREG_DBGBCR5_EL1).mapsTo(MISCREG_DBGBCR5);
143    InitReg(MISCREG_DBGBVR0_EL1).mapsTo(MISCREG_DBGBVR0 /*,
144                                        MISCREG_DBGBXVR0 */);
145    InitReg(MISCREG_DBGBVR1_EL1).mapsTo(MISCREG_DBGBVR1 /*,
146                                        MISCREG_DBGBXVR1 */);
147    InitReg(MISCREG_DBGBVR2_EL1).mapsTo(MISCREG_DBGBVR2 /*,
148                                        MISCREG_DBGBXVR2 */);
149    InitReg(MISCREG_DBGBVR3_EL1).mapsTo(MISCREG_DBGBVR3 /*,
150                                        MISCREG_DBGBXVR3 */);
151    InitReg(MISCREG_DBGBVR4_EL1).mapsTo(MISCREG_DBGBVR4 /*,
152                                        MISCREG_DBGBXVR4 */);
153    InitReg(MISCREG_DBGBVR5_EL1).mapsTo(MISCREG_DBGBVR5 /*,
154                                        MISCREG_DBGBXVR5 */);
155    InitReg(MISCREG_DBGCLAIMSET_EL1).mapsTo(MISCREG_DBGCLAIMSET);
156    InitReg(MISCREG_DBGCLAIMCLR_EL1).mapsTo(MISCREG_DBGCLAIMCLR);
157    // DBGDTR_EL0 -> DBGDTR{R or T}Xint
158    // DBGDTRRX_EL0 -> DBGDTRRXint
159    // DBGDTRTX_EL0 -> DBGDTRRXint
160    InitReg(MISCREG_DBGPRCR_EL1).mapsTo(MISCREG_DBGPRCR);
161    InitReg(MISCREG_DBGVCR32_EL2).mapsTo(MISCREG_DBGVCR);
162    InitReg(MISCREG_DBGWCR0_EL1).mapsTo(MISCREG_DBGWCR0);
163    InitReg(MISCREG_DBGWCR1_EL1).mapsTo(MISCREG_DBGWCR1);
164    InitReg(MISCREG_DBGWCR2_EL1).mapsTo(MISCREG_DBGWCR2);
165    InitReg(MISCREG_DBGWCR3_EL1).mapsTo(MISCREG_DBGWCR3);
166    InitReg(MISCREG_DBGWVR0_EL1).mapsTo(MISCREG_DBGWVR0);
167    InitReg(MISCREG_DBGWVR1_EL1).mapsTo(MISCREG_DBGWVR1);
168    InitReg(MISCREG_DBGWVR2_EL1).mapsTo(MISCREG_DBGWVR2);
169    InitReg(MISCREG_DBGWVR3_EL1).mapsTo(MISCREG_DBGWVR3);
170    InitReg(MISCREG_ID_DFR0_EL1).mapsTo(MISCREG_ID_DFR0);
171    InitReg(MISCREG_MDCCSR_EL0).mapsTo(MISCREG_DBGDSCRint);
172    InitReg(MISCREG_MDRAR_EL1).mapsTo(MISCREG_DBGDRAR);
173    InitReg(MISCREG_MDSCR_EL1).mapsTo(MISCREG_DBGDSCRext);
174    InitReg(MISCREG_OSDLR_EL1).mapsTo(MISCREG_DBGOSDLR);
175    InitReg(MISCREG_OSDTRRX_EL1).mapsTo(MISCREG_DBGDTRRXext);
176    InitReg(MISCREG_OSDTRTX_EL1).mapsTo(MISCREG_DBGDTRTXext);
177    InitReg(MISCREG_OSECCR_EL1).mapsTo(MISCREG_DBGOSECCR);
178    InitReg(MISCREG_OSLAR_EL1).mapsTo(MISCREG_DBGOSLAR);
179    InitReg(MISCREG_OSLSR_EL1).mapsTo(MISCREG_DBGOSLSR);
180    InitReg(MISCREG_PMCCNTR_EL0).mapsTo(MISCREG_PMCCNTR);
181    InitReg(MISCREG_PMCEID0_EL0).mapsTo(MISCREG_PMCEID0);
182    InitReg(MISCREG_PMCEID1_EL0).mapsTo(MISCREG_PMCEID1);
183    InitReg(MISCREG_PMCNTENSET_EL0).mapsTo(MISCREG_PMCNTENSET);
184    InitReg(MISCREG_PMCNTENCLR_EL0).mapsTo(MISCREG_PMCNTENCLR);
185    InitReg(MISCREG_PMCR_EL0).mapsTo(MISCREG_PMCR);
186/*  InitReg(MISCREG_PMEVCNTR0_EL0).mapsTo(MISCREG_PMEVCNTR0);
187    InitReg(MISCREG_PMEVCNTR1_EL0).mapsTo(MISCREG_PMEVCNTR1);
188    InitReg(MISCREG_PMEVCNTR2_EL0).mapsTo(MISCREG_PMEVCNTR2);
189    InitReg(MISCREG_PMEVCNTR3_EL0).mapsTo(MISCREG_PMEVCNTR3);
190    InitReg(MISCREG_PMEVCNTR4_EL0).mapsTo(MISCREG_PMEVCNTR4);
191    InitReg(MISCREG_PMEVCNTR5_EL0).mapsTo(MISCREG_PMEVCNTR5);
192    InitReg(MISCREG_PMEVTYPER0_EL0).mapsTo(MISCREG_PMEVTYPER0);
193    InitReg(MISCREG_PMEVTYPER1_EL0).mapsTo(MISCREG_PMEVTYPER1);
194    InitReg(MISCREG_PMEVTYPER2_EL0).mapsTo(MISCREG_PMEVTYPER2);
195    InitReg(MISCREG_PMEVTYPER3_EL0).mapsTo(MISCREG_PMEVTYPER3);
196    InitReg(MISCREG_PMEVTYPER4_EL0).mapsTo(MISCREG_PMEVTYPER4);
197    InitReg(MISCREG_PMEVTYPER5_EL0).mapsTo(MISCREG_PMEVTYPER5); */
198    InitReg(MISCREG_PMINTENCLR_EL1).mapsTo(MISCREG_PMINTENCLR);
199    InitReg(MISCREG_PMINTENSET_EL1).mapsTo(MISCREG_PMINTENSET);
200//  InitReg(MISCREG_PMOVSCLR_EL0).mapsTo(MISCREG_PMOVSCLR);
201    InitReg(MISCREG_PMOVSSET_EL0).mapsTo(MISCREG_PMOVSSET);
202    InitReg(MISCREG_PMSELR_EL0).mapsTo(MISCREG_PMSELR);
203    InitReg(MISCREG_PMSWINC_EL0).mapsTo(MISCREG_PMSWINC);
204    InitReg(MISCREG_PMUSERENR_EL0).mapsTo(MISCREG_PMUSERENR);
205    InitReg(MISCREG_PMXEVCNTR_EL0).mapsTo(MISCREG_PMXEVCNTR);
206    InitReg(MISCREG_PMXEVTYPER_EL0).mapsTo(MISCREG_PMXEVTYPER);
207
208    // from ARM DDI 0487A.i, template text
209    // "AArch64 System register ___ can be mapped to
210    //  AArch32 System register ___, but this is not
211    //  architecturally mandated."
212    InitReg(MISCREG_SCR_EL3).mapsTo(MISCREG_SCR); // D7-2005
213    // MDCR_EL3 -> SDCR, D7-2108 (the latter is unimpl. in gem5)
214    InitReg(MISCREG_SPSR_EL1).mapsTo(MISCREG_SPSR_SVC); // C5.2.17 SPSR_EL1
215    InitReg(MISCREG_SPSR_EL2).mapsTo(MISCREG_SPSR_HYP); // C5.2.18 SPSR_EL2
216    InitReg(MISCREG_SPSR_EL3).mapsTo(MISCREG_SPSR_MON); // C5.2.19 SPSR_EL3
217}
218
219ISA::ISA(Params *p)
220    : SimObject(p),
221      system(NULL),
222      _decoderFlavour(p->decoderFlavour),
223      _vecRegRenameMode(p->vecRegRenameMode),
224      pmu(p->pmu),
225      lookUpMiscReg(NUM_MISCREGS)
226{
227    miscRegs[MISCREG_SCTLR_RST] = 0;
228
229    // Hook up a dummy device if we haven't been configured with a
230    // real PMU. By using a dummy device, we don't need to check that
231    // the PMU exist every time we try to access a PMU register.
232    if (!pmu)
233        pmu = &dummyDevice;
234
235    // Give all ISA devices a pointer to this ISA
236    pmu->setISA(this);
237
238    system = dynamic_cast<ArmSystem *>(p->system);
239
240    // Cache system-level properties
241    if (FullSystem && system) {
242        highestELIs64 = system->highestELIs64();
243        haveSecurity = system->haveSecurity();
244        haveLPAE = system->haveLPAE();
245        haveVirtualization = system->haveVirtualization();
246        haveLargeAsid64 = system->haveLargeAsid64();
247        physAddrRange64 = system->physAddrRange64();
248    } else {
249        highestELIs64 = true; // ArmSystem::highestELIs64 does the same
250        haveSecurity = haveLPAE = haveVirtualization = false;
251        haveLargeAsid64 = false;
252        physAddrRange64 = 32;  // dummy value
253    }
254
255    initializeMiscRegMetadata();
256    preUnflattenMiscReg();
257
258    clear();
259}
260
261const ArmISAParams *
262ISA::params() const
263{
264    return dynamic_cast<const Params *>(_params);
265}
266
267void
268ISA::clear()
269{
270    const Params *p(params());
271
272    SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
273    memset(miscRegs, 0, sizeof(miscRegs));
274
275    // Initialize configurable default values
276    miscRegs[MISCREG_MIDR] = p->midr;
277    miscRegs[MISCREG_MIDR_EL1] = p->midr;
278    miscRegs[MISCREG_VPIDR] = p->midr;
279
280    if (FullSystem && system->highestELIs64()) {
281        // Initialize AArch64 state
282        clear64(p);
283        return;
284    }
285
286    // Initialize AArch32 state...
287
288    CPSR cpsr = 0;
289    cpsr.mode = MODE_USER;
290    miscRegs[MISCREG_CPSR] = cpsr;
291    updateRegMap(cpsr);
292
293    SCTLR sctlr = 0;
294    sctlr.te = (bool) sctlr_rst.te;
295    sctlr.nmfi = (bool) sctlr_rst.nmfi;
296    sctlr.v = (bool) sctlr_rst.v;
297    sctlr.u = 1;
298    sctlr.xp = 1;
299    sctlr.rao2 = 1;
300    sctlr.rao3 = 1;
301    sctlr.rao4 = 0xf;  // SCTLR[6:3]
302    sctlr.uci = 1;
303    sctlr.dze = 1;
304    miscRegs[MISCREG_SCTLR_NS] = sctlr;
305    miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
306    miscRegs[MISCREG_HCPTR] = 0;
307
308    // Start with an event in the mailbox
309    miscRegs[MISCREG_SEV_MAILBOX] = 1;
310
311    // Separate Instruction and Data TLBs
312    miscRegs[MISCREG_TLBTR] = 1;
313
314    MVFR0 mvfr0 = 0;
315    mvfr0.advSimdRegisters = 2;
316    mvfr0.singlePrecision = 2;
317    mvfr0.doublePrecision = 2;
318    mvfr0.vfpExceptionTrapping = 0;
319    mvfr0.divide = 1;
320    mvfr0.squareRoot = 1;
321    mvfr0.shortVectors = 1;
322    mvfr0.roundingModes = 1;
323    miscRegs[MISCREG_MVFR0] = mvfr0;
324
325    MVFR1 mvfr1 = 0;
326    mvfr1.flushToZero = 1;
327    mvfr1.defaultNaN = 1;
328    mvfr1.advSimdLoadStore = 1;
329    mvfr1.advSimdInteger = 1;
330    mvfr1.advSimdSinglePrecision = 1;
331    mvfr1.advSimdHalfPrecision = 1;
332    mvfr1.vfpHalfPrecision = 1;
333    miscRegs[MISCREG_MVFR1] = mvfr1;
334
335    // Reset values of PRRR and NMRR are implementation dependent
336
337    // @todo: PRRR and NMRR in secure state?
338    miscRegs[MISCREG_PRRR_NS] =
339        (1 << 19) | // 19
340        (0 << 18) | // 18
341        (0 << 17) | // 17
342        (1 << 16) | // 16
343        (2 << 14) | // 15:14
344        (0 << 12) | // 13:12
345        (2 << 10) | // 11:10
346        (2 << 8)  | // 9:8
347        (2 << 6)  | // 7:6
348        (2 << 4)  | // 5:4
349        (1 << 2)  | // 3:2
350        0;          // 1:0
351    miscRegs[MISCREG_NMRR_NS] =
352        (1 << 30) | // 31:30
353        (0 << 26) | // 27:26
354        (0 << 24) | // 25:24
355        (3 << 22) | // 23:22
356        (2 << 20) | // 21:20
357        (0 << 18) | // 19:18
358        (0 << 16) | // 17:16
359        (1 << 14) | // 15:14
360        (0 << 12) | // 13:12
361        (2 << 10) | // 11:10
362        (0 << 8)  | // 9:8
363        (3 << 6)  | // 7:6
364        (2 << 4)  | // 5:4
365        (0 << 2)  | // 3:2
366        0;          // 1:0
367
368    miscRegs[MISCREG_CPACR] = 0;
369
370    miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
371    miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
372    miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
373    miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
374
375    miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
376    miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
377    miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
378    miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
379    miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
380    miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
381
382    miscRegs[MISCREG_FPSID] = p->fpsid;
383
384    if (haveLPAE) {
385        TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
386        ttbcr.eae = 0;
387        miscRegs[MISCREG_TTBCR_NS] = ttbcr;
388        // Enforce consistency with system-level settings
389        miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
390    }
391
392    if (haveSecurity) {
393        miscRegs[MISCREG_SCTLR_S] = sctlr;
394        miscRegs[MISCREG_SCR] = 0;
395        miscRegs[MISCREG_VBAR_S] = 0;
396    } else {
397        // we're always non-secure
398        miscRegs[MISCREG_SCR] = 1;
399    }
400
401    //XXX We need to initialize the rest of the state.
402}
403
404void
405ISA::clear64(const ArmISAParams *p)
406{
407    CPSR cpsr = 0;
408    Addr rvbar = system->resetAddr64();
409    switch (system->highestEL()) {
410        // Set initial EL to highest implemented EL using associated stack
411        // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
412        // value
413      case EL3:
414        cpsr.mode = MODE_EL3H;
415        miscRegs[MISCREG_RVBAR_EL3] = rvbar;
416        break;
417      case EL2:
418        cpsr.mode = MODE_EL2H;
419        miscRegs[MISCREG_RVBAR_EL2] = rvbar;
420        break;
421      case EL1:
422        cpsr.mode = MODE_EL1H;
423        miscRegs[MISCREG_RVBAR_EL1] = rvbar;
424        break;
425      default:
426        panic("Invalid highest implemented exception level");
427        break;
428    }
429
430    // Initialize rest of CPSR
431    cpsr.daif = 0xf;  // Mask all interrupts
432    cpsr.ss = 0;
433    cpsr.il = 0;
434    miscRegs[MISCREG_CPSR] = cpsr;
435    updateRegMap(cpsr);
436
437    // Initialize other control registers
438    miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
439    if (haveSecurity) {
440        miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
441        miscRegs[MISCREG_SCR_EL3]   = 0x00000030;  // RES1 fields
442    } else if (haveVirtualization) {
443        // also  MISCREG_SCTLR_EL2 (by mapping)
444        miscRegs[MISCREG_HSCTLR] = 0x30c50830;
445    } else {
446        // also  MISCREG_SCTLR_EL1 (by mapping)
447        miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
448        // Always non-secure
449        miscRegs[MISCREG_SCR_EL3] = 1;
450    }
451
452    // Initialize configurable id registers
453    miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
454    miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
455    miscRegs[MISCREG_ID_AA64DFR0_EL1] =
456        (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
457        (p->pmu ?             0x0000000000000100ULL : 0); // Enable PMUv3
458
459    miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
460    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
461    miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
462    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
463    miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
464
465    miscRegs[MISCREG_ID_DFR0_EL1] =
466        (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
467
468    miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
469
470    // Enforce consistency with system-level settings...
471
472    // EL3
473    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
474        miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
475        haveSecurity ? 0x2 : 0x0);
476    // EL2
477    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
478        miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
479        haveVirtualization ? 0x2 : 0x0);
480    // Large ASID support
481    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
482        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
483        haveLargeAsid64 ? 0x2 : 0x0);
484    // Physical address size
485    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
486        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
487        encodePhysAddrRange64(physAddrRange64));
488}
489
490MiscReg
491ISA::readMiscRegNoEffect(int misc_reg) const
492{
493    assert(misc_reg < NumMiscRegs);
494
495    auto regs = getMiscIndices(misc_reg);
496    int lower = regs.first, upper = regs.second;
497    return !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
498                                      |(miscRegs[upper] << 32));
499}
500
501
502MiscReg
503ISA::readMiscReg(int misc_reg, ThreadContext *tc)
504{
505    CPSR cpsr = 0;
506    PCState pc = 0;
507    SCR scr = 0;
508
509    if (misc_reg == MISCREG_CPSR) {
510        cpsr = miscRegs[misc_reg];
511        pc = tc->pcState();
512        cpsr.j = pc.jazelle() ? 1 : 0;
513        cpsr.t = pc.thumb() ? 1 : 0;
514        return cpsr;
515    }
516
517#ifndef NDEBUG
518    if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
519        if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
520            warn("Unimplemented system register %s read.\n",
521                 miscRegName[misc_reg]);
522        else
523            panic("Unimplemented system register %s read.\n",
524                  miscRegName[misc_reg]);
525    }
526#endif
527
528    switch (unflattenMiscReg(misc_reg)) {
529      case MISCREG_HCR:
530        {
531            if (!haveVirtualization)
532                return 0;
533            else
534                return readMiscRegNoEffect(MISCREG_HCR);
535        }
536      case MISCREG_CPACR:
537        {
538            const uint32_t ones = (uint32_t)(-1);
539            CPACR cpacrMask = 0;
540            // Only cp10, cp11, and ase are implemented, nothing else should
541            // be readable? (straight copy from the write code)
542            cpacrMask.cp10 = ones;
543            cpacrMask.cp11 = ones;
544            cpacrMask.asedis = ones;
545
546            // Security Extensions may limit the readability of CPACR
547            if (haveSecurity) {
548                scr = readMiscRegNoEffect(MISCREG_SCR);
549                cpsr = readMiscRegNoEffect(MISCREG_CPSR);
550                if (scr.ns && (cpsr.mode != MODE_MON)) {
551                    NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
552                    // NB: Skipping the full loop, here
553                    if (!nsacr.cp10) cpacrMask.cp10 = 0;
554                    if (!nsacr.cp11) cpacrMask.cp11 = 0;
555                }
556            }
557            MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
558            val &= cpacrMask;
559            DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
560                    miscRegName[misc_reg], val);
561            return val;
562        }
563      case MISCREG_MPIDR:
564        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
565        scr  = readMiscRegNoEffect(MISCREG_SCR);
566        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
567            return getMPIDR(system, tc);
568        } else {
569            return readMiscReg(MISCREG_VMPIDR, tc);
570        }
571            break;
572      case MISCREG_MPIDR_EL1:
573        // @todo in the absence of v8 virtualization support just return MPIDR_EL1
574        return getMPIDR(system, tc) & 0xffffffff;
575      case MISCREG_VMPIDR:
576        // top bit defined as RES1
577        return readMiscRegNoEffect(misc_reg) | 0x80000000;
578      case MISCREG_ID_AFR0: // not implemented, so alias MIDR
579      case MISCREG_REVIDR:  // not implemented, so alias MIDR
580      case MISCREG_MIDR:
581        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
582        scr  = readMiscRegNoEffect(MISCREG_SCR);
583        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
584            return readMiscRegNoEffect(misc_reg);
585        } else {
586            return readMiscRegNoEffect(MISCREG_VPIDR);
587        }
588        break;
589      case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
590      case MISCREG_JMCR:  // Jazelle trivial implementation, RAZ/WI
591      case MISCREG_JIDR:  // Jazelle trivial implementation, RAZ/WI
592      case MISCREG_AIDR:  // AUX ID set to 0
593      case MISCREG_TCMTR: // No TCM's
594        return 0;
595
596      case MISCREG_CLIDR:
597        warn_once("The clidr register always reports 0 caches.\n");
598        warn_once("clidr LoUIS field of 0b001 to match current "
599                  "ARM implementations.\n");
600        return 0x00200000;
601      case MISCREG_CCSIDR:
602        warn_once("The ccsidr register isn't implemented and "
603                "always reads as 0.\n");
604        break;
605      case MISCREG_CTR:                 // AArch32, ARMv7, top bit set
606      case MISCREG_CTR_EL0:             // AArch64
607        {
608            //all caches have the same line size in gem5
609            //4 byte words in ARM
610            unsigned lineSizeWords =
611                tc->getSystemPtr()->cacheLineSize() / 4;
612            unsigned log2LineSizeWords = 0;
613
614            while (lineSizeWords >>= 1) {
615                ++log2LineSizeWords;
616            }
617
618            CTR ctr = 0;
619            //log2 of minimun i-cache line size (words)
620            ctr.iCacheLineSize = log2LineSizeWords;
621            //b11 - gem5 uses pipt
622            ctr.l1IndexPolicy = 0x3;
623            //log2 of minimum d-cache line size (words)
624            ctr.dCacheLineSize = log2LineSizeWords;
625            //log2 of max reservation size (words)
626            ctr.erg = log2LineSizeWords;
627            //log2 of max writeback size (words)
628            ctr.cwg = log2LineSizeWords;
629            //b100 - gem5 format is ARMv7
630            ctr.format = 0x4;
631
632            return ctr;
633        }
634      case MISCREG_ACTLR:
635        warn("Not doing anything for miscreg ACTLR\n");
636        break;
637
638      case MISCREG_PMXEVTYPER_PMCCFILTR:
639      case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
640      case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
641      case MISCREG_PMCR ... MISCREG_PMOVSSET:
642        return pmu->readMiscReg(misc_reg);
643
644      case MISCREG_CPSR_Q:
645        panic("shouldn't be reading this register seperately\n");
646      case MISCREG_FPSCR_QC:
647        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
648      case MISCREG_FPSCR_EXC:
649        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
650      case MISCREG_FPSR:
651        {
652            const uint32_t ones = (uint32_t)(-1);
653            FPSCR fpscrMask = 0;
654            fpscrMask.ioc = ones;
655            fpscrMask.dzc = ones;
656            fpscrMask.ofc = ones;
657            fpscrMask.ufc = ones;
658            fpscrMask.ixc = ones;
659            fpscrMask.idc = ones;
660            fpscrMask.qc = ones;
661            fpscrMask.v = ones;
662            fpscrMask.c = ones;
663            fpscrMask.z = ones;
664            fpscrMask.n = ones;
665            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
666        }
667      case MISCREG_FPCR:
668        {
669            const uint32_t ones = (uint32_t)(-1);
670            FPSCR fpscrMask  = 0;
671            fpscrMask.ioe = ones;
672            fpscrMask.dze = ones;
673            fpscrMask.ofe = ones;
674            fpscrMask.ufe = ones;
675            fpscrMask.ixe = ones;
676            fpscrMask.ide = ones;
677            fpscrMask.len    = ones;
678            fpscrMask.stride = ones;
679            fpscrMask.rMode  = ones;
680            fpscrMask.fz     = ones;
681            fpscrMask.dn     = ones;
682            fpscrMask.ahp    = ones;
683            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
684        }
685      case MISCREG_NZCV:
686        {
687            CPSR cpsr = 0;
688            cpsr.nz   = tc->readCCReg(CCREG_NZ);
689            cpsr.c    = tc->readCCReg(CCREG_C);
690            cpsr.v    = tc->readCCReg(CCREG_V);
691            return cpsr;
692        }
693      case MISCREG_DAIF:
694        {
695            CPSR cpsr = 0;
696            cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
697            return cpsr;
698        }
699      case MISCREG_SP_EL0:
700        {
701            return tc->readIntReg(INTREG_SP0);
702        }
703      case MISCREG_SP_EL1:
704        {
705            return tc->readIntReg(INTREG_SP1);
706        }
707      case MISCREG_SP_EL2:
708        {
709            return tc->readIntReg(INTREG_SP2);
710        }
711      case MISCREG_SPSEL:
712        {
713            return miscRegs[MISCREG_CPSR] & 0x1;
714        }
715      case MISCREG_CURRENTEL:
716        {
717            return miscRegs[MISCREG_CPSR] & 0xc;
718        }
719      case MISCREG_L2CTLR:
720        {
721            // mostly unimplemented, just set NumCPUs field from sim and return
722            L2CTLR l2ctlr = 0;
723            // b00:1CPU to b11:4CPUs
724            l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
725            return l2ctlr;
726        }
727      case MISCREG_DBGDIDR:
728        /* For now just implement the version number.
729         * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
730         */
731        return 0x5 << 16;
732      case MISCREG_DBGDSCRint:
733        return 0;
734      case MISCREG_ISR:
735        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
736            readMiscRegNoEffect(MISCREG_HCR),
737            readMiscRegNoEffect(MISCREG_CPSR),
738            readMiscRegNoEffect(MISCREG_SCR));
739      case MISCREG_ISR_EL1:
740        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
741            readMiscRegNoEffect(MISCREG_HCR_EL2),
742            readMiscRegNoEffect(MISCREG_CPSR),
743            readMiscRegNoEffect(MISCREG_SCR_EL3));
744      case MISCREG_DCZID_EL0:
745        return 0x04;  // DC ZVA clear 64-byte chunks
746      case MISCREG_HCPTR:
747        {
748            MiscReg val = readMiscRegNoEffect(misc_reg);
749            // The trap bit associated with CP14 is defined as RAZ
750            val &= ~(1 << 14);
751            // If a CP bit in NSACR is 0 then the corresponding bit in
752            // HCPTR is RAO/WI
753            bool secure_lookup = haveSecurity &&
754                inSecureState(readMiscRegNoEffect(MISCREG_SCR),
755                              readMiscRegNoEffect(MISCREG_CPSR));
756            if (!secure_lookup) {
757                MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
758                val |= (mask ^ 0x7FFF) & 0xBFFF;
759            }
760            // Set the bits for unimplemented coprocessors to RAO/WI
761            val |= 0x33FF;
762            return (val);
763        }
764      case MISCREG_HDFAR: // alias for secure DFAR
765        return readMiscRegNoEffect(MISCREG_DFAR_S);
766      case MISCREG_HIFAR: // alias for secure IFAR
767        return readMiscRegNoEffect(MISCREG_IFAR_S);
768      case MISCREG_HVBAR: // bottom bits reserved
769        return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
770      case MISCREG_SCTLR:
771        return (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818;
772      case MISCREG_SCTLR_EL1:
773        return (readMiscRegNoEffect(misc_reg) & 0x37DDDBBF) | 0x30D00800;
774      case MISCREG_SCTLR_EL2:
775      case MISCREG_SCTLR_EL3:
776      case MISCREG_HSCTLR:
777        return (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830;
778
779      case MISCREG_ID_PFR0:
780        // !ThumbEE | !Jazelle | Thumb | ARM
781        return 0x00000031;
782      case MISCREG_ID_PFR1:
783        {   // Timer | Virti | !M Profile | TrustZone | ARMv4
784            bool haveTimer = (system->getGenericTimer() != NULL);
785            return 0x00000001
786                 | (haveSecurity       ? 0x00000010 : 0x0)
787                 | (haveVirtualization ? 0x00001000 : 0x0)
788                 | (haveTimer          ? 0x00010000 : 0x0);
789        }
790      case MISCREG_ID_AA64PFR0_EL1:
791        return 0x0000000000000002   // AArch{64,32} supported at EL0
792             | 0x0000000000000020                             // EL1
793             | (haveVirtualization ? 0x0000000000000200 : 0)  // EL2
794             | (haveSecurity       ? 0x0000000000002000 : 0); // EL3
795      case MISCREG_ID_AA64PFR1_EL1:
796        return 0; // bits [63:0] RES0 (reserved for future use)
797
798      // Generic Timer registers
799      case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
800      case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
801      case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
802      case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
803        return getGenericTimer(tc).readMiscReg(misc_reg);
804
805      default:
806        break;
807
808    }
809    return readMiscRegNoEffect(misc_reg);
810}
811
812void
813ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
814{
815    assert(misc_reg < NumMiscRegs);
816
817    auto regs = getMiscIndices(misc_reg);
818    int lower = regs.first, upper = regs.second;
819    if (upper > 0) {
820        miscRegs[lower] = bits(val, 31, 0);
821        miscRegs[upper] = bits(val, 63, 32);
822        DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
823                misc_reg, lower, upper, val);
824    } else {
825        miscRegs[lower] = val;
826        DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
827                misc_reg, lower, val);
828    }
829}
830
831namespace {
832
833template<typename T>
834TLB *
835getITBPtr(T *tc)
836{
837    auto tlb = dynamic_cast<TLB *>(tc->getITBPtr());
838    assert(tlb);
839    return tlb;
840}
841
842template<typename T>
843TLB *
844getDTBPtr(T *tc)
845{
846    auto tlb = dynamic_cast<TLB *>(tc->getDTBPtr());
847    assert(tlb);
848    return tlb;
849}
850
851} // anonymous namespace
852
853void
854ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
855{
856
857    MiscReg newVal = val;
858    int x;
859    bool secure_lookup;
860    bool hyp;
861    System *sys;
862    ThreadContext *oc;
863    uint8_t target_el;
864    uint16_t asid;
865    SCR scr;
866
867    if (misc_reg == MISCREG_CPSR) {
868        updateRegMap(val);
869
870
871        CPSR old_cpsr = miscRegs[MISCREG_CPSR];
872        int old_mode = old_cpsr.mode;
873        CPSR cpsr = val;
874        if (old_mode != cpsr.mode) {
875            getITBPtr(tc)->invalidateMiscReg();
876            getDTBPtr(tc)->invalidateMiscReg();
877        }
878
879        DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
880                miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
881        PCState pc = tc->pcState();
882        pc.nextThumb(cpsr.t);
883        pc.nextJazelle(cpsr.j);
884
885        // Follow slightly different semantics if a CheckerCPU object
886        // is connected
887        CheckerCPU *checker = tc->getCheckerCpuPtr();
888        if (checker) {
889            tc->pcStateNoRecord(pc);
890        } else {
891            tc->pcState(pc);
892        }
893    } else {
894#ifndef NDEBUG
895        if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
896            if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
897                warn("Unimplemented system register %s write with %#x.\n",
898                    miscRegName[misc_reg], val);
899            else
900                panic("Unimplemented system register %s write with %#x.\n",
901                    miscRegName[misc_reg], val);
902        }
903#endif
904        switch (unflattenMiscReg(misc_reg)) {
905          case MISCREG_CPACR:
906            {
907
908                const uint32_t ones = (uint32_t)(-1);
909                CPACR cpacrMask = 0;
910                // Only cp10, cp11, and ase are implemented, nothing else should
911                // be writable
912                cpacrMask.cp10 = ones;
913                cpacrMask.cp11 = ones;
914                cpacrMask.asedis = ones;
915
916                // Security Extensions may limit the writability of CPACR
917                if (haveSecurity) {
918                    scr = readMiscRegNoEffect(MISCREG_SCR);
919                    CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
920                    if (scr.ns && (cpsr.mode != MODE_MON)) {
921                        NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
922                        // NB: Skipping the full loop, here
923                        if (!nsacr.cp10) cpacrMask.cp10 = 0;
924                        if (!nsacr.cp11) cpacrMask.cp11 = 0;
925                    }
926                }
927
928                MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
929                newVal &= cpacrMask;
930                newVal |= old_val & ~cpacrMask;
931                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
932                        miscRegName[misc_reg], newVal);
933            }
934            break;
935          case MISCREG_CPACR_EL1:
936            {
937                const uint32_t ones = (uint32_t)(-1);
938                CPACR cpacrMask = 0;
939                cpacrMask.tta = ones;
940                cpacrMask.fpen = ones;
941                newVal &= cpacrMask;
942                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
943                        miscRegName[misc_reg], newVal);
944            }
945            break;
946          case MISCREG_CPTR_EL2:
947            {
948                const uint32_t ones = (uint32_t)(-1);
949                CPTR cptrMask = 0;
950                cptrMask.tcpac = ones;
951                cptrMask.tta = ones;
952                cptrMask.tfp = ones;
953                newVal &= cptrMask;
954                cptrMask = 0;
955                cptrMask.res1_13_12_el2 = ones;
956                cptrMask.res1_9_0_el2 = ones;
957                newVal |= cptrMask;
958                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
959                        miscRegName[misc_reg], newVal);
960            }
961            break;
962          case MISCREG_CPTR_EL3:
963            {
964                const uint32_t ones = (uint32_t)(-1);
965                CPTR cptrMask = 0;
966                cptrMask.tcpac = ones;
967                cptrMask.tta = ones;
968                cptrMask.tfp = ones;
969                newVal &= cptrMask;
970                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
971                        miscRegName[misc_reg], newVal);
972            }
973            break;
974          case MISCREG_CSSELR:
975            warn_once("The csselr register isn't implemented.\n");
976            return;
977
978          case MISCREG_DC_ZVA_Xt:
979            warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
980            return;
981
982          case MISCREG_FPSCR:
983            {
984                const uint32_t ones = (uint32_t)(-1);
985                FPSCR fpscrMask = 0;
986                fpscrMask.ioc = ones;
987                fpscrMask.dzc = ones;
988                fpscrMask.ofc = ones;
989                fpscrMask.ufc = ones;
990                fpscrMask.ixc = ones;
991                fpscrMask.idc = ones;
992                fpscrMask.ioe = ones;
993                fpscrMask.dze = ones;
994                fpscrMask.ofe = ones;
995                fpscrMask.ufe = ones;
996                fpscrMask.ixe = ones;
997                fpscrMask.ide = ones;
998                fpscrMask.len = ones;
999                fpscrMask.stride = ones;
1000                fpscrMask.rMode = ones;
1001                fpscrMask.fz = ones;
1002                fpscrMask.dn = ones;
1003                fpscrMask.ahp = ones;
1004                fpscrMask.qc = ones;
1005                fpscrMask.v = ones;
1006                fpscrMask.c = ones;
1007                fpscrMask.z = ones;
1008                fpscrMask.n = ones;
1009                newVal = (newVal & (uint32_t)fpscrMask) |
1010                         (readMiscRegNoEffect(MISCREG_FPSCR) &
1011                          ~(uint32_t)fpscrMask);
1012                tc->getDecoderPtr()->setContext(newVal);
1013            }
1014            break;
1015          case MISCREG_FPSR:
1016            {
1017                const uint32_t ones = (uint32_t)(-1);
1018                FPSCR fpscrMask = 0;
1019                fpscrMask.ioc = ones;
1020                fpscrMask.dzc = ones;
1021                fpscrMask.ofc = ones;
1022                fpscrMask.ufc = ones;
1023                fpscrMask.ixc = ones;
1024                fpscrMask.idc = ones;
1025                fpscrMask.qc = ones;
1026                fpscrMask.v = ones;
1027                fpscrMask.c = ones;
1028                fpscrMask.z = ones;
1029                fpscrMask.n = ones;
1030                newVal = (newVal & (uint32_t)fpscrMask) |
1031                         (readMiscRegNoEffect(MISCREG_FPSCR) &
1032                          ~(uint32_t)fpscrMask);
1033                misc_reg = MISCREG_FPSCR;
1034            }
1035            break;
1036          case MISCREG_FPCR:
1037            {
1038                const uint32_t ones = (uint32_t)(-1);
1039                FPSCR fpscrMask  = 0;
1040                fpscrMask.ioe = ones;
1041                fpscrMask.dze = ones;
1042                fpscrMask.ofe = ones;
1043                fpscrMask.ufe = ones;
1044                fpscrMask.ixe = ones;
1045                fpscrMask.ide = ones;
1046                fpscrMask.len    = ones;
1047                fpscrMask.stride = ones;
1048                fpscrMask.rMode  = ones;
1049                fpscrMask.fz     = ones;
1050                fpscrMask.dn     = ones;
1051                fpscrMask.ahp    = ones;
1052                newVal = (newVal & (uint32_t)fpscrMask) |
1053                         (readMiscRegNoEffect(MISCREG_FPSCR) &
1054                          ~(uint32_t)fpscrMask);
1055                misc_reg = MISCREG_FPSCR;
1056            }
1057            break;
1058          case MISCREG_CPSR_Q:
1059            {
1060                assert(!(newVal & ~CpsrMaskQ));
1061                newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
1062                misc_reg = MISCREG_CPSR;
1063            }
1064            break;
1065          case MISCREG_FPSCR_QC:
1066            {
1067                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1068                         (newVal & FpscrQcMask);
1069                misc_reg = MISCREG_FPSCR;
1070            }
1071            break;
1072          case MISCREG_FPSCR_EXC:
1073            {
1074                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1075                         (newVal & FpscrExcMask);
1076                misc_reg = MISCREG_FPSCR;
1077            }
1078            break;
1079          case MISCREG_FPEXC:
1080            {
1081                // vfpv3 architecture, section B.6.1 of DDI04068
1082                // bit 29 - valid only if fpexc[31] is 0
1083                const uint32_t fpexcMask = 0x60000000;
1084                newVal = (newVal & fpexcMask) |
1085                         (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1086            }
1087            break;
1088          case MISCREG_HCR:
1089            {
1090                if (!haveVirtualization)
1091                    return;
1092            }
1093            break;
1094          case MISCREG_IFSR:
1095            {
1096                // ARM ARM (ARM DDI 0406C.b) B4.1.96
1097                const uint32_t ifsrMask =
1098                    mask(31, 13) | mask(11, 11) | mask(8, 6);
1099                newVal = newVal & ~ifsrMask;
1100            }
1101            break;
1102          case MISCREG_DFSR:
1103            {
1104                // ARM ARM (ARM DDI 0406C.b) B4.1.52
1105                const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1106                newVal = newVal & ~dfsrMask;
1107            }
1108            break;
1109          case MISCREG_AMAIR0:
1110          case MISCREG_AMAIR1:
1111            {
1112                // ARM ARM (ARM DDI 0406C.b) B4.1.5
1113                // Valid only with LPAE
1114                if (!haveLPAE)
1115                    return;
1116                DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1117            }
1118            break;
1119          case MISCREG_SCR:
1120            getITBPtr(tc)->invalidateMiscReg();
1121            getDTBPtr(tc)->invalidateMiscReg();
1122            break;
1123          case MISCREG_SCTLR:
1124            {
1125                DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1126                scr = readMiscRegNoEffect(MISCREG_SCR);
1127                MiscRegIndex sctlr_idx = (haveSecurity && !scr.ns)
1128                                         ? MISCREG_SCTLR_S : MISCREG_SCTLR_NS;
1129                SCTLR sctlr = miscRegs[sctlr_idx];
1130                SCTLR new_sctlr = newVal;
1131                new_sctlr.nmfi =  ((bool)sctlr.nmfi) && !haveVirtualization;
1132                miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
1133                getITBPtr(tc)->invalidateMiscReg();
1134                getDTBPtr(tc)->invalidateMiscReg();
1135            }
1136          case MISCREG_MIDR:
1137          case MISCREG_ID_PFR0:
1138          case MISCREG_ID_PFR1:
1139          case MISCREG_ID_DFR0:
1140          case MISCREG_ID_MMFR0:
1141          case MISCREG_ID_MMFR1:
1142          case MISCREG_ID_MMFR2:
1143          case MISCREG_ID_MMFR3:
1144          case MISCREG_ID_ISAR0:
1145          case MISCREG_ID_ISAR1:
1146          case MISCREG_ID_ISAR2:
1147          case MISCREG_ID_ISAR3:
1148          case MISCREG_ID_ISAR4:
1149          case MISCREG_ID_ISAR5:
1150
1151          case MISCREG_MPIDR:
1152          case MISCREG_FPSID:
1153          case MISCREG_TLBTR:
1154          case MISCREG_MVFR0:
1155          case MISCREG_MVFR1:
1156
1157          case MISCREG_ID_AA64AFR0_EL1:
1158          case MISCREG_ID_AA64AFR1_EL1:
1159          case MISCREG_ID_AA64DFR0_EL1:
1160          case MISCREG_ID_AA64DFR1_EL1:
1161          case MISCREG_ID_AA64ISAR0_EL1:
1162          case MISCREG_ID_AA64ISAR1_EL1:
1163          case MISCREG_ID_AA64MMFR0_EL1:
1164          case MISCREG_ID_AA64MMFR1_EL1:
1165          case MISCREG_ID_AA64PFR0_EL1:
1166          case MISCREG_ID_AA64PFR1_EL1:
1167            // ID registers are constants.
1168            return;
1169
1170          // TLBI all entries, EL0&1 inner sharable (ignored)
1171          case MISCREG_TLBIALLIS:
1172          case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1173            assert32(tc);
1174            target_el = 1; // el 0 and 1 are handled together
1175            scr = readMiscReg(MISCREG_SCR, tc);
1176            secure_lookup = haveSecurity && !scr.ns;
1177            sys = tc->getSystemPtr();
1178            for (x = 0; x < sys->numContexts(); x++) {
1179                oc = sys->getThreadContext(x);
1180                getITBPtr(oc)->flushAllSecurity(secure_lookup, target_el);
1181                getDTBPtr(oc)->flushAllSecurity(secure_lookup, target_el);
1182
1183                // If CheckerCPU is connected, need to notify it of a flush
1184                CheckerCPU *checker = oc->getCheckerCpuPtr();
1185                if (checker) {
1186                    getITBPtr(checker)->flushAllSecurity(secure_lookup,
1187                                                         target_el);
1188                    getDTBPtr(checker)->flushAllSecurity(secure_lookup,
1189                                                         target_el);
1190                }
1191            }
1192            return;
1193          // TLBI all entries, EL0&1, instruction side
1194          case MISCREG_ITLBIALL:
1195            assert32(tc);
1196            target_el = 1; // el 0 and 1 are handled together
1197            scr = readMiscReg(MISCREG_SCR, tc);
1198            secure_lookup = haveSecurity && !scr.ns;
1199            getITBPtr(tc)->flushAllSecurity(secure_lookup, target_el);
1200            return;
1201          // TLBI all entries, EL0&1, data side
1202          case MISCREG_DTLBIALL:
1203            assert32(tc);
1204            target_el = 1; // el 0 and 1 are handled together
1205            scr = readMiscReg(MISCREG_SCR, tc);
1206            secure_lookup = haveSecurity && !scr.ns;
1207            getDTBPtr(tc)->flushAllSecurity(secure_lookup, target_el);
1208            return;
1209          // TLBI based on VA, EL0&1 inner sharable (ignored)
1210          case MISCREG_TLBIMVAIS:
1211          case MISCREG_TLBIMVA:
1212            assert32(tc);
1213            target_el = 1; // el 0 and 1 are handled together
1214            scr = readMiscReg(MISCREG_SCR, tc);
1215            secure_lookup = haveSecurity && !scr.ns;
1216            sys = tc->getSystemPtr();
1217            for (x = 0; x < sys->numContexts(); x++) {
1218                oc = sys->getThreadContext(x);
1219                getITBPtr(oc)->flushMvaAsid(mbits(newVal, 31, 12),
1220                                              bits(newVal, 7,0),
1221                                              secure_lookup, target_el);
1222                getDTBPtr(oc)->flushMvaAsid(mbits(newVal, 31, 12),
1223                                              bits(newVal, 7,0),
1224                                              secure_lookup, target_el);
1225
1226                CheckerCPU *checker = oc->getCheckerCpuPtr();
1227                if (checker) {
1228                    getITBPtr(checker)->flushMvaAsid(mbits(newVal, 31, 12),
1229                        bits(newVal, 7,0), secure_lookup, target_el);
1230                    getDTBPtr(checker)->flushMvaAsid(mbits(newVal, 31, 12),
1231                        bits(newVal, 7,0), secure_lookup, target_el);
1232                }
1233            }
1234            return;
1235          // TLBI by ASID, EL0&1, inner sharable
1236          case MISCREG_TLBIASIDIS:
1237          case MISCREG_TLBIASID:
1238            assert32(tc);
1239            target_el = 1; // el 0 and 1 are handled together
1240            scr = readMiscReg(MISCREG_SCR, tc);
1241            secure_lookup = haveSecurity && !scr.ns;
1242            sys = tc->getSystemPtr();
1243            for (x = 0; x < sys->numContexts(); x++) {
1244                oc = sys->getThreadContext(x);
1245                getITBPtr(oc)->flushAsid(bits(newVal, 7,0),
1246                    secure_lookup, target_el);
1247                getDTBPtr(oc)->flushAsid(bits(newVal, 7,0),
1248                    secure_lookup, target_el);
1249                CheckerCPU *checker = oc->getCheckerCpuPtr();
1250                if (checker) {
1251                    getITBPtr(checker)->flushAsid(bits(newVal, 7,0),
1252                        secure_lookup, target_el);
1253                    getDTBPtr(checker)->flushAsid(bits(newVal, 7,0),
1254                        secure_lookup, target_el);
1255                }
1256            }
1257            return;
1258          // TLBI by address, EL0&1, inner sharable (ignored)
1259          case MISCREG_TLBIMVAAIS:
1260          case MISCREG_TLBIMVAA:
1261            assert32(tc);
1262            target_el = 1; // el 0 and 1 are handled together
1263            scr = readMiscReg(MISCREG_SCR, tc);
1264            secure_lookup = haveSecurity && !scr.ns;
1265            hyp = 0;
1266            tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1267            return;
1268          // TLBI by address, EL2, hypervisor mode
1269          case MISCREG_TLBIMVAH:
1270          case MISCREG_TLBIMVAHIS:
1271            assert32(tc);
1272            target_el = 1; // aarch32, use hyp bit
1273            scr = readMiscReg(MISCREG_SCR, tc);
1274            secure_lookup = haveSecurity && !scr.ns;
1275            hyp = 1;
1276            tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1277            return;
1278          // TLBI by address and asid, EL0&1, instruction side only
1279          case MISCREG_ITLBIMVA:
1280            assert32(tc);
1281            target_el = 1; // el 0 and 1 are handled together
1282            scr = readMiscReg(MISCREG_SCR, tc);
1283            secure_lookup = haveSecurity && !scr.ns;
1284            getITBPtr(tc)->flushMvaAsid(mbits(newVal, 31, 12),
1285                bits(newVal, 7,0), secure_lookup, target_el);
1286            return;
1287          // TLBI by address and asid, EL0&1, data side only
1288          case MISCREG_DTLBIMVA:
1289            assert32(tc);
1290            target_el = 1; // el 0 and 1 are handled together
1291            scr = readMiscReg(MISCREG_SCR, tc);
1292            secure_lookup = haveSecurity && !scr.ns;
1293            getDTBPtr(tc)->flushMvaAsid(mbits(newVal, 31, 12),
1294                bits(newVal, 7,0), secure_lookup, target_el);
1295            return;
1296          // TLBI by ASID, EL0&1, instrution side only
1297          case MISCREG_ITLBIASID:
1298            assert32(tc);
1299            target_el = 1; // el 0 and 1 are handled together
1300            scr = readMiscReg(MISCREG_SCR, tc);
1301            secure_lookup = haveSecurity && !scr.ns;
1302            getITBPtr(tc)->flushAsid(bits(newVal, 7,0), secure_lookup,
1303                                       target_el);
1304            return;
1305          // TLBI by ASID EL0&1 data size only
1306          case MISCREG_DTLBIASID:
1307            assert32(tc);
1308            target_el = 1; // el 0 and 1 are handled together
1309            scr = readMiscReg(MISCREG_SCR, tc);
1310            secure_lookup = haveSecurity && !scr.ns;
1311            getDTBPtr(tc)->flushAsid(bits(newVal, 7,0), secure_lookup,
1312                                       target_el);
1313            return;
1314          // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
1315          case MISCREG_TLBIALLNSNH:
1316          case MISCREG_TLBIALLNSNHIS:
1317            assert32(tc);
1318            target_el = 1; // el 0 and 1 are handled together
1319            hyp = 0;
1320            tlbiALLN(tc, hyp, target_el);
1321            return;
1322          // TLBI all entries, EL2, hyp,
1323          case MISCREG_TLBIALLH:
1324          case MISCREG_TLBIALLHIS:
1325            assert32(tc);
1326            target_el = 1; // aarch32, use hyp bit
1327            hyp = 1;
1328            tlbiALLN(tc, hyp, target_el);
1329            return;
1330          // AArch64 TLBI: invalidate all entries EL3
1331          case MISCREG_TLBI_ALLE3IS:
1332          case MISCREG_TLBI_ALLE3:
1333            assert64(tc);
1334            target_el = 3;
1335            secure_lookup = true;
1336            tlbiALL(tc, secure_lookup, target_el);
1337            return;
1338          // @todo: uncomment this to enable Virtualization
1339          // case MISCREG_TLBI_ALLE2IS:
1340          // case MISCREG_TLBI_ALLE2:
1341          // TLBI all entries, EL0&1
1342          case MISCREG_TLBI_ALLE1IS:
1343          case MISCREG_TLBI_ALLE1:
1344          // AArch64 TLBI: invalidate all entries, stage 1, current VMID
1345          case MISCREG_TLBI_VMALLE1IS:
1346          case MISCREG_TLBI_VMALLE1:
1347          // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
1348          case MISCREG_TLBI_VMALLS12E1IS:
1349          case MISCREG_TLBI_VMALLS12E1:
1350            // @todo: handle VMID and stage 2 to enable Virtualization
1351            assert64(tc);
1352            target_el = 1; // el 0 and 1 are handled together
1353            scr = readMiscReg(MISCREG_SCR, tc);
1354            secure_lookup = haveSecurity && !scr.ns;
1355            tlbiALL(tc, secure_lookup, target_el);
1356            return;
1357          // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
1358          // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
1359          // from the last level of translation table walks
1360          // @todo: handle VMID to enable Virtualization
1361          // TLBI all entries, EL0&1
1362          case MISCREG_TLBI_VAE3IS_Xt:
1363          case MISCREG_TLBI_VAE3_Xt:
1364          // TLBI by VA, EL3  regime stage 1, last level walk
1365          case MISCREG_TLBI_VALE3IS_Xt:
1366          case MISCREG_TLBI_VALE3_Xt:
1367            assert64(tc);
1368            target_el = 3;
1369            asid = 0xbeef; // does not matter, tlbi is global
1370            secure_lookup = true;
1371            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1372            return;
1373          // TLBI by VA, EL2
1374          case MISCREG_TLBI_VAE2IS_Xt:
1375          case MISCREG_TLBI_VAE2_Xt:
1376          // TLBI by VA, EL2, stage1 last level walk
1377          case MISCREG_TLBI_VALE2IS_Xt:
1378          case MISCREG_TLBI_VALE2_Xt:
1379            assert64(tc);
1380            target_el = 2;
1381            asid = 0xbeef; // does not matter, tlbi is global
1382            scr = readMiscReg(MISCREG_SCR, tc);
1383            secure_lookup = haveSecurity && !scr.ns;
1384            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1385            return;
1386          // TLBI by VA EL1 & 0, stage1, ASID, current VMID
1387          case MISCREG_TLBI_VAE1IS_Xt:
1388          case MISCREG_TLBI_VAE1_Xt:
1389          case MISCREG_TLBI_VALE1IS_Xt:
1390          case MISCREG_TLBI_VALE1_Xt:
1391            assert64(tc);
1392            asid = bits(newVal, 63, 48);
1393            target_el = 1; // el 0 and 1 are handled together
1394            scr = readMiscReg(MISCREG_SCR, tc);
1395            secure_lookup = haveSecurity && !scr.ns;
1396            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1397            return;
1398          // AArch64 TLBI: invalidate by ASID, stage 1, current VMID
1399          // @todo: handle VMID to enable Virtualization
1400          case MISCREG_TLBI_ASIDE1IS_Xt:
1401          case MISCREG_TLBI_ASIDE1_Xt:
1402            assert64(tc);
1403            target_el = 1; // el 0 and 1 are handled together
1404            scr = readMiscReg(MISCREG_SCR, tc);
1405            secure_lookup = haveSecurity && !scr.ns;
1406            sys = tc->getSystemPtr();
1407            for (x = 0; x < sys->numContexts(); x++) {
1408                oc = sys->getThreadContext(x);
1409                asid = bits(newVal, 63, 48);
1410                if (!haveLargeAsid64)
1411                    asid &= mask(8);
1412                getITBPtr(oc)->flushAsid(asid, secure_lookup, target_el);
1413                getDTBPtr(oc)->flushAsid(asid, secure_lookup, target_el);
1414                CheckerCPU *checker = oc->getCheckerCpuPtr();
1415                if (checker) {
1416                    getITBPtr(checker)->flushAsid(asid,
1417                        secure_lookup, target_el);
1418                    getDTBPtr(checker)->flushAsid(asid,
1419                        secure_lookup, target_el);
1420                }
1421            }
1422            return;
1423          // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
1424          // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1425          // entries from the last level of translation table walks
1426          // @todo: handle VMID to enable Virtualization
1427          case MISCREG_TLBI_VAAE1IS_Xt:
1428          case MISCREG_TLBI_VAAE1_Xt:
1429          case MISCREG_TLBI_VAALE1IS_Xt:
1430          case MISCREG_TLBI_VAALE1_Xt:
1431            assert64(tc);
1432            target_el = 1; // el 0 and 1 are handled together
1433            scr = readMiscReg(MISCREG_SCR, tc);
1434            secure_lookup = haveSecurity && !scr.ns;
1435            sys = tc->getSystemPtr();
1436            for (x = 0; x < sys->numContexts(); x++) {
1437                // @todo: extra controls on TLBI broadcast?
1438                oc = sys->getThreadContext(x);
1439                Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1440                getITBPtr(oc)->flushMva(va,
1441                    secure_lookup, false, target_el);
1442                getDTBPtr(oc)->flushMva(va,
1443                    secure_lookup, false, target_el);
1444
1445                CheckerCPU *checker = oc->getCheckerCpuPtr();
1446                if (checker) {
1447                    getITBPtr(checker)->flushMva(va,
1448                        secure_lookup, false, target_el);
1449                    getDTBPtr(checker)->flushMva(va,
1450                        secure_lookup, false, target_el);
1451                }
1452            }
1453            return;
1454          // AArch64 TLBI: invalidate by IPA, stage 2, current VMID
1455          case MISCREG_TLBI_IPAS2LE1IS_Xt:
1456          case MISCREG_TLBI_IPAS2LE1_Xt:
1457          case MISCREG_TLBI_IPAS2E1IS_Xt:
1458          case MISCREG_TLBI_IPAS2E1_Xt:
1459            assert64(tc);
1460            target_el = 1; // EL 0 and 1 are handled together
1461            scr = readMiscReg(MISCREG_SCR, tc);
1462            secure_lookup = haveSecurity && !scr.ns;
1463            sys = tc->getSystemPtr();
1464            for (x = 0; x < sys->numContexts(); x++) {
1465                oc = sys->getThreadContext(x);
1466                Addr ipa = ((Addr) bits(newVal, 35, 0)) << 12;
1467                getITBPtr(oc)->flushIpaVmid(ipa,
1468                    secure_lookup, false, target_el);
1469                getDTBPtr(oc)->flushIpaVmid(ipa,
1470                    secure_lookup, false, target_el);
1471
1472                CheckerCPU *checker = oc->getCheckerCpuPtr();
1473                if (checker) {
1474                    getITBPtr(checker)->flushIpaVmid(ipa,
1475                        secure_lookup, false, target_el);
1476                    getDTBPtr(checker)->flushIpaVmid(ipa,
1477                        secure_lookup, false, target_el);
1478                }
1479            }
1480            return;
1481          case MISCREG_ACTLR:
1482            warn("Not doing anything for write of miscreg ACTLR\n");
1483            break;
1484
1485          case MISCREG_PMXEVTYPER_PMCCFILTR:
1486          case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1487          case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1488          case MISCREG_PMCR ... MISCREG_PMOVSSET:
1489            pmu->setMiscReg(misc_reg, newVal);
1490            break;
1491
1492
1493          case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1494            {
1495                HSTR hstrMask = 0;
1496                hstrMask.tjdbx = 1;
1497                newVal &= ~((uint32_t) hstrMask);
1498                break;
1499            }
1500          case MISCREG_HCPTR:
1501            {
1502                // If a CP bit in NSACR is 0 then the corresponding bit in
1503                // HCPTR is RAO/WI. Same applies to NSASEDIS
1504                secure_lookup = haveSecurity &&
1505                    inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1506                                  readMiscRegNoEffect(MISCREG_CPSR));
1507                if (!secure_lookup) {
1508                    MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1509                    MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1510                    newVal = (newVal & ~mask) | (oldValue & mask);
1511                }
1512                break;
1513            }
1514          case MISCREG_HDFAR: // alias for secure DFAR
1515            misc_reg = MISCREG_DFAR_S;
1516            break;
1517          case MISCREG_HIFAR: // alias for secure IFAR
1518            misc_reg = MISCREG_IFAR_S;
1519            break;
1520          case MISCREG_ATS1CPR:
1521          case MISCREG_ATS1CPW:
1522          case MISCREG_ATS1CUR:
1523          case MISCREG_ATS1CUW:
1524          case MISCREG_ATS12NSOPR:
1525          case MISCREG_ATS12NSOPW:
1526          case MISCREG_ATS12NSOUR:
1527          case MISCREG_ATS12NSOUW:
1528          case MISCREG_ATS1HR:
1529          case MISCREG_ATS1HW:
1530            {
1531              Request::Flags flags = 0;
1532              BaseTLB::Mode mode = BaseTLB::Read;
1533              TLB::ArmTranslationType tranType = TLB::NormalTran;
1534              Fault fault;
1535              switch(misc_reg) {
1536                case MISCREG_ATS1CPR:
1537                  flags    = TLB::MustBeOne;
1538                  tranType = TLB::S1CTran;
1539                  mode     = BaseTLB::Read;
1540                  break;
1541                case MISCREG_ATS1CPW:
1542                  flags    = TLB::MustBeOne;
1543                  tranType = TLB::S1CTran;
1544                  mode     = BaseTLB::Write;
1545                  break;
1546                case MISCREG_ATS1CUR:
1547                  flags    = TLB::MustBeOne | TLB::UserMode;
1548                  tranType = TLB::S1CTran;
1549                  mode     = BaseTLB::Read;
1550                  break;
1551                case MISCREG_ATS1CUW:
1552                  flags    = TLB::MustBeOne | TLB::UserMode;
1553                  tranType = TLB::S1CTran;
1554                  mode     = BaseTLB::Write;
1555                  break;
1556                case MISCREG_ATS12NSOPR:
1557                  if (!haveSecurity)
1558                      panic("Security Extensions required for ATS12NSOPR");
1559                  flags    = TLB::MustBeOne;
1560                  tranType = TLB::S1S2NsTran;
1561                  mode     = BaseTLB::Read;
1562                  break;
1563                case MISCREG_ATS12NSOPW:
1564                  if (!haveSecurity)
1565                      panic("Security Extensions required for ATS12NSOPW");
1566                  flags    = TLB::MustBeOne;
1567                  tranType = TLB::S1S2NsTran;
1568                  mode     = BaseTLB::Write;
1569                  break;
1570                case MISCREG_ATS12NSOUR:
1571                  if (!haveSecurity)
1572                      panic("Security Extensions required for ATS12NSOUR");
1573                  flags    = TLB::MustBeOne | TLB::UserMode;
1574                  tranType = TLB::S1S2NsTran;
1575                  mode     = BaseTLB::Read;
1576                  break;
1577                case MISCREG_ATS12NSOUW:
1578                  if (!haveSecurity)
1579                      panic("Security Extensions required for ATS12NSOUW");
1580                  flags    = TLB::MustBeOne | TLB::UserMode;
1581                  tranType = TLB::S1S2NsTran;
1582                  mode     = BaseTLB::Write;
1583                  break;
1584                case MISCREG_ATS1HR: // only really useful from secure mode.
1585                  flags    = TLB::MustBeOne;
1586                  tranType = TLB::HypMode;
1587                  mode     = BaseTLB::Read;
1588                  break;
1589                case MISCREG_ATS1HW:
1590                  flags    = TLB::MustBeOne;
1591                  tranType = TLB::HypMode;
1592                  mode     = BaseTLB::Write;
1593                  break;
1594              }
1595              // If we're in timing mode then doing the translation in
1596              // functional mode then we're slightly distorting performance
1597              // results obtained from simulations. The translation should be
1598              // done in the same mode the core is running in. NOTE: This
1599              // can't be an atomic translation because that causes problems
1600              // with unexpected atomic snoop requests.
1601              warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1602              Request req(0, val, 0, flags,  Request::funcMasterId,
1603                          tc->pcState().pc(), tc->contextId());
1604              fault = getDTBPtr(tc)->translateFunctional(
1605                      &req, tc, mode, tranType);
1606              TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1607              HCR   hcr   = readMiscRegNoEffect(MISCREG_HCR);
1608
1609              MiscReg newVal;
1610              if (fault == NoFault) {
1611                  Addr paddr = req.getPaddr();
1612                  if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1613                     ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1614                      newVal = (paddr & mask(39, 12)) |
1615                               (getDTBPtr(tc)->getAttr());
1616                  } else {
1617                      newVal = (paddr & 0xfffff000) |
1618                               (getDTBPtr(tc)->getAttr());
1619                  }
1620                  DPRINTF(MiscRegs,
1621                          "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1622                          val, newVal);
1623              } else {
1624                  ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1625                  // Set fault bit and FSR
1626                  FSR fsr = armFault->getFsr(tc);
1627
1628                  newVal = ((fsr >> 9) & 1) << 11;
1629                  if (newVal) {
1630                    // LPAE - rearange fault status
1631                    newVal |= ((fsr >>  0) & 0x3f) << 1;
1632                  } else {
1633                    // VMSA - rearange fault status
1634                    newVal |= ((fsr >>  0) & 0xf) << 1;
1635                    newVal |= ((fsr >> 10) & 0x1) << 5;
1636                    newVal |= ((fsr >> 12) & 0x1) << 6;
1637                  }
1638                  newVal |= 0x1; // F bit
1639                  newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1640                  newVal |= armFault->isStage2() ? 0x200 : 0;
1641                  DPRINTF(MiscRegs,
1642                          "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1643                          val, fsr, newVal);
1644              }
1645              setMiscRegNoEffect(MISCREG_PAR, newVal);
1646              return;
1647            }
1648          case MISCREG_TTBCR:
1649            {
1650                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1651                const uint32_t ones = (uint32_t)(-1);
1652                TTBCR ttbcrMask = 0;
1653                TTBCR ttbcrNew = newVal;
1654
1655                // ARM DDI 0406C.b, ARMv7-32
1656                ttbcrMask.n = ones; // T0SZ
1657                if (haveSecurity) {
1658                    ttbcrMask.pd0 = ones;
1659                    ttbcrMask.pd1 = ones;
1660                }
1661                ttbcrMask.epd0 = ones;
1662                ttbcrMask.irgn0 = ones;
1663                ttbcrMask.orgn0 = ones;
1664                ttbcrMask.sh0 = ones;
1665                ttbcrMask.ps = ones; // T1SZ
1666                ttbcrMask.a1 = ones;
1667                ttbcrMask.epd1 = ones;
1668                ttbcrMask.irgn1 = ones;
1669                ttbcrMask.orgn1 = ones;
1670                ttbcrMask.sh1 = ones;
1671                if (haveLPAE)
1672                    ttbcrMask.eae = ones;
1673
1674                if (haveLPAE && ttbcrNew.eae) {
1675                    newVal = newVal & ttbcrMask;
1676                } else {
1677                    newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1678                }
1679            }
1680            M5_FALLTHROUGH;
1681          case MISCREG_TTBR0:
1682          case MISCREG_TTBR1:
1683            {
1684                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1685                if (haveLPAE) {
1686                    if (ttbcr.eae) {
1687                        // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1688                        // ARMv8 AArch32 bit 63-56 only
1689                        uint64_t ttbrMask = mask(63,56) | mask(47,40);
1690                        newVal = (newVal & (~ttbrMask));
1691                    }
1692                }
1693            }
1694            M5_FALLTHROUGH;
1695          case MISCREG_SCTLR_EL1:
1696            {
1697                getITBPtr(tc)->invalidateMiscReg();
1698                getDTBPtr(tc)->invalidateMiscReg();
1699                setMiscRegNoEffect(misc_reg, newVal);
1700            }
1701            M5_FALLTHROUGH;
1702          case MISCREG_CONTEXTIDR:
1703          case MISCREG_PRRR:
1704          case MISCREG_NMRR:
1705          case MISCREG_MAIR0:
1706          case MISCREG_MAIR1:
1707          case MISCREG_DACR:
1708          case MISCREG_VTTBR:
1709          case MISCREG_SCR_EL3:
1710          case MISCREG_HCR_EL2:
1711          case MISCREG_TCR_EL1:
1712          case MISCREG_TCR_EL2:
1713          case MISCREG_TCR_EL3:
1714          case MISCREG_SCTLR_EL2:
1715          case MISCREG_SCTLR_EL3:
1716          case MISCREG_HSCTLR:
1717          case MISCREG_TTBR0_EL1:
1718          case MISCREG_TTBR1_EL1:
1719          case MISCREG_TTBR0_EL2:
1720          case MISCREG_TTBR0_EL3:
1721            getITBPtr(tc)->invalidateMiscReg();
1722            getDTBPtr(tc)->invalidateMiscReg();
1723            break;
1724          case MISCREG_NZCV:
1725            {
1726                CPSR cpsr = val;
1727
1728                tc->setCCReg(CCREG_NZ, cpsr.nz);
1729                tc->setCCReg(CCREG_C,  cpsr.c);
1730                tc->setCCReg(CCREG_V,  cpsr.v);
1731            }
1732            break;
1733          case MISCREG_DAIF:
1734            {
1735                CPSR cpsr = miscRegs[MISCREG_CPSR];
1736                cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1737                newVal = cpsr;
1738                misc_reg = MISCREG_CPSR;
1739            }
1740            break;
1741          case MISCREG_SP_EL0:
1742            tc->setIntReg(INTREG_SP0, newVal);
1743            break;
1744          case MISCREG_SP_EL1:
1745            tc->setIntReg(INTREG_SP1, newVal);
1746            break;
1747          case MISCREG_SP_EL2:
1748            tc->setIntReg(INTREG_SP2, newVal);
1749            break;
1750          case MISCREG_SPSEL:
1751            {
1752                CPSR cpsr = miscRegs[MISCREG_CPSR];
1753                cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1754                newVal = cpsr;
1755                misc_reg = MISCREG_CPSR;
1756            }
1757            break;
1758          case MISCREG_CURRENTEL:
1759            {
1760                CPSR cpsr = miscRegs[MISCREG_CPSR];
1761                cpsr.el = (uint8_t) ((CPSR) newVal).el;
1762                newVal = cpsr;
1763                misc_reg = MISCREG_CPSR;
1764            }
1765            break;
1766          case MISCREG_AT_S1E1R_Xt:
1767          case MISCREG_AT_S1E1W_Xt:
1768          case MISCREG_AT_S1E0R_Xt:
1769          case MISCREG_AT_S1E0W_Xt:
1770          case MISCREG_AT_S1E2R_Xt:
1771          case MISCREG_AT_S1E2W_Xt:
1772          case MISCREG_AT_S12E1R_Xt:
1773          case MISCREG_AT_S12E1W_Xt:
1774          case MISCREG_AT_S12E0R_Xt:
1775          case MISCREG_AT_S12E0W_Xt:
1776          case MISCREG_AT_S1E3R_Xt:
1777          case MISCREG_AT_S1E3W_Xt:
1778            {
1779                RequestPtr req = new Request;
1780                Request::Flags flags = 0;
1781                BaseTLB::Mode mode = BaseTLB::Read;
1782                TLB::ArmTranslationType tranType = TLB::NormalTran;
1783                Fault fault;
1784                switch(misc_reg) {
1785                  case MISCREG_AT_S1E1R_Xt:
1786                    flags    = TLB::MustBeOne;
1787                    tranType = TLB::S1E1Tran;
1788                    mode     = BaseTLB::Read;
1789                    break;
1790                  case MISCREG_AT_S1E1W_Xt:
1791                    flags    = TLB::MustBeOne;
1792                    tranType = TLB::S1E1Tran;
1793                    mode     = BaseTLB::Write;
1794                    break;
1795                  case MISCREG_AT_S1E0R_Xt:
1796                    flags    = TLB::MustBeOne | TLB::UserMode;
1797                    tranType = TLB::S1E0Tran;
1798                    mode     = BaseTLB::Read;
1799                    break;
1800                  case MISCREG_AT_S1E0W_Xt:
1801                    flags    = TLB::MustBeOne | TLB::UserMode;
1802                    tranType = TLB::S1E0Tran;
1803                    mode     = BaseTLB::Write;
1804                    break;
1805                  case MISCREG_AT_S1E2R_Xt:
1806                    flags    = TLB::MustBeOne;
1807                    tranType = TLB::S1E2Tran;
1808                    mode     = BaseTLB::Read;
1809                    break;
1810                  case MISCREG_AT_S1E2W_Xt:
1811                    flags    = TLB::MustBeOne;
1812                    tranType = TLB::S1E2Tran;
1813                    mode     = BaseTLB::Write;
1814                    break;
1815                  case MISCREG_AT_S12E0R_Xt:
1816                    flags    = TLB::MustBeOne | TLB::UserMode;
1817                    tranType = TLB::S12E0Tran;
1818                    mode     = BaseTLB::Read;
1819                    break;
1820                  case MISCREG_AT_S12E0W_Xt:
1821                    flags    = TLB::MustBeOne | TLB::UserMode;
1822                    tranType = TLB::S12E0Tran;
1823                    mode     = BaseTLB::Write;
1824                    break;
1825                  case MISCREG_AT_S12E1R_Xt:
1826                    flags    = TLB::MustBeOne;
1827                    tranType = TLB::S12E1Tran;
1828                    mode     = BaseTLB::Read;
1829                    break;
1830                  case MISCREG_AT_S12E1W_Xt:
1831                    flags    = TLB::MustBeOne;
1832                    tranType = TLB::S12E1Tran;
1833                    mode     = BaseTLB::Write;
1834                    break;
1835                  case MISCREG_AT_S1E3R_Xt:
1836                    flags    = TLB::MustBeOne;
1837                    tranType = TLB::S1E3Tran;
1838                    mode     = BaseTLB::Read;
1839                    break;
1840                  case MISCREG_AT_S1E3W_Xt:
1841                    flags    = TLB::MustBeOne;
1842                    tranType = TLB::S1E3Tran;
1843                    mode     = BaseTLB::Write;
1844                    break;
1845                }
1846                // If we're in timing mode then doing the translation in
1847                // functional mode then we're slightly distorting performance
1848                // results obtained from simulations. The translation should be
1849                // done in the same mode the core is running in. NOTE: This
1850                // can't be an atomic translation because that causes problems
1851                // with unexpected atomic snoop requests.
1852                warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1853                req->setVirt(0, val, 0, flags,  Request::funcMasterId,
1854                               tc->pcState().pc());
1855                req->setContext(tc->contextId());
1856                fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
1857                                                           tranType);
1858
1859                MiscReg newVal;
1860                if (fault == NoFault) {
1861                    Addr paddr = req->getPaddr();
1862                    uint64_t attr = getDTBPtr(tc)->getAttr();
1863                    uint64_t attr1 = attr >> 56;
1864                    if (!attr1 || attr1 ==0x44) {
1865                        attr |= 0x100;
1866                        attr &= ~ uint64_t(0x80);
1867                    }
1868                    newVal = (paddr & mask(47, 12)) | attr;
1869                    DPRINTF(MiscRegs,
1870                          "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1871                          val, newVal);
1872                } else {
1873                    ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1874                    // Set fault bit and FSR
1875                    FSR fsr = armFault->getFsr(tc);
1876
1877                    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1878                    if (cpsr.width) { // AArch32
1879                        newVal = ((fsr >> 9) & 1) << 11;
1880                        // rearrange fault status
1881                        newVal |= ((fsr >>  0) & 0x3f) << 1;
1882                        newVal |= 0x1; // F bit
1883                        newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1884                        newVal |= armFault->isStage2() ? 0x200 : 0;
1885                    } else { // AArch64
1886                        newVal = 1; // F bit
1887                        newVal |= fsr << 1; // FST
1888                        // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
1889                        newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
1890                        newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
1891                        newVal |= 1 << 11; // RES1
1892                    }
1893                    DPRINTF(MiscRegs,
1894                            "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1895                            val, fsr, newVal);
1896                }
1897                delete req;
1898                setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1899                return;
1900            }
1901          case MISCREG_SPSR_EL3:
1902          case MISCREG_SPSR_EL2:
1903          case MISCREG_SPSR_EL1:
1904            // Force bits 23:21 to 0
1905            newVal = val & ~(0x7 << 21);
1906            break;
1907          case MISCREG_L2CTLR:
1908            warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1909                 miscRegName[misc_reg], uint32_t(val));
1910            break;
1911
1912          // Generic Timer registers
1913          case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
1914          case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
1915          case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
1916          case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
1917            getGenericTimer(tc).setMiscReg(misc_reg, newVal);
1918            break;
1919        }
1920    }
1921    setMiscRegNoEffect(misc_reg, newVal);
1922}
1923
1924void
1925ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint16_t asid,
1926            bool secure_lookup, uint8_t target_el)
1927{
1928    if (!haveLargeAsid64)
1929        asid &= mask(8);
1930    Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1931    System *sys = tc->getSystemPtr();
1932    for (int x = 0; x < sys->numContexts(); x++) {
1933        ThreadContext *oc = sys->getThreadContext(x);
1934        getITBPtr(oc)->flushMvaAsid(va, asid,
1935                                      secure_lookup, target_el);
1936        getDTBPtr(oc)->flushMvaAsid(va, asid,
1937                                      secure_lookup, target_el);
1938
1939        CheckerCPU *checker = oc->getCheckerCpuPtr();
1940        if (checker) {
1941            getITBPtr(checker)->flushMvaAsid(
1942                va, asid, secure_lookup, target_el);
1943            getDTBPtr(checker)->flushMvaAsid(
1944                va, asid, secure_lookup, target_el);
1945        }
1946    }
1947}
1948
1949void
1950ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
1951{
1952    System *sys = tc->getSystemPtr();
1953    for (int x = 0; x < sys->numContexts(); x++) {
1954        ThreadContext *oc = sys->getThreadContext(x);
1955        getITBPtr(oc)->flushAllSecurity(secure_lookup, target_el);
1956        getDTBPtr(oc)->flushAllSecurity(secure_lookup, target_el);
1957
1958        // If CheckerCPU is connected, need to notify it of a flush
1959        CheckerCPU *checker = oc->getCheckerCpuPtr();
1960        if (checker) {
1961            getITBPtr(checker)->flushAllSecurity(secure_lookup,
1962                                                   target_el);
1963            getDTBPtr(checker)->flushAllSecurity(secure_lookup,
1964                                                   target_el);
1965        }
1966    }
1967}
1968
1969void
1970ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
1971{
1972    System *sys = tc->getSystemPtr();
1973    for (int x = 0; x < sys->numContexts(); x++) {
1974      ThreadContext *oc = sys->getThreadContext(x);
1975      getITBPtr(oc)->flushAllNs(hyp, target_el);
1976      getDTBPtr(oc)->flushAllNs(hyp, target_el);
1977
1978      CheckerCPU *checker = oc->getCheckerCpuPtr();
1979      if (checker) {
1980          getITBPtr(checker)->flushAllNs(hyp, target_el);
1981          getDTBPtr(checker)->flushAllNs(hyp, target_el);
1982      }
1983    }
1984}
1985
1986void
1987ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
1988             uint8_t target_el)
1989{
1990    System *sys = tc->getSystemPtr();
1991    for (int x = 0; x < sys->numContexts(); x++) {
1992        ThreadContext *oc = sys->getThreadContext(x);
1993        getITBPtr(oc)->flushMva(mbits(newVal, 31,12),
1994            secure_lookup, hyp, target_el);
1995        getDTBPtr(oc)->flushMva(mbits(newVal, 31,12),
1996            secure_lookup, hyp, target_el);
1997
1998        CheckerCPU *checker = oc->getCheckerCpuPtr();
1999        if (checker) {
2000            getITBPtr(checker)->flushMva(mbits(newVal, 31,12),
2001                secure_lookup, hyp, target_el);
2002            getDTBPtr(checker)->flushMva(mbits(newVal, 31,12),
2003                secure_lookup, hyp, target_el);
2004        }
2005    }
2006}
2007
2008BaseISADevice &
2009ISA::getGenericTimer(ThreadContext *tc)
2010{
2011    // We only need to create an ISA interface the first time we try
2012    // to access the timer.
2013    if (timer)
2014        return *timer.get();
2015
2016    assert(system);
2017    GenericTimer *generic_timer(system->getGenericTimer());
2018    if (!generic_timer) {
2019        panic("Trying to get a generic timer from a system that hasn't "
2020              "been configured to use a generic timer.\n");
2021    }
2022
2023    timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2024    return *timer.get();
2025}
2026
2027}
2028
2029ArmISA::ISA *
2030ArmISAParams::create()
2031{
2032    return new ArmISA::ISA(this);
2033}
2034