isa.cc revision 11768:5b80960dcf08
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 *          Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "cpu/checker/cpu.hh"
45#include "cpu/base.hh"
46#include "debug/Arm.hh"
47#include "debug/MiscRegs.hh"
48#include "dev/arm/generic_timer.hh"
49#include "params/ArmISA.hh"
50#include "sim/faults.hh"
51#include "sim/stat_control.hh"
52#include "sim/system.hh"
53
54namespace ArmISA
55{
56
57
58/**
59 * Some registers alias with others, and therefore need to be translated.
60 * For each entry:
61 * The first value is the misc register that is to be looked up
62 * the second value is the lower part of the translation
63 * the third the upper part
64 * aligned with reference documentation ARM DDI 0487A.i pp 1540-1543
65 */
66const struct ISA::MiscRegInitializerEntry
67    ISA::MiscRegSwitch[] = {
68    {MISCREG_ACTLR_EL1, {MISCREG_ACTLR_NS, 0}},
69    {MISCREG_AFSR0_EL1, {MISCREG_ADFSR_NS, 0}},
70    {MISCREG_AFSR1_EL1, {MISCREG_AIFSR_NS, 0}},
71    {MISCREG_AMAIR_EL1, {MISCREG_AMAIR0_NS, MISCREG_AMAIR1_NS}},
72    {MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR_NS, 0}},
73    {MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}},
74    {MISCREG_CSSELR_EL1, {MISCREG_CSSELR_NS, 0}},
75    {MISCREG_DACR32_EL2, {MISCREG_DACR_NS, 0}},
76    {MISCREG_FAR_EL1, {MISCREG_DFAR_NS, MISCREG_IFAR_NS}},
77    // ESR_EL1 -> DFSR
78    {MISCREG_HACR_EL2, {MISCREG_HACR, 0}},
79    {MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}},
80    {MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}},
81    {MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}},
82    {MISCREG_AMAIR_EL2, {MISCREG_HAMAIR0, MISCREG_HAMAIR1}},
83    {MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}},
84    {MISCREG_HCR_EL2, {MISCREG_HCR, 0 /*MISCREG_HCR2*/}},
85    {MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}},
86    {MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}},
87    {MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}},
88    {MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}},
89    {MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}},
90    {MISCREG_ESR_EL2, {MISCREG_HSR, 0}},
91    {MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}},
92    {MISCREG_TCR_EL2, {MISCREG_HTCR, 0}},
93    {MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}},
94    {MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}},
95    {MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}},
96    {MISCREG_IFSR32_EL2, {MISCREG_IFSR_NS, 0}},
97    {MISCREG_MAIR_EL1, {MISCREG_PRRR_NS, MISCREG_NMRR_NS}},
98    {MISCREG_PAR_EL1, {MISCREG_PAR_NS, 0}},
99    // RMR_EL1 -> RMR
100    // RMR_EL2 -> HRMR
101    {MISCREG_SCTLR_EL1, {MISCREG_SCTLR_NS, 0}},
102    {MISCREG_SDER32_EL3, {MISCREG_SDER, 0}},
103    {MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW_NS, 0}},
104    {MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO_NS, 0}},
105    {MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW_NS, 0}},
106    {MISCREG_TCR_EL1, {MISCREG_TTBCR_NS, 0}},
107    {MISCREG_TTBR0_EL1, {MISCREG_TTBR0_NS, 0}},
108    {MISCREG_TTBR1_EL1, {MISCREG_TTBR1_NS, 0}},
109    {MISCREG_VBAR_EL1, {MISCREG_VBAR_NS, 0}},
110    {MISCREG_VMPIDR_EL2, {MISCREG_VMPIDR, 0}},
111    {MISCREG_VPIDR_EL2, {MISCREG_VPIDR, 0}},
112    {MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}},
113    {MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}},
114    {MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}},
115    {MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}},
116    {MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}},
117    {MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}}, /* 64b */
118    {MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}},
119    {MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}},
120    {MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL_NS, 0}},
121    {MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL_NS, 0}}, /* 64b */
122    {MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL_NS, 0}},
123    {MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}}, /* 64b */
124    {MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}},
125    {MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}}, /* 64b */
126    {MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}},
127    {MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}}, /* 64b */
128    {MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}}, /* 64b */
129    {MISCREG_DBGAUTHSTATUS_EL1, {MISCREG_DBGAUTHSTATUS, 0}},
130    {MISCREG_DBGBCR0_EL1, {MISCREG_DBGBCR0, 0}},
131    {MISCREG_DBGBCR1_EL1, {MISCREG_DBGBCR1, 0}},
132    {MISCREG_DBGBCR2_EL1, {MISCREG_DBGBCR2, 0}},
133    {MISCREG_DBGBCR3_EL1, {MISCREG_DBGBCR3, 0}},
134    {MISCREG_DBGBCR4_EL1, {MISCREG_DBGBCR4, 0}},
135    {MISCREG_DBGBCR5_EL1, {MISCREG_DBGBCR5, 0}},
136    {MISCREG_DBGBVR0_EL1, {MISCREG_DBGBVR0, 0 /* MISCREG_DBGBXVR0 */}},
137    {MISCREG_DBGBVR1_EL1, {MISCREG_DBGBVR1, 0 /* MISCREG_DBGBXVR1 */}},
138    {MISCREG_DBGBVR2_EL1, {MISCREG_DBGBVR2, 0 /* MISCREG_DBGBXVR2 */}},
139    {MISCREG_DBGBVR3_EL1, {MISCREG_DBGBVR3, 0 /* MISCREG_DBGBXVR3 */}},
140    {MISCREG_DBGBVR4_EL1, {MISCREG_DBGBVR4, MISCREG_DBGBXVR4}},
141    {MISCREG_DBGBVR5_EL1, {MISCREG_DBGBVR5, MISCREG_DBGBXVR5}},
142    {MISCREG_DBGCLAIMSET_EL1, {MISCREG_DBGCLAIMSET, 0}},
143    {MISCREG_DBGCLAIMCLR_EL1, {MISCREG_DBGCLAIMCLR, 0}},
144    // DBGDTR_EL0 -> DBGDTR{R or T}Xint
145    // DBGDTRRX_EL0 -> DBGDTRRXint
146    // DBGDTRTX_EL0 -> DBGDTRRXint
147    {MISCREG_DBGPRCR_EL1, {MISCREG_DBGPRCR, 0}},
148    {MISCREG_DBGVCR32_EL2, {MISCREG_DBGVCR, 0}},
149    {MISCREG_DBGWCR0_EL1, {MISCREG_DBGWCR0, 0}},
150    {MISCREG_DBGWCR1_EL1, {MISCREG_DBGWCR1, 0}},
151    {MISCREG_DBGWCR2_EL1, {MISCREG_DBGWCR2, 0}},
152    {MISCREG_DBGWCR3_EL1, {MISCREG_DBGWCR3, 0}},
153    {MISCREG_DBGWVR0_EL1, {MISCREG_DBGWVR0, 0}},
154    {MISCREG_DBGWVR1_EL1, {MISCREG_DBGWVR1, 0}},
155    {MISCREG_DBGWVR2_EL1, {MISCREG_DBGWVR2, 0}},
156    {MISCREG_DBGWVR3_EL1, {MISCREG_DBGWVR3, 0}},
157    {MISCREG_ID_DFR0_EL1, {MISCREG_ID_DFR0, 0}},
158    {MISCREG_MDCCSR_EL0, {MISCREG_DBGDSCRint, 0}},
159    {MISCREG_MDRAR_EL1, {MISCREG_DBGDRAR, 0}},
160    {MISCREG_MDSCR_EL1, {MISCREG_DBGDSCRext, 0}},
161    {MISCREG_OSDLR_EL1, {MISCREG_DBGOSDLR, 0}},
162    {MISCREG_OSDTRRX_EL1, {MISCREG_DBGDTRRXext, 0}},
163    {MISCREG_OSDTRTX_EL1, {MISCREG_DBGDTRTXext, 0}},
164    {MISCREG_OSECCR_EL1, {MISCREG_DBGOSECCR, 0}},
165    {MISCREG_OSLAR_EL1, {MISCREG_DBGOSLAR, 0}},
166    {MISCREG_OSLSR_EL1, {MISCREG_DBGOSLSR, 0}},
167    {MISCREG_PMCCNTR_EL0, {MISCREG_PMCCNTR, 0}},
168    {MISCREG_PMCEID0_EL0, {MISCREG_PMCEID0, 0}},
169    {MISCREG_PMCEID1_EL0, {MISCREG_PMCEID1, 0}},
170    {MISCREG_PMCNTENSET_EL0, {MISCREG_PMCNTENSET, 0}},
171    {MISCREG_PMCNTENCLR_EL0, {MISCREG_PMCNTENCLR, 0}},
172    {MISCREG_PMCR_EL0, {MISCREG_PMCR, 0}},
173/*  {MISCREG_PMEVCNTR0_EL0, {MISCREG_PMEVCNTR0, 0}},
174    {MISCREG_PMEVCNTR1_EL0, {MISCREG_PMEVCNTR1, 0}},
175    {MISCREG_PMEVCNTR2_EL0, {MISCREG_PMEVCNTR2, 0}},
176    {MISCREG_PMEVCNTR3_EL0, {MISCREG_PMEVCNTR3, 0}},
177    {MISCREG_PMEVCNTR4_EL0, {MISCREG_PMEVCNTR4, 0}},
178    {MISCREG_PMEVCNTR5_EL0, {MISCREG_PMEVCNTR5, 0}},
179    {MISCREG_PMEVTYPER0_EL0, {MISCREG_PMEVTYPER0, 0}},
180    {MISCREG_PMEVTYPER1_EL0, {MISCREG_PMEVTYPER1, 0}},
181    {MISCREG_PMEVTYPER2_EL0, {MISCREG_PMEVTYPER2, 0}},
182    {MISCREG_PMEVTYPER3_EL0, {MISCREG_PMEVTYPER3, 0}},
183    {MISCREG_PMEVTYPER4_EL0, {MISCREG_PMEVTYPER4, 0}},
184    {MISCREG_PMEVTYPER5_EL0, {MISCREG_PMEVTYPER5, 0}}, */
185    {MISCREG_PMINTENCLR_EL1, {MISCREG_PMINTENCLR, 0}},
186    {MISCREG_PMINTENSET_EL1, {MISCREG_PMINTENSET, 0}},
187//  {MISCREG_PMOVSCLR_EL0, {MISCREG_PMOVSCLR, 0}},
188    {MISCREG_PMOVSSET_EL0, {MISCREG_PMOVSSET, 0}},
189    {MISCREG_PMSELR_EL0, {MISCREG_PMSELR, 0}},
190    {MISCREG_PMSWINC_EL0, {MISCREG_PMSWINC, 0}},
191    {MISCREG_PMUSERENR_EL0, {MISCREG_PMUSERENR, 0}},
192    {MISCREG_PMXEVCNTR_EL0, {MISCREG_PMXEVCNTR, 0}},
193    {MISCREG_PMXEVTYPER_EL0, {MISCREG_PMXEVTYPER, 0}},
194
195    // from ARM DDI 0487A.i, template text
196    // "AArch64 System register ___ can be mapped to
197    //  AArch32 System register ___, but this is not
198    //  architecturally mandated."
199    {MISCREG_SCR_EL3, {MISCREG_SCR, 0}}, // D7-2005
200    // MDCR_EL3 -> SDCR, D7-2108 (the latter is unimpl. in gem5)
201    {MISCREG_SPSR_EL1, {MISCREG_SPSR_SVC, 0}}, // C5.2.17 SPSR_EL1
202    {MISCREG_SPSR_EL2, {MISCREG_SPSR_HYP, 0}}, // C5.2.18 SPSR_EL2
203    {MISCREG_SPSR_EL3, {MISCREG_SPSR_MON, 0}}, // C5.2.19 SPSR_EL3
204};
205
206
207ISA::ISA(Params *p)
208    : SimObject(p),
209      system(NULL),
210      _decoderFlavour(p->decoderFlavour),
211      pmu(p->pmu),
212      lookUpMiscReg(NUM_MISCREGS, {0,0})
213{
214    SCTLR sctlr;
215    sctlr = 0;
216    miscRegs[MISCREG_SCTLR_RST] = sctlr;
217
218    // Hook up a dummy device if we haven't been configured with a
219    // real PMU. By using a dummy device, we don't need to check that
220    // the PMU exist every time we try to access a PMU register.
221    if (!pmu)
222        pmu = &dummyDevice;
223
224    // Give all ISA devices a pointer to this ISA
225    pmu->setISA(this);
226
227    system = dynamic_cast<ArmSystem *>(p->system);
228
229    // Cache system-level properties
230    if (FullSystem && system) {
231        haveSecurity = system->haveSecurity();
232        haveLPAE = system->haveLPAE();
233        haveVirtualization = system->haveVirtualization();
234        haveLargeAsid64 = system->haveLargeAsid64();
235        physAddrRange64 = system->physAddrRange64();
236    } else {
237        haveSecurity = haveLPAE = haveVirtualization = false;
238        haveLargeAsid64 = false;
239        physAddrRange64 = 32;  // dummy value
240    }
241
242    /** Fill in the miscReg translation table */
243    for (auto sw : MiscRegSwitch) {
244        lookUpMiscReg[sw.index] = sw.entry;
245    }
246
247    preUnflattenMiscReg();
248
249    clear();
250}
251
252const ArmISAParams *
253ISA::params() const
254{
255    return dynamic_cast<const Params *>(_params);
256}
257
258void
259ISA::clear()
260{
261    const Params *p(params());
262
263    SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
264    memset(miscRegs, 0, sizeof(miscRegs));
265
266    // Initialize configurable default values
267    miscRegs[MISCREG_MIDR] = p->midr;
268    miscRegs[MISCREG_MIDR_EL1] = p->midr;
269    miscRegs[MISCREG_VPIDR] = p->midr;
270
271    if (FullSystem && system->highestELIs64()) {
272        // Initialize AArch64 state
273        clear64(p);
274        return;
275    }
276
277    // Initialize AArch32 state...
278
279    CPSR cpsr = 0;
280    cpsr.mode = MODE_USER;
281    miscRegs[MISCREG_CPSR] = cpsr;
282    updateRegMap(cpsr);
283
284    SCTLR sctlr = 0;
285    sctlr.te = (bool) sctlr_rst.te;
286    sctlr.nmfi = (bool) sctlr_rst.nmfi;
287    sctlr.v = (bool) sctlr_rst.v;
288    sctlr.u = 1;
289    sctlr.xp = 1;
290    sctlr.rao2 = 1;
291    sctlr.rao3 = 1;
292    sctlr.rao4 = 0xf;  // SCTLR[6:3]
293    sctlr.uci = 1;
294    sctlr.dze = 1;
295    miscRegs[MISCREG_SCTLR_NS] = sctlr;
296    miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
297    miscRegs[MISCREG_HCPTR] = 0;
298
299    // Start with an event in the mailbox
300    miscRegs[MISCREG_SEV_MAILBOX] = 1;
301
302    // Separate Instruction and Data TLBs
303    miscRegs[MISCREG_TLBTR] = 1;
304
305    MVFR0 mvfr0 = 0;
306    mvfr0.advSimdRegisters = 2;
307    mvfr0.singlePrecision = 2;
308    mvfr0.doublePrecision = 2;
309    mvfr0.vfpExceptionTrapping = 0;
310    mvfr0.divide = 1;
311    mvfr0.squareRoot = 1;
312    mvfr0.shortVectors = 1;
313    mvfr0.roundingModes = 1;
314    miscRegs[MISCREG_MVFR0] = mvfr0;
315
316    MVFR1 mvfr1 = 0;
317    mvfr1.flushToZero = 1;
318    mvfr1.defaultNaN = 1;
319    mvfr1.advSimdLoadStore = 1;
320    mvfr1.advSimdInteger = 1;
321    mvfr1.advSimdSinglePrecision = 1;
322    mvfr1.advSimdHalfPrecision = 1;
323    mvfr1.vfpHalfPrecision = 1;
324    miscRegs[MISCREG_MVFR1] = mvfr1;
325
326    // Reset values of PRRR and NMRR are implementation dependent
327
328    // @todo: PRRR and NMRR in secure state?
329    miscRegs[MISCREG_PRRR_NS] =
330        (1 << 19) | // 19
331        (0 << 18) | // 18
332        (0 << 17) | // 17
333        (1 << 16) | // 16
334        (2 << 14) | // 15:14
335        (0 << 12) | // 13:12
336        (2 << 10) | // 11:10
337        (2 << 8)  | // 9:8
338        (2 << 6)  | // 7:6
339        (2 << 4)  | // 5:4
340        (1 << 2)  | // 3:2
341        0;          // 1:0
342    miscRegs[MISCREG_NMRR_NS] =
343        (1 << 30) | // 31:30
344        (0 << 26) | // 27:26
345        (0 << 24) | // 25:24
346        (3 << 22) | // 23:22
347        (2 << 20) | // 21:20
348        (0 << 18) | // 19:18
349        (0 << 16) | // 17:16
350        (1 << 14) | // 15:14
351        (0 << 12) | // 13:12
352        (2 << 10) | // 11:10
353        (0 << 8)  | // 9:8
354        (3 << 6)  | // 7:6
355        (2 << 4)  | // 5:4
356        (0 << 2)  | // 3:2
357        0;          // 1:0
358
359    miscRegs[MISCREG_CPACR] = 0;
360
361
362    miscRegs[MISCREG_ID_PFR0] = p->id_pfr0;
363    miscRegs[MISCREG_ID_PFR1] = p->id_pfr1;
364
365    miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
366    miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
367    miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
368    miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
369
370    miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
371    miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
372    miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
373    miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
374    miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
375    miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
376
377    miscRegs[MISCREG_FPSID] = p->fpsid;
378
379    if (haveLPAE) {
380        TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
381        ttbcr.eae = 0;
382        miscRegs[MISCREG_TTBCR_NS] = ttbcr;
383        // Enforce consistency with system-level settings
384        miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
385    }
386
387    if (haveSecurity) {
388        miscRegs[MISCREG_SCTLR_S] = sctlr;
389        miscRegs[MISCREG_SCR] = 0;
390        miscRegs[MISCREG_VBAR_S] = 0;
391    } else {
392        // we're always non-secure
393        miscRegs[MISCREG_SCR] = 1;
394    }
395
396    //XXX We need to initialize the rest of the state.
397}
398
399void
400ISA::clear64(const ArmISAParams *p)
401{
402    CPSR cpsr = 0;
403    Addr rvbar = system->resetAddr64();
404    switch (system->highestEL()) {
405        // Set initial EL to highest implemented EL using associated stack
406        // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
407        // value
408      case EL3:
409        cpsr.mode = MODE_EL3H;
410        miscRegs[MISCREG_RVBAR_EL3] = rvbar;
411        break;
412      case EL2:
413        cpsr.mode = MODE_EL2H;
414        miscRegs[MISCREG_RVBAR_EL2] = rvbar;
415        break;
416      case EL1:
417        cpsr.mode = MODE_EL1H;
418        miscRegs[MISCREG_RVBAR_EL1] = rvbar;
419        break;
420      default:
421        panic("Invalid highest implemented exception level");
422        break;
423    }
424
425    // Initialize rest of CPSR
426    cpsr.daif = 0xf;  // Mask all interrupts
427    cpsr.ss = 0;
428    cpsr.il = 0;
429    miscRegs[MISCREG_CPSR] = cpsr;
430    updateRegMap(cpsr);
431
432    // Initialize other control registers
433    miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
434    if (haveSecurity) {
435        miscRegs[MISCREG_SCTLR_EL3] = 0x30c50870;
436        miscRegs[MISCREG_SCR_EL3]   = 0x00000030;  // RES1 fields
437    } else if (haveVirtualization) {
438        miscRegs[MISCREG_SCTLR_EL2] = 0x30c50870;
439    } else {
440        miscRegs[MISCREG_SCTLR_EL1] = 0x30c50870;
441        // Always non-secure
442        miscRegs[MISCREG_SCR_EL3] = 1;
443    }
444
445    // Initialize configurable id registers
446    miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
447    miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
448    miscRegs[MISCREG_ID_AA64DFR0_EL1] =
449        (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
450        (p->pmu ?             0x0000000000000100ULL : 0); // Enable PMUv3
451
452    miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
453    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
454    miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
455    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
456    miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
457    miscRegs[MISCREG_ID_AA64PFR0_EL1] = p->id_aa64pfr0_el1;
458    miscRegs[MISCREG_ID_AA64PFR1_EL1] = p->id_aa64pfr1_el1;
459
460    miscRegs[MISCREG_ID_DFR0_EL1] =
461        (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
462
463    miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
464
465    // Enforce consistency with system-level settings...
466
467    // EL3
468    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
469        miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
470        haveSecurity ? 0x2 : 0x0);
471    // EL2
472    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
473        miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
474        haveVirtualization ? 0x2 : 0x0);
475    // Large ASID support
476    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
477        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
478        haveLargeAsid64 ? 0x2 : 0x0);
479    // Physical address size
480    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
481        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
482        encodePhysAddrRange64(physAddrRange64));
483}
484
485MiscReg
486ISA::readMiscRegNoEffect(int misc_reg) const
487{
488    assert(misc_reg < NumMiscRegs);
489
490    int flat_idx = flattenMiscIndex(misc_reg);  // Note: indexes of AArch64
491                                                // registers are left unchanged
492    MiscReg val;
493
494    if (lookUpMiscReg[flat_idx].lower == 0 || flat_idx == MISCREG_SPSR
495            || flat_idx == MISCREG_SCTLR_EL1) {
496        if (flat_idx == MISCREG_SPSR)
497            flat_idx = flattenMiscIndex(MISCREG_SPSR);
498        if (flat_idx == MISCREG_SCTLR_EL1)
499            flat_idx = flattenMiscIndex(MISCREG_SCTLR);
500        val = miscRegs[flat_idx];
501    } else
502        if (lookUpMiscReg[flat_idx].upper > 0)
503            val = ((miscRegs[lookUpMiscReg[flat_idx].lower] & mask(32))
504                    | (miscRegs[lookUpMiscReg[flat_idx].upper] << 32));
505        else
506            val = miscRegs[lookUpMiscReg[flat_idx].lower];
507
508    return val;
509}
510
511
512MiscReg
513ISA::readMiscReg(int misc_reg, ThreadContext *tc)
514{
515    CPSR cpsr = 0;
516    PCState pc = 0;
517    SCR scr = 0;
518
519    if (misc_reg == MISCREG_CPSR) {
520        cpsr = miscRegs[misc_reg];
521        pc = tc->pcState();
522        cpsr.j = pc.jazelle() ? 1 : 0;
523        cpsr.t = pc.thumb() ? 1 : 0;
524        return cpsr;
525    }
526
527#ifndef NDEBUG
528    if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
529        if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
530            warn("Unimplemented system register %s read.\n",
531                 miscRegName[misc_reg]);
532        else
533            panic("Unimplemented system register %s read.\n",
534                  miscRegName[misc_reg]);
535    }
536#endif
537
538    switch (unflattenMiscReg(misc_reg)) {
539      case MISCREG_HCR:
540        {
541            if (!haveVirtualization)
542                return 0;
543            else
544                return readMiscRegNoEffect(MISCREG_HCR);
545        }
546      case MISCREG_CPACR:
547        {
548            const uint32_t ones = (uint32_t)(-1);
549            CPACR cpacrMask = 0;
550            // Only cp10, cp11, and ase are implemented, nothing else should
551            // be readable? (straight copy from the write code)
552            cpacrMask.cp10 = ones;
553            cpacrMask.cp11 = ones;
554            cpacrMask.asedis = ones;
555
556            // Security Extensions may limit the readability of CPACR
557            if (haveSecurity) {
558                scr = readMiscRegNoEffect(MISCREG_SCR);
559                cpsr = readMiscRegNoEffect(MISCREG_CPSR);
560                if (scr.ns && (cpsr.mode != MODE_MON)) {
561                    NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
562                    // NB: Skipping the full loop, here
563                    if (!nsacr.cp10) cpacrMask.cp10 = 0;
564                    if (!nsacr.cp11) cpacrMask.cp11 = 0;
565                }
566            }
567            MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
568            val &= cpacrMask;
569            DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
570                    miscRegName[misc_reg], val);
571            return val;
572        }
573      case MISCREG_MPIDR:
574        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
575        scr  = readMiscRegNoEffect(MISCREG_SCR);
576        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
577            return getMPIDR(system, tc);
578        } else {
579            return readMiscReg(MISCREG_VMPIDR, tc);
580        }
581            break;
582      case MISCREG_MPIDR_EL1:
583        // @todo in the absence of v8 virtualization support just return MPIDR_EL1
584        return getMPIDR(system, tc) & 0xffffffff;
585      case MISCREG_VMPIDR:
586        // top bit defined as RES1
587        return readMiscRegNoEffect(misc_reg) | 0x80000000;
588      case MISCREG_ID_AFR0: // not implemented, so alias MIDR
589      case MISCREG_REVIDR:  // not implemented, so alias MIDR
590      case MISCREG_MIDR:
591        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
592        scr  = readMiscRegNoEffect(MISCREG_SCR);
593        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
594            return readMiscRegNoEffect(misc_reg);
595        } else {
596            return readMiscRegNoEffect(MISCREG_VPIDR);
597        }
598        break;
599      case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
600      case MISCREG_JMCR:  // Jazelle trivial implementation, RAZ/WI
601      case MISCREG_JIDR:  // Jazelle trivial implementation, RAZ/WI
602      case MISCREG_AIDR:  // AUX ID set to 0
603      case MISCREG_TCMTR: // No TCM's
604        return 0;
605
606      case MISCREG_CLIDR:
607        warn_once("The clidr register always reports 0 caches.\n");
608        warn_once("clidr LoUIS field of 0b001 to match current "
609                  "ARM implementations.\n");
610        return 0x00200000;
611      case MISCREG_CCSIDR:
612        warn_once("The ccsidr register isn't implemented and "
613                "always reads as 0.\n");
614        break;
615      case MISCREG_CTR:
616        {
617            //all caches have the same line size in gem5
618            //4 byte words in ARM
619            unsigned lineSizeWords =
620                tc->getSystemPtr()->cacheLineSize() / 4;
621            unsigned log2LineSizeWords = 0;
622
623            while (lineSizeWords >>= 1) {
624                ++log2LineSizeWords;
625            }
626
627            CTR ctr = 0;
628            //log2 of minimun i-cache line size (words)
629            ctr.iCacheLineSize = log2LineSizeWords;
630            //b11 - gem5 uses pipt
631            ctr.l1IndexPolicy = 0x3;
632            //log2 of minimum d-cache line size (words)
633            ctr.dCacheLineSize = log2LineSizeWords;
634            //log2 of max reservation size (words)
635            ctr.erg = log2LineSizeWords;
636            //log2 of max writeback size (words)
637            ctr.cwg = log2LineSizeWords;
638            //b100 - gem5 format is ARMv7
639            ctr.format = 0x4;
640
641            return ctr;
642        }
643      case MISCREG_ACTLR:
644        warn("Not doing anything for miscreg ACTLR\n");
645        break;
646
647      case MISCREG_PMXEVTYPER_PMCCFILTR:
648      case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
649      case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
650      case MISCREG_PMCR ... MISCREG_PMOVSSET:
651        return pmu->readMiscReg(misc_reg);
652
653      case MISCREG_CPSR_Q:
654        panic("shouldn't be reading this register seperately\n");
655      case MISCREG_FPSCR_QC:
656        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
657      case MISCREG_FPSCR_EXC:
658        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
659      case MISCREG_FPSR:
660        {
661            const uint32_t ones = (uint32_t)(-1);
662            FPSCR fpscrMask = 0;
663            fpscrMask.ioc = ones;
664            fpscrMask.dzc = ones;
665            fpscrMask.ofc = ones;
666            fpscrMask.ufc = ones;
667            fpscrMask.ixc = ones;
668            fpscrMask.idc = ones;
669            fpscrMask.qc = ones;
670            fpscrMask.v = ones;
671            fpscrMask.c = ones;
672            fpscrMask.z = ones;
673            fpscrMask.n = ones;
674            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
675        }
676      case MISCREG_FPCR:
677        {
678            const uint32_t ones = (uint32_t)(-1);
679            FPSCR fpscrMask  = 0;
680            fpscrMask.ioe = ones;
681            fpscrMask.dze = ones;
682            fpscrMask.ofe = ones;
683            fpscrMask.ufe = ones;
684            fpscrMask.ixe = ones;
685            fpscrMask.ide = ones;
686            fpscrMask.len    = ones;
687            fpscrMask.stride = ones;
688            fpscrMask.rMode  = ones;
689            fpscrMask.fz     = ones;
690            fpscrMask.dn     = ones;
691            fpscrMask.ahp    = ones;
692            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
693        }
694      case MISCREG_NZCV:
695        {
696            CPSR cpsr = 0;
697            cpsr.nz   = tc->readCCReg(CCREG_NZ);
698            cpsr.c    = tc->readCCReg(CCREG_C);
699            cpsr.v    = tc->readCCReg(CCREG_V);
700            return cpsr;
701        }
702      case MISCREG_DAIF:
703        {
704            CPSR cpsr = 0;
705            cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
706            return cpsr;
707        }
708      case MISCREG_SP_EL0:
709        {
710            return tc->readIntReg(INTREG_SP0);
711        }
712      case MISCREG_SP_EL1:
713        {
714            return tc->readIntReg(INTREG_SP1);
715        }
716      case MISCREG_SP_EL2:
717        {
718            return tc->readIntReg(INTREG_SP2);
719        }
720      case MISCREG_SPSEL:
721        {
722            return miscRegs[MISCREG_CPSR] & 0x1;
723        }
724      case MISCREG_CURRENTEL:
725        {
726            return miscRegs[MISCREG_CPSR] & 0xc;
727        }
728      case MISCREG_L2CTLR:
729        {
730            // mostly unimplemented, just set NumCPUs field from sim and return
731            L2CTLR l2ctlr = 0;
732            // b00:1CPU to b11:4CPUs
733            l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
734            return l2ctlr;
735        }
736      case MISCREG_DBGDIDR:
737        /* For now just implement the version number.
738         * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
739         */
740        return 0x5 << 16;
741      case MISCREG_DBGDSCRint:
742        return 0;
743      case MISCREG_ISR:
744        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
745            readMiscRegNoEffect(MISCREG_HCR),
746            readMiscRegNoEffect(MISCREG_CPSR),
747            readMiscRegNoEffect(MISCREG_SCR));
748      case MISCREG_ISR_EL1:
749        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
750            readMiscRegNoEffect(MISCREG_HCR_EL2),
751            readMiscRegNoEffect(MISCREG_CPSR),
752            readMiscRegNoEffect(MISCREG_SCR_EL3));
753      case MISCREG_DCZID_EL0:
754        return 0x04;  // DC ZVA clear 64-byte chunks
755      case MISCREG_HCPTR:
756        {
757            MiscReg val = readMiscRegNoEffect(misc_reg);
758            // The trap bit associated with CP14 is defined as RAZ
759            val &= ~(1 << 14);
760            // If a CP bit in NSACR is 0 then the corresponding bit in
761            // HCPTR is RAO/WI
762            bool secure_lookup = haveSecurity &&
763                inSecureState(readMiscRegNoEffect(MISCREG_SCR),
764                              readMiscRegNoEffect(MISCREG_CPSR));
765            if (!secure_lookup) {
766                MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
767                val |= (mask ^ 0x7FFF) & 0xBFFF;
768            }
769            // Set the bits for unimplemented coprocessors to RAO/WI
770            val |= 0x33FF;
771            return (val);
772        }
773      case MISCREG_HDFAR: // alias for secure DFAR
774        return readMiscRegNoEffect(MISCREG_DFAR_S);
775      case MISCREG_HIFAR: // alias for secure IFAR
776        return readMiscRegNoEffect(MISCREG_IFAR_S);
777      case MISCREG_HVBAR: // bottom bits reserved
778        return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
779      case MISCREG_SCTLR: // Some bits hardwired
780        // The FI field (bit 21) is common between S/NS versions of the register
781        return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21))  |
782               (readMiscRegNoEffect(misc_reg)        & 0x72DD39FF) | 0x00C00818; // V8 SCTLR
783      case MISCREG_SCTLR_EL1:
784        // The FI field (bit 21) is common between S/NS versions of the register
785        return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21))  |
786               (readMiscRegNoEffect(misc_reg)        & 0x37DDDBFF) | 0x30D00800; // V8 SCTLR_EL1
787      case MISCREG_SCTLR_EL3:
788        // The FI field (bit 21) is common between S/NS versions of the register
789        return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21))  |
790               (readMiscRegNoEffect(misc_reg)        & 0x32CD183F) | 0x30C50830; // V8 SCTLR_EL3
791      case MISCREG_HSCTLR: // FI comes from SCTLR
792        {
793            uint32_t mask = 1 << 27;
794            return (readMiscRegNoEffect(MISCREG_HSCTLR) & ~mask) |
795                (readMiscRegNoEffect(MISCREG_SCTLR)  &  mask);
796        }
797
798      // Generic Timer registers
799      case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
800      case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
801      case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
802      case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
803        return getGenericTimer(tc).readMiscReg(misc_reg);
804
805      default:
806        break;
807
808    }
809    return readMiscRegNoEffect(misc_reg);
810}
811
812void
813ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
814{
815    assert(misc_reg < NumMiscRegs);
816
817    int flat_idx = flattenMiscIndex(misc_reg);  // Note: indexes of AArch64
818                                                // registers are left unchanged
819
820    int flat_idx2 = lookUpMiscReg[flat_idx].upper;
821
822    if (flat_idx2 > 0) {
823        miscRegs[lookUpMiscReg[flat_idx].lower] = bits(val, 31, 0);
824        miscRegs[flat_idx2] = bits(val, 63, 32);
825        DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
826                misc_reg, flat_idx, flat_idx2, val);
827    } else {
828        if (flat_idx == MISCREG_SPSR)
829            flat_idx = flattenMiscIndex(MISCREG_SPSR);
830        else if (flat_idx == MISCREG_SCTLR_EL1)
831            flat_idx = flattenMiscIndex(MISCREG_SCTLR);
832        else
833            flat_idx = (lookUpMiscReg[flat_idx].lower > 0) ?
834                       lookUpMiscReg[flat_idx].lower : flat_idx;
835        miscRegs[flat_idx] = val;
836        DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
837                misc_reg, flat_idx, val);
838    }
839}
840
841void
842ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
843{
844
845    MiscReg newVal = val;
846    int x;
847    bool secure_lookup;
848    bool hyp;
849    System *sys;
850    ThreadContext *oc;
851    uint8_t target_el;
852    uint16_t asid;
853    SCR scr;
854
855    if (misc_reg == MISCREG_CPSR) {
856        updateRegMap(val);
857
858
859        CPSR old_cpsr = miscRegs[MISCREG_CPSR];
860        int old_mode = old_cpsr.mode;
861        CPSR cpsr = val;
862        if (old_mode != cpsr.mode) {
863            tc->getITBPtr()->invalidateMiscReg();
864            tc->getDTBPtr()->invalidateMiscReg();
865        }
866
867        DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
868                miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
869        PCState pc = tc->pcState();
870        pc.nextThumb(cpsr.t);
871        pc.nextJazelle(cpsr.j);
872
873        // Follow slightly different semantics if a CheckerCPU object
874        // is connected
875        CheckerCPU *checker = tc->getCheckerCpuPtr();
876        if (checker) {
877            tc->pcStateNoRecord(pc);
878        } else {
879            tc->pcState(pc);
880        }
881    } else {
882#ifndef NDEBUG
883        if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
884            if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
885                warn("Unimplemented system register %s write with %#x.\n",
886                    miscRegName[misc_reg], val);
887            else
888                panic("Unimplemented system register %s write with %#x.\n",
889                    miscRegName[misc_reg], val);
890        }
891#endif
892        switch (unflattenMiscReg(misc_reg)) {
893          case MISCREG_CPACR:
894            {
895
896                const uint32_t ones = (uint32_t)(-1);
897                CPACR cpacrMask = 0;
898                // Only cp10, cp11, and ase are implemented, nothing else should
899                // be writable
900                cpacrMask.cp10 = ones;
901                cpacrMask.cp11 = ones;
902                cpacrMask.asedis = ones;
903
904                // Security Extensions may limit the writability of CPACR
905                if (haveSecurity) {
906                    scr = readMiscRegNoEffect(MISCREG_SCR);
907                    CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
908                    if (scr.ns && (cpsr.mode != MODE_MON)) {
909                        NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
910                        // NB: Skipping the full loop, here
911                        if (!nsacr.cp10) cpacrMask.cp10 = 0;
912                        if (!nsacr.cp11) cpacrMask.cp11 = 0;
913                    }
914                }
915
916                MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
917                newVal &= cpacrMask;
918                newVal |= old_val & ~cpacrMask;
919                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
920                        miscRegName[misc_reg], newVal);
921            }
922            break;
923          case MISCREG_CPACR_EL1:
924            {
925                const uint32_t ones = (uint32_t)(-1);
926                CPACR cpacrMask = 0;
927                cpacrMask.tta = ones;
928                cpacrMask.fpen = ones;
929                newVal &= cpacrMask;
930                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
931                        miscRegName[misc_reg], newVal);
932            }
933            break;
934          case MISCREG_CPTR_EL2:
935            {
936                const uint32_t ones = (uint32_t)(-1);
937                CPTR cptrMask = 0;
938                cptrMask.tcpac = ones;
939                cptrMask.tta = ones;
940                cptrMask.tfp = ones;
941                newVal &= cptrMask;
942                cptrMask = 0;
943                cptrMask.res1_13_12_el2 = ones;
944                cptrMask.res1_9_0_el2 = ones;
945                newVal |= cptrMask;
946                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
947                        miscRegName[misc_reg], newVal);
948            }
949            break;
950          case MISCREG_CPTR_EL3:
951            {
952                const uint32_t ones = (uint32_t)(-1);
953                CPTR cptrMask = 0;
954                cptrMask.tcpac = ones;
955                cptrMask.tta = ones;
956                cptrMask.tfp = ones;
957                newVal &= cptrMask;
958                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
959                        miscRegName[misc_reg], newVal);
960            }
961            break;
962          case MISCREG_CSSELR:
963            warn_once("The csselr register isn't implemented.\n");
964            return;
965
966          case MISCREG_DC_ZVA_Xt:
967            warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
968            return;
969
970          case MISCREG_FPSCR:
971            {
972                const uint32_t ones = (uint32_t)(-1);
973                FPSCR fpscrMask = 0;
974                fpscrMask.ioc = ones;
975                fpscrMask.dzc = ones;
976                fpscrMask.ofc = ones;
977                fpscrMask.ufc = ones;
978                fpscrMask.ixc = ones;
979                fpscrMask.idc = ones;
980                fpscrMask.ioe = ones;
981                fpscrMask.dze = ones;
982                fpscrMask.ofe = ones;
983                fpscrMask.ufe = ones;
984                fpscrMask.ixe = ones;
985                fpscrMask.ide = ones;
986                fpscrMask.len = ones;
987                fpscrMask.stride = ones;
988                fpscrMask.rMode = ones;
989                fpscrMask.fz = ones;
990                fpscrMask.dn = ones;
991                fpscrMask.ahp = ones;
992                fpscrMask.qc = ones;
993                fpscrMask.v = ones;
994                fpscrMask.c = ones;
995                fpscrMask.z = ones;
996                fpscrMask.n = ones;
997                newVal = (newVal & (uint32_t)fpscrMask) |
998                         (readMiscRegNoEffect(MISCREG_FPSCR) &
999                          ~(uint32_t)fpscrMask);
1000                tc->getDecoderPtr()->setContext(newVal);
1001            }
1002            break;
1003          case MISCREG_FPSR:
1004            {
1005                const uint32_t ones = (uint32_t)(-1);
1006                FPSCR fpscrMask = 0;
1007                fpscrMask.ioc = ones;
1008                fpscrMask.dzc = ones;
1009                fpscrMask.ofc = ones;
1010                fpscrMask.ufc = ones;
1011                fpscrMask.ixc = ones;
1012                fpscrMask.idc = ones;
1013                fpscrMask.qc = ones;
1014                fpscrMask.v = ones;
1015                fpscrMask.c = ones;
1016                fpscrMask.z = ones;
1017                fpscrMask.n = ones;
1018                newVal = (newVal & (uint32_t)fpscrMask) |
1019                         (readMiscRegNoEffect(MISCREG_FPSCR) &
1020                          ~(uint32_t)fpscrMask);
1021                misc_reg = MISCREG_FPSCR;
1022            }
1023            break;
1024          case MISCREG_FPCR:
1025            {
1026                const uint32_t ones = (uint32_t)(-1);
1027                FPSCR fpscrMask  = 0;
1028                fpscrMask.ioe = ones;
1029                fpscrMask.dze = ones;
1030                fpscrMask.ofe = ones;
1031                fpscrMask.ufe = ones;
1032                fpscrMask.ixe = ones;
1033                fpscrMask.ide = ones;
1034                fpscrMask.len    = ones;
1035                fpscrMask.stride = ones;
1036                fpscrMask.rMode  = ones;
1037                fpscrMask.fz     = ones;
1038                fpscrMask.dn     = ones;
1039                fpscrMask.ahp    = ones;
1040                newVal = (newVal & (uint32_t)fpscrMask) |
1041                         (readMiscRegNoEffect(MISCREG_FPSCR) &
1042                          ~(uint32_t)fpscrMask);
1043                misc_reg = MISCREG_FPSCR;
1044            }
1045            break;
1046          case MISCREG_CPSR_Q:
1047            {
1048                assert(!(newVal & ~CpsrMaskQ));
1049                newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
1050                misc_reg = MISCREG_CPSR;
1051            }
1052            break;
1053          case MISCREG_FPSCR_QC:
1054            {
1055                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1056                         (newVal & FpscrQcMask);
1057                misc_reg = MISCREG_FPSCR;
1058            }
1059            break;
1060          case MISCREG_FPSCR_EXC:
1061            {
1062                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1063                         (newVal & FpscrExcMask);
1064                misc_reg = MISCREG_FPSCR;
1065            }
1066            break;
1067          case MISCREG_FPEXC:
1068            {
1069                // vfpv3 architecture, section B.6.1 of DDI04068
1070                // bit 29 - valid only if fpexc[31] is 0
1071                const uint32_t fpexcMask = 0x60000000;
1072                newVal = (newVal & fpexcMask) |
1073                         (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1074            }
1075            break;
1076          case MISCREG_HCR:
1077            {
1078                if (!haveVirtualization)
1079                    return;
1080            }
1081            break;
1082          case MISCREG_IFSR:
1083            {
1084                // ARM ARM (ARM DDI 0406C.b) B4.1.96
1085                const uint32_t ifsrMask =
1086                    mask(31, 13) | mask(11, 11) | mask(8, 6);
1087                newVal = newVal & ~ifsrMask;
1088            }
1089            break;
1090          case MISCREG_DFSR:
1091            {
1092                // ARM ARM (ARM DDI 0406C.b) B4.1.52
1093                const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1094                newVal = newVal & ~dfsrMask;
1095            }
1096            break;
1097          case MISCREG_AMAIR0:
1098          case MISCREG_AMAIR1:
1099            {
1100                // ARM ARM (ARM DDI 0406C.b) B4.1.5
1101                // Valid only with LPAE
1102                if (!haveLPAE)
1103                    return;
1104                DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1105            }
1106            break;
1107          case MISCREG_SCR:
1108            tc->getITBPtr()->invalidateMiscReg();
1109            tc->getDTBPtr()->invalidateMiscReg();
1110            break;
1111          case MISCREG_SCTLR:
1112            {
1113                DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1114                MiscRegIndex sctlr_idx;
1115                scr = readMiscRegNoEffect(MISCREG_SCR);
1116                if (haveSecurity && !scr.ns) {
1117                    sctlr_idx = MISCREG_SCTLR_S;
1118                } else {
1119                    sctlr_idx = MISCREG_SCTLR_NS;
1120                    // The FI field (bit 21) is common between S/NS versions
1121                    // of the register, we store this in the secure copy of
1122                    // the reg
1123                    miscRegs[MISCREG_SCTLR_S] &=         ~(1 << 21);
1124                    miscRegs[MISCREG_SCTLR_S] |= newVal & (1 << 21);
1125                }
1126                SCTLR sctlr = miscRegs[sctlr_idx];
1127                SCTLR new_sctlr = newVal;
1128                new_sctlr.nmfi =  ((bool)sctlr.nmfi) && !haveVirtualization;
1129                miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
1130                tc->getITBPtr()->invalidateMiscReg();
1131                tc->getDTBPtr()->invalidateMiscReg();
1132            }
1133          case MISCREG_MIDR:
1134          case MISCREG_ID_PFR0:
1135          case MISCREG_ID_PFR1:
1136          case MISCREG_ID_DFR0:
1137          case MISCREG_ID_MMFR0:
1138          case MISCREG_ID_MMFR1:
1139          case MISCREG_ID_MMFR2:
1140          case MISCREG_ID_MMFR3:
1141          case MISCREG_ID_ISAR0:
1142          case MISCREG_ID_ISAR1:
1143          case MISCREG_ID_ISAR2:
1144          case MISCREG_ID_ISAR3:
1145          case MISCREG_ID_ISAR4:
1146          case MISCREG_ID_ISAR5:
1147
1148          case MISCREG_MPIDR:
1149          case MISCREG_FPSID:
1150          case MISCREG_TLBTR:
1151          case MISCREG_MVFR0:
1152          case MISCREG_MVFR1:
1153
1154          case MISCREG_ID_AA64AFR0_EL1:
1155          case MISCREG_ID_AA64AFR1_EL1:
1156          case MISCREG_ID_AA64DFR0_EL1:
1157          case MISCREG_ID_AA64DFR1_EL1:
1158          case MISCREG_ID_AA64ISAR0_EL1:
1159          case MISCREG_ID_AA64ISAR1_EL1:
1160          case MISCREG_ID_AA64MMFR0_EL1:
1161          case MISCREG_ID_AA64MMFR1_EL1:
1162          case MISCREG_ID_AA64PFR0_EL1:
1163          case MISCREG_ID_AA64PFR1_EL1:
1164            // ID registers are constants.
1165            return;
1166
1167          // TLBI all entries, EL0&1 inner sharable (ignored)
1168          case MISCREG_TLBIALLIS:
1169          case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1170            assert32(tc);
1171            target_el = 1; // el 0 and 1 are handled together
1172            scr = readMiscReg(MISCREG_SCR, tc);
1173            secure_lookup = haveSecurity && !scr.ns;
1174            sys = tc->getSystemPtr();
1175            for (x = 0; x < sys->numContexts(); x++) {
1176                oc = sys->getThreadContext(x);
1177                assert(oc->getITBPtr() && oc->getDTBPtr());
1178                oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1179                oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1180
1181                // If CheckerCPU is connected, need to notify it of a flush
1182                CheckerCPU *checker = oc->getCheckerCpuPtr();
1183                if (checker) {
1184                    checker->getITBPtr()->flushAllSecurity(secure_lookup,
1185                                                           target_el);
1186                    checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1187                                                           target_el);
1188                }
1189            }
1190            return;
1191          // TLBI all entries, EL0&1, instruction side
1192          case MISCREG_ITLBIALL:
1193            assert32(tc);
1194            target_el = 1; // el 0 and 1 are handled together
1195            scr = readMiscReg(MISCREG_SCR, tc);
1196            secure_lookup = haveSecurity && !scr.ns;
1197            tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1198            return;
1199          // TLBI all entries, EL0&1, data side
1200          case MISCREG_DTLBIALL:
1201            assert32(tc);
1202            target_el = 1; // el 0 and 1 are handled together
1203            scr = readMiscReg(MISCREG_SCR, tc);
1204            secure_lookup = haveSecurity && !scr.ns;
1205            tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1206            return;
1207          // TLBI based on VA, EL0&1 inner sharable (ignored)
1208          case MISCREG_TLBIMVAIS:
1209          case MISCREG_TLBIMVA:
1210            assert32(tc);
1211            target_el = 1; // el 0 and 1 are handled together
1212            scr = readMiscReg(MISCREG_SCR, tc);
1213            secure_lookup = haveSecurity && !scr.ns;
1214            sys = tc->getSystemPtr();
1215            for (x = 0; x < sys->numContexts(); x++) {
1216                oc = sys->getThreadContext(x);
1217                assert(oc->getITBPtr() && oc->getDTBPtr());
1218                oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1219                                              bits(newVal, 7,0),
1220                                              secure_lookup, target_el);
1221                oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1222                                              bits(newVal, 7,0),
1223                                              secure_lookup, target_el);
1224
1225                CheckerCPU *checker = oc->getCheckerCpuPtr();
1226                if (checker) {
1227                    checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1228                        bits(newVal, 7,0), secure_lookup, target_el);
1229                    checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1230                        bits(newVal, 7,0), secure_lookup, target_el);
1231                }
1232            }
1233            return;
1234          // TLBI by ASID, EL0&1, inner sharable
1235          case MISCREG_TLBIASIDIS:
1236          case MISCREG_TLBIASID:
1237            assert32(tc);
1238            target_el = 1; // el 0 and 1 are handled together
1239            scr = readMiscReg(MISCREG_SCR, tc);
1240            secure_lookup = haveSecurity && !scr.ns;
1241            sys = tc->getSystemPtr();
1242            for (x = 0; x < sys->numContexts(); x++) {
1243                oc = sys->getThreadContext(x);
1244                assert(oc->getITBPtr() && oc->getDTBPtr());
1245                oc->getITBPtr()->flushAsid(bits(newVal, 7,0),
1246                    secure_lookup, target_el);
1247                oc->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1248                    secure_lookup, target_el);
1249                CheckerCPU *checker = oc->getCheckerCpuPtr();
1250                if (checker) {
1251                    checker->getITBPtr()->flushAsid(bits(newVal, 7,0),
1252                        secure_lookup, target_el);
1253                    checker->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1254                        secure_lookup, target_el);
1255                }
1256            }
1257            return;
1258          // TLBI by address, EL0&1, inner sharable (ignored)
1259          case MISCREG_TLBIMVAAIS:
1260          case MISCREG_TLBIMVAA:
1261            assert32(tc);
1262            target_el = 1; // el 0 and 1 are handled together
1263            scr = readMiscReg(MISCREG_SCR, tc);
1264            secure_lookup = haveSecurity && !scr.ns;
1265            hyp = 0;
1266            tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1267            return;
1268          // TLBI by address, EL2, hypervisor mode
1269          case MISCREG_TLBIMVAH:
1270          case MISCREG_TLBIMVAHIS:
1271            assert32(tc);
1272            target_el = 1; // aarch32, use hyp bit
1273            scr = readMiscReg(MISCREG_SCR, tc);
1274            secure_lookup = haveSecurity && !scr.ns;
1275            hyp = 1;
1276            tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1277            return;
1278          // TLBI by address and asid, EL0&1, instruction side only
1279          case MISCREG_ITLBIMVA:
1280            assert32(tc);
1281            target_el = 1; // el 0 and 1 are handled together
1282            scr = readMiscReg(MISCREG_SCR, tc);
1283            secure_lookup = haveSecurity && !scr.ns;
1284            tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1285                bits(newVal, 7,0), secure_lookup, target_el);
1286            return;
1287          // TLBI by address and asid, EL0&1, data side only
1288          case MISCREG_DTLBIMVA:
1289            assert32(tc);
1290            target_el = 1; // el 0 and 1 are handled together
1291            scr = readMiscReg(MISCREG_SCR, tc);
1292            secure_lookup = haveSecurity && !scr.ns;
1293            tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1294                bits(newVal, 7,0), secure_lookup, target_el);
1295            return;
1296          // TLBI by ASID, EL0&1, instrution side only
1297          case MISCREG_ITLBIASID:
1298            assert32(tc);
1299            target_el = 1; // el 0 and 1 are handled together
1300            scr = readMiscReg(MISCREG_SCR, tc);
1301            secure_lookup = haveSecurity && !scr.ns;
1302            tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1303                                       target_el);
1304            return;
1305          // TLBI by ASID EL0&1 data size only
1306          case MISCREG_DTLBIASID:
1307            assert32(tc);
1308            target_el = 1; // el 0 and 1 are handled together
1309            scr = readMiscReg(MISCREG_SCR, tc);
1310            secure_lookup = haveSecurity && !scr.ns;
1311            tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1312                                       target_el);
1313            return;
1314          // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
1315          case MISCREG_TLBIALLNSNH:
1316          case MISCREG_TLBIALLNSNHIS:
1317            assert32(tc);
1318            target_el = 1; // el 0 and 1 are handled together
1319            hyp = 0;
1320            tlbiALLN(tc, hyp, target_el);
1321            return;
1322          // TLBI all entries, EL2, hyp,
1323          case MISCREG_TLBIALLH:
1324          case MISCREG_TLBIALLHIS:
1325            assert32(tc);
1326            target_el = 1; // aarch32, use hyp bit
1327            hyp = 1;
1328            tlbiALLN(tc, hyp, target_el);
1329            return;
1330          // AArch64 TLBI: invalidate all entries EL3
1331          case MISCREG_TLBI_ALLE3IS:
1332          case MISCREG_TLBI_ALLE3:
1333            assert64(tc);
1334            target_el = 3;
1335            secure_lookup = true;
1336            tlbiALL(tc, secure_lookup, target_el);
1337            return;
1338          // @todo: uncomment this to enable Virtualization
1339          // case MISCREG_TLBI_ALLE2IS:
1340          // case MISCREG_TLBI_ALLE2:
1341          // TLBI all entries, EL0&1
1342          case MISCREG_TLBI_ALLE1IS:
1343          case MISCREG_TLBI_ALLE1:
1344          // AArch64 TLBI: invalidate all entries, stage 1, current VMID
1345          case MISCREG_TLBI_VMALLE1IS:
1346          case MISCREG_TLBI_VMALLE1:
1347          // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
1348          case MISCREG_TLBI_VMALLS12E1IS:
1349          case MISCREG_TLBI_VMALLS12E1:
1350            // @todo: handle VMID and stage 2 to enable Virtualization
1351            assert64(tc);
1352            target_el = 1; // el 0 and 1 are handled together
1353            scr = readMiscReg(MISCREG_SCR, tc);
1354            secure_lookup = haveSecurity && !scr.ns;
1355            tlbiALL(tc, secure_lookup, target_el);
1356            return;
1357          // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
1358          // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
1359          // from the last level of translation table walks
1360          // @todo: handle VMID to enable Virtualization
1361          // TLBI all entries, EL0&1
1362          case MISCREG_TLBI_VAE3IS_Xt:
1363          case MISCREG_TLBI_VAE3_Xt:
1364          // TLBI by VA, EL3  regime stage 1, last level walk
1365          case MISCREG_TLBI_VALE3IS_Xt:
1366          case MISCREG_TLBI_VALE3_Xt:
1367            assert64(tc);
1368            target_el = 3;
1369            asid = 0xbeef; // does not matter, tlbi is global
1370            secure_lookup = true;
1371            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1372            return;
1373          // TLBI by VA, EL2
1374          case MISCREG_TLBI_VAE2IS_Xt:
1375          case MISCREG_TLBI_VAE2_Xt:
1376          // TLBI by VA, EL2, stage1 last level walk
1377          case MISCREG_TLBI_VALE2IS_Xt:
1378          case MISCREG_TLBI_VALE2_Xt:
1379            assert64(tc);
1380            target_el = 2;
1381            asid = 0xbeef; // does not matter, tlbi is global
1382            scr = readMiscReg(MISCREG_SCR, tc);
1383            secure_lookup = haveSecurity && !scr.ns;
1384            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1385            return;
1386          // TLBI by VA EL1 & 0, stage1, ASID, current VMID
1387          case MISCREG_TLBI_VAE1IS_Xt:
1388          case MISCREG_TLBI_VAE1_Xt:
1389          case MISCREG_TLBI_VALE1IS_Xt:
1390          case MISCREG_TLBI_VALE1_Xt:
1391            assert64(tc);
1392            asid = bits(newVal, 63, 48);
1393            target_el = 1; // el 0 and 1 are handled together
1394            scr = readMiscReg(MISCREG_SCR, tc);
1395            secure_lookup = haveSecurity && !scr.ns;
1396            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1397            return;
1398          // AArch64 TLBI: invalidate by ASID, stage 1, current VMID
1399          // @todo: handle VMID to enable Virtualization
1400          case MISCREG_TLBI_ASIDE1IS_Xt:
1401          case MISCREG_TLBI_ASIDE1_Xt:
1402            assert64(tc);
1403            target_el = 1; // el 0 and 1 are handled together
1404            scr = readMiscReg(MISCREG_SCR, tc);
1405            secure_lookup = haveSecurity && !scr.ns;
1406            sys = tc->getSystemPtr();
1407            for (x = 0; x < sys->numContexts(); x++) {
1408                oc = sys->getThreadContext(x);
1409                assert(oc->getITBPtr() && oc->getDTBPtr());
1410                asid = bits(newVal, 63, 48);
1411                if (!haveLargeAsid64)
1412                    asid &= mask(8);
1413                oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el);
1414                oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el);
1415                CheckerCPU *checker = oc->getCheckerCpuPtr();
1416                if (checker) {
1417                    checker->getITBPtr()->flushAsid(asid,
1418                        secure_lookup, target_el);
1419                    checker->getDTBPtr()->flushAsid(asid,
1420                        secure_lookup, target_el);
1421                }
1422            }
1423            return;
1424          // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
1425          // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1426          // entries from the last level of translation table walks
1427          // @todo: handle VMID to enable Virtualization
1428          case MISCREG_TLBI_VAAE1IS_Xt:
1429          case MISCREG_TLBI_VAAE1_Xt:
1430          case MISCREG_TLBI_VAALE1IS_Xt:
1431          case MISCREG_TLBI_VAALE1_Xt:
1432            assert64(tc);
1433            target_el = 1; // el 0 and 1 are handled together
1434            scr = readMiscReg(MISCREG_SCR, tc);
1435            secure_lookup = haveSecurity && !scr.ns;
1436            sys = tc->getSystemPtr();
1437            for (x = 0; x < sys->numContexts(); x++) {
1438                // @todo: extra controls on TLBI broadcast?
1439                oc = sys->getThreadContext(x);
1440                assert(oc->getITBPtr() && oc->getDTBPtr());
1441                Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1442                oc->getITBPtr()->flushMva(va,
1443                    secure_lookup, false, target_el);
1444                oc->getDTBPtr()->flushMva(va,
1445                    secure_lookup, false, target_el);
1446
1447                CheckerCPU *checker = oc->getCheckerCpuPtr();
1448                if (checker) {
1449                    checker->getITBPtr()->flushMva(va,
1450                        secure_lookup, false, target_el);
1451                    checker->getDTBPtr()->flushMva(va,
1452                        secure_lookup, false, target_el);
1453                }
1454            }
1455            return;
1456          // AArch64 TLBI: invalidate by IPA, stage 2, current VMID
1457          case MISCREG_TLBI_IPAS2LE1IS_Xt:
1458          case MISCREG_TLBI_IPAS2LE1_Xt:
1459          case MISCREG_TLBI_IPAS2E1IS_Xt:
1460          case MISCREG_TLBI_IPAS2E1_Xt:
1461            assert64(tc);
1462            target_el = 1; // EL 0 and 1 are handled together
1463            scr = readMiscReg(MISCREG_SCR, tc);
1464            secure_lookup = haveSecurity && !scr.ns;
1465            sys = tc->getSystemPtr();
1466            for (x = 0; x < sys->numContexts(); x++) {
1467                oc = sys->getThreadContext(x);
1468                assert(oc->getITBPtr() && oc->getDTBPtr());
1469                Addr ipa = ((Addr) bits(newVal, 35, 0)) << 12;
1470                oc->getITBPtr()->flushIpaVmid(ipa,
1471                    secure_lookup, false, target_el);
1472                oc->getDTBPtr()->flushIpaVmid(ipa,
1473                    secure_lookup, false, target_el);
1474
1475                CheckerCPU *checker = oc->getCheckerCpuPtr();
1476                if (checker) {
1477                    checker->getITBPtr()->flushIpaVmid(ipa,
1478                        secure_lookup, false, target_el);
1479                    checker->getDTBPtr()->flushIpaVmid(ipa,
1480                        secure_lookup, false, target_el);
1481                }
1482            }
1483            return;
1484          case MISCREG_ACTLR:
1485            warn("Not doing anything for write of miscreg ACTLR\n");
1486            break;
1487
1488          case MISCREG_PMXEVTYPER_PMCCFILTR:
1489          case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1490          case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1491          case MISCREG_PMCR ... MISCREG_PMOVSSET:
1492            pmu->setMiscReg(misc_reg, newVal);
1493            break;
1494
1495
1496          case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1497            {
1498                HSTR hstrMask = 0;
1499                hstrMask.tjdbx = 1;
1500                newVal &= ~((uint32_t) hstrMask);
1501                break;
1502            }
1503          case MISCREG_HCPTR:
1504            {
1505                // If a CP bit in NSACR is 0 then the corresponding bit in
1506                // HCPTR is RAO/WI. Same applies to NSASEDIS
1507                secure_lookup = haveSecurity &&
1508                    inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1509                                  readMiscRegNoEffect(MISCREG_CPSR));
1510                if (!secure_lookup) {
1511                    MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1512                    MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1513                    newVal = (newVal & ~mask) | (oldValue & mask);
1514                }
1515                break;
1516            }
1517          case MISCREG_HDFAR: // alias for secure DFAR
1518            misc_reg = MISCREG_DFAR_S;
1519            break;
1520          case MISCREG_HIFAR: // alias for secure IFAR
1521            misc_reg = MISCREG_IFAR_S;
1522            break;
1523          case MISCREG_ATS1CPR:
1524          case MISCREG_ATS1CPW:
1525          case MISCREG_ATS1CUR:
1526          case MISCREG_ATS1CUW:
1527          case MISCREG_ATS12NSOPR:
1528          case MISCREG_ATS12NSOPW:
1529          case MISCREG_ATS12NSOUR:
1530          case MISCREG_ATS12NSOUW:
1531          case MISCREG_ATS1HR:
1532          case MISCREG_ATS1HW:
1533            {
1534              Request::Flags flags = 0;
1535              BaseTLB::Mode mode = BaseTLB::Read;
1536              TLB::ArmTranslationType tranType = TLB::NormalTran;
1537              Fault fault;
1538              switch(misc_reg) {
1539                case MISCREG_ATS1CPR:
1540                  flags    = TLB::MustBeOne;
1541                  tranType = TLB::S1CTran;
1542                  mode     = BaseTLB::Read;
1543                  break;
1544                case MISCREG_ATS1CPW:
1545                  flags    = TLB::MustBeOne;
1546                  tranType = TLB::S1CTran;
1547                  mode     = BaseTLB::Write;
1548                  break;
1549                case MISCREG_ATS1CUR:
1550                  flags    = TLB::MustBeOne | TLB::UserMode;
1551                  tranType = TLB::S1CTran;
1552                  mode     = BaseTLB::Read;
1553                  break;
1554                case MISCREG_ATS1CUW:
1555                  flags    = TLB::MustBeOne | TLB::UserMode;
1556                  tranType = TLB::S1CTran;
1557                  mode     = BaseTLB::Write;
1558                  break;
1559                case MISCREG_ATS12NSOPR:
1560                  if (!haveSecurity)
1561                      panic("Security Extensions required for ATS12NSOPR");
1562                  flags    = TLB::MustBeOne;
1563                  tranType = TLB::S1S2NsTran;
1564                  mode     = BaseTLB::Read;
1565                  break;
1566                case MISCREG_ATS12NSOPW:
1567                  if (!haveSecurity)
1568                      panic("Security Extensions required for ATS12NSOPW");
1569                  flags    = TLB::MustBeOne;
1570                  tranType = TLB::S1S2NsTran;
1571                  mode     = BaseTLB::Write;
1572                  break;
1573                case MISCREG_ATS12NSOUR:
1574                  if (!haveSecurity)
1575                      panic("Security Extensions required for ATS12NSOUR");
1576                  flags    = TLB::MustBeOne | TLB::UserMode;
1577                  tranType = TLB::S1S2NsTran;
1578                  mode     = BaseTLB::Read;
1579                  break;
1580                case MISCREG_ATS12NSOUW:
1581                  if (!haveSecurity)
1582                      panic("Security Extensions required for ATS12NSOUW");
1583                  flags    = TLB::MustBeOne | TLB::UserMode;
1584                  tranType = TLB::S1S2NsTran;
1585                  mode     = BaseTLB::Write;
1586                  break;
1587                case MISCREG_ATS1HR: // only really useful from secure mode.
1588                  flags    = TLB::MustBeOne;
1589                  tranType = TLB::HypMode;
1590                  mode     = BaseTLB::Read;
1591                  break;
1592                case MISCREG_ATS1HW:
1593                  flags    = TLB::MustBeOne;
1594                  tranType = TLB::HypMode;
1595                  mode     = BaseTLB::Write;
1596                  break;
1597              }
1598              // If we're in timing mode then doing the translation in
1599              // functional mode then we're slightly distorting performance
1600              // results obtained from simulations. The translation should be
1601              // done in the same mode the core is running in. NOTE: This
1602              // can't be an atomic translation because that causes problems
1603              // with unexpected atomic snoop requests.
1604              warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1605              Request req(0, val, 0, flags,  Request::funcMasterId,
1606                          tc->pcState().pc(), tc->contextId());
1607              fault = tc->getDTBPtr()->translateFunctional(&req, tc, mode, tranType);
1608              TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1609              HCR   hcr   = readMiscRegNoEffect(MISCREG_HCR);
1610
1611              MiscReg newVal;
1612              if (fault == NoFault) {
1613                  Addr paddr = req.getPaddr();
1614                  if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1615                     ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1616                      newVal = (paddr & mask(39, 12)) |
1617                               (tc->getDTBPtr()->getAttr());
1618                  } else {
1619                      newVal = (paddr & 0xfffff000) |
1620                               (tc->getDTBPtr()->getAttr());
1621                  }
1622                  DPRINTF(MiscRegs,
1623                          "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1624                          val, newVal);
1625              } else {
1626                  ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1627                  // Set fault bit and FSR
1628                  FSR fsr = armFault->getFsr(tc);
1629
1630                  newVal = ((fsr >> 9) & 1) << 11;
1631                  if (newVal) {
1632                    // LPAE - rearange fault status
1633                    newVal |= ((fsr >>  0) & 0x3f) << 1;
1634                  } else {
1635                    // VMSA - rearange fault status
1636                    newVal |= ((fsr >>  0) & 0xf) << 1;
1637                    newVal |= ((fsr >> 10) & 0x1) << 5;
1638                    newVal |= ((fsr >> 12) & 0x1) << 6;
1639                  }
1640                  newVal |= 0x1; // F bit
1641                  newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1642                  newVal |= armFault->isStage2() ? 0x200 : 0;
1643                  DPRINTF(MiscRegs,
1644                          "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1645                          val, fsr, newVal);
1646              }
1647              setMiscRegNoEffect(MISCREG_PAR, newVal);
1648              return;
1649            }
1650          case MISCREG_TTBCR:
1651            {
1652                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1653                const uint32_t ones = (uint32_t)(-1);
1654                TTBCR ttbcrMask = 0;
1655                TTBCR ttbcrNew = newVal;
1656
1657                // ARM DDI 0406C.b, ARMv7-32
1658                ttbcrMask.n = ones; // T0SZ
1659                if (haveSecurity) {
1660                    ttbcrMask.pd0 = ones;
1661                    ttbcrMask.pd1 = ones;
1662                }
1663                ttbcrMask.epd0 = ones;
1664                ttbcrMask.irgn0 = ones;
1665                ttbcrMask.orgn0 = ones;
1666                ttbcrMask.sh0 = ones;
1667                ttbcrMask.ps = ones; // T1SZ
1668                ttbcrMask.a1 = ones;
1669                ttbcrMask.epd1 = ones;
1670                ttbcrMask.irgn1 = ones;
1671                ttbcrMask.orgn1 = ones;
1672                ttbcrMask.sh1 = ones;
1673                if (haveLPAE)
1674                    ttbcrMask.eae = ones;
1675
1676                if (haveLPAE && ttbcrNew.eae) {
1677                    newVal = newVal & ttbcrMask;
1678                } else {
1679                    newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1680                }
1681            }
1682          case MISCREG_TTBR0:
1683          case MISCREG_TTBR1:
1684            {
1685                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1686                if (haveLPAE) {
1687                    if (ttbcr.eae) {
1688                        // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1689                        // ARMv8 AArch32 bit 63-56 only
1690                        uint64_t ttbrMask = mask(63,56) | mask(47,40);
1691                        newVal = (newVal & (~ttbrMask));
1692                    }
1693                }
1694            }
1695          case MISCREG_SCTLR_EL1:
1696            {
1697                tc->getITBPtr()->invalidateMiscReg();
1698                tc->getDTBPtr()->invalidateMiscReg();
1699                setMiscRegNoEffect(misc_reg, newVal);
1700            }
1701          case MISCREG_CONTEXTIDR:
1702          case MISCREG_PRRR:
1703          case MISCREG_NMRR:
1704          case MISCREG_MAIR0:
1705          case MISCREG_MAIR1:
1706          case MISCREG_DACR:
1707          case MISCREG_VTTBR:
1708          case MISCREG_SCR_EL3:
1709          case MISCREG_HCR_EL2:
1710          case MISCREG_TCR_EL1:
1711          case MISCREG_TCR_EL2:
1712          case MISCREG_TCR_EL3:
1713          case MISCREG_SCTLR_EL2:
1714          case MISCREG_SCTLR_EL3:
1715          case MISCREG_HSCTLR:
1716          case MISCREG_TTBR0_EL1:
1717          case MISCREG_TTBR1_EL1:
1718          case MISCREG_TTBR0_EL2:
1719          case MISCREG_TTBR0_EL3:
1720            tc->getITBPtr()->invalidateMiscReg();
1721            tc->getDTBPtr()->invalidateMiscReg();
1722            break;
1723          case MISCREG_NZCV:
1724            {
1725                CPSR cpsr = val;
1726
1727                tc->setCCReg(CCREG_NZ, cpsr.nz);
1728                tc->setCCReg(CCREG_C,  cpsr.c);
1729                tc->setCCReg(CCREG_V,  cpsr.v);
1730            }
1731            break;
1732          case MISCREG_DAIF:
1733            {
1734                CPSR cpsr = miscRegs[MISCREG_CPSR];
1735                cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1736                newVal = cpsr;
1737                misc_reg = MISCREG_CPSR;
1738            }
1739            break;
1740          case MISCREG_SP_EL0:
1741            tc->setIntReg(INTREG_SP0, newVal);
1742            break;
1743          case MISCREG_SP_EL1:
1744            tc->setIntReg(INTREG_SP1, newVal);
1745            break;
1746          case MISCREG_SP_EL2:
1747            tc->setIntReg(INTREG_SP2, newVal);
1748            break;
1749          case MISCREG_SPSEL:
1750            {
1751                CPSR cpsr = miscRegs[MISCREG_CPSR];
1752                cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1753                newVal = cpsr;
1754                misc_reg = MISCREG_CPSR;
1755            }
1756            break;
1757          case MISCREG_CURRENTEL:
1758            {
1759                CPSR cpsr = miscRegs[MISCREG_CPSR];
1760                cpsr.el = (uint8_t) ((CPSR) newVal).el;
1761                newVal = cpsr;
1762                misc_reg = MISCREG_CPSR;
1763            }
1764            break;
1765          case MISCREG_AT_S1E1R_Xt:
1766          case MISCREG_AT_S1E1W_Xt:
1767          case MISCREG_AT_S1E0R_Xt:
1768          case MISCREG_AT_S1E0W_Xt:
1769          case MISCREG_AT_S1E2R_Xt:
1770          case MISCREG_AT_S1E2W_Xt:
1771          case MISCREG_AT_S12E1R_Xt:
1772          case MISCREG_AT_S12E1W_Xt:
1773          case MISCREG_AT_S12E0R_Xt:
1774          case MISCREG_AT_S12E0W_Xt:
1775          case MISCREG_AT_S1E3R_Xt:
1776          case MISCREG_AT_S1E3W_Xt:
1777            {
1778                RequestPtr req = new Request;
1779                Request::Flags flags = 0;
1780                BaseTLB::Mode mode = BaseTLB::Read;
1781                TLB::ArmTranslationType tranType = TLB::NormalTran;
1782                Fault fault;
1783                switch(misc_reg) {
1784                  case MISCREG_AT_S1E1R_Xt:
1785                    flags    = TLB::MustBeOne;
1786                    tranType = TLB::S1E1Tran;
1787                    mode     = BaseTLB::Read;
1788                    break;
1789                  case MISCREG_AT_S1E1W_Xt:
1790                    flags    = TLB::MustBeOne;
1791                    tranType = TLB::S1E1Tran;
1792                    mode     = BaseTLB::Write;
1793                    break;
1794                  case MISCREG_AT_S1E0R_Xt:
1795                    flags    = TLB::MustBeOne | TLB::UserMode;
1796                    tranType = TLB::S1E0Tran;
1797                    mode     = BaseTLB::Read;
1798                    break;
1799                  case MISCREG_AT_S1E0W_Xt:
1800                    flags    = TLB::MustBeOne | TLB::UserMode;
1801                    tranType = TLB::S1E0Tran;
1802                    mode     = BaseTLB::Write;
1803                    break;
1804                  case MISCREG_AT_S1E2R_Xt:
1805                    flags    = TLB::MustBeOne;
1806                    tranType = TLB::S1E2Tran;
1807                    mode     = BaseTLB::Read;
1808                    break;
1809                  case MISCREG_AT_S1E2W_Xt:
1810                    flags    = TLB::MustBeOne;
1811                    tranType = TLB::S1E2Tran;
1812                    mode     = BaseTLB::Write;
1813                    break;
1814                  case MISCREG_AT_S12E0R_Xt:
1815                    flags    = TLB::MustBeOne | TLB::UserMode;
1816                    tranType = TLB::S12E0Tran;
1817                    mode     = BaseTLB::Read;
1818                    break;
1819                  case MISCREG_AT_S12E0W_Xt:
1820                    flags    = TLB::MustBeOne | TLB::UserMode;
1821                    tranType = TLB::S12E0Tran;
1822                    mode     = BaseTLB::Write;
1823                    break;
1824                  case MISCREG_AT_S12E1R_Xt:
1825                    flags    = TLB::MustBeOne;
1826                    tranType = TLB::S12E1Tran;
1827                    mode     = BaseTLB::Read;
1828                    break;
1829                  case MISCREG_AT_S12E1W_Xt:
1830                    flags    = TLB::MustBeOne;
1831                    tranType = TLB::S12E1Tran;
1832                    mode     = BaseTLB::Write;
1833                    break;
1834                  case MISCREG_AT_S1E3R_Xt:
1835                    flags    = TLB::MustBeOne;
1836                    tranType = TLB::S1E3Tran;
1837                    mode     = BaseTLB::Read;
1838                    break;
1839                  case MISCREG_AT_S1E3W_Xt:
1840                    flags    = TLB::MustBeOne;
1841                    tranType = TLB::S1E3Tran;
1842                    mode     = BaseTLB::Write;
1843                    break;
1844                }
1845                // If we're in timing mode then doing the translation in
1846                // functional mode then we're slightly distorting performance
1847                // results obtained from simulations. The translation should be
1848                // done in the same mode the core is running in. NOTE: This
1849                // can't be an atomic translation because that causes problems
1850                // with unexpected atomic snoop requests.
1851                warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1852                req->setVirt(0, val, 0, flags,  Request::funcMasterId,
1853                               tc->pcState().pc());
1854                req->setContext(tc->contextId());
1855                fault = tc->getDTBPtr()->translateFunctional(req, tc, mode,
1856                                                             tranType);
1857
1858                MiscReg newVal;
1859                if (fault == NoFault) {
1860                    Addr paddr = req->getPaddr();
1861                    uint64_t attr = tc->getDTBPtr()->getAttr();
1862                    uint64_t attr1 = attr >> 56;
1863                    if (!attr1 || attr1 ==0x44) {
1864                        attr |= 0x100;
1865                        attr &= ~ uint64_t(0x80);
1866                    }
1867                    newVal = (paddr & mask(47, 12)) | attr;
1868                    DPRINTF(MiscRegs,
1869                          "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1870                          val, newVal);
1871                } else {
1872                    ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1873                    // Set fault bit and FSR
1874                    FSR fsr = armFault->getFsr(tc);
1875
1876                    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1877                    if (cpsr.width) { // AArch32
1878                        newVal = ((fsr >> 9) & 1) << 11;
1879                        // rearrange fault status
1880                        newVal |= ((fsr >>  0) & 0x3f) << 1;
1881                        newVal |= 0x1; // F bit
1882                        newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1883                        newVal |= armFault->isStage2() ? 0x200 : 0;
1884                    } else { // AArch64
1885                        newVal = 1; // F bit
1886                        newVal |= fsr << 1; // FST
1887                        // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
1888                        newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
1889                        newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
1890                        newVal |= 1 << 11; // RES1
1891                    }
1892                    DPRINTF(MiscRegs,
1893                            "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1894                            val, fsr, newVal);
1895                }
1896                delete req;
1897                setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1898                return;
1899            }
1900          case MISCREG_SPSR_EL3:
1901          case MISCREG_SPSR_EL2:
1902          case MISCREG_SPSR_EL1:
1903            // Force bits 23:21 to 0
1904            newVal = val & ~(0x7 << 21);
1905            break;
1906          case MISCREG_L2CTLR:
1907            warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1908                 miscRegName[misc_reg], uint32_t(val));
1909            break;
1910
1911          // Generic Timer registers
1912          case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
1913          case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
1914          case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
1915          case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
1916            getGenericTimer(tc).setMiscReg(misc_reg, newVal);
1917            break;
1918        }
1919    }
1920    setMiscRegNoEffect(misc_reg, newVal);
1921}
1922
1923void
1924ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint16_t asid,
1925            bool secure_lookup, uint8_t target_el)
1926{
1927    if (!haveLargeAsid64)
1928        asid &= mask(8);
1929    Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1930    System *sys = tc->getSystemPtr();
1931    for (int x = 0; x < sys->numContexts(); x++) {
1932        ThreadContext *oc = sys->getThreadContext(x);
1933        assert(oc->getITBPtr() && oc->getDTBPtr());
1934        oc->getITBPtr()->flushMvaAsid(va, asid,
1935                                      secure_lookup, target_el);
1936        oc->getDTBPtr()->flushMvaAsid(va, asid,
1937                                      secure_lookup, target_el);
1938
1939        CheckerCPU *checker = oc->getCheckerCpuPtr();
1940        if (checker) {
1941            checker->getITBPtr()->flushMvaAsid(
1942                va, asid, secure_lookup, target_el);
1943            checker->getDTBPtr()->flushMvaAsid(
1944                va, asid, secure_lookup, target_el);
1945        }
1946    }
1947}
1948
1949void
1950ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
1951{
1952    System *sys = tc->getSystemPtr();
1953    for (int x = 0; x < sys->numContexts(); x++) {
1954        ThreadContext *oc = sys->getThreadContext(x);
1955        assert(oc->getITBPtr() && oc->getDTBPtr());
1956        oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1957        oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1958
1959        // If CheckerCPU is connected, need to notify it of a flush
1960        CheckerCPU *checker = oc->getCheckerCpuPtr();
1961        if (checker) {
1962            checker->getITBPtr()->flushAllSecurity(secure_lookup,
1963                                                   target_el);
1964            checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1965                                                   target_el);
1966        }
1967    }
1968}
1969
1970void
1971ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
1972{
1973    System *sys = tc->getSystemPtr();
1974    for (int x = 0; x < sys->numContexts(); x++) {
1975      ThreadContext *oc = sys->getThreadContext(x);
1976      assert(oc->getITBPtr() && oc->getDTBPtr());
1977      oc->getITBPtr()->flushAllNs(hyp, target_el);
1978      oc->getDTBPtr()->flushAllNs(hyp, target_el);
1979
1980      CheckerCPU *checker = oc->getCheckerCpuPtr();
1981      if (checker) {
1982          checker->getITBPtr()->flushAllNs(hyp, target_el);
1983          checker->getDTBPtr()->flushAllNs(hyp, target_el);
1984      }
1985    }
1986}
1987
1988void
1989ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
1990             uint8_t target_el)
1991{
1992    System *sys = tc->getSystemPtr();
1993    for (int x = 0; x < sys->numContexts(); x++) {
1994        ThreadContext *oc = sys->getThreadContext(x);
1995        assert(oc->getITBPtr() && oc->getDTBPtr());
1996        oc->getITBPtr()->flushMva(mbits(newVal, 31,12),
1997            secure_lookup, hyp, target_el);
1998        oc->getDTBPtr()->flushMva(mbits(newVal, 31,12),
1999            secure_lookup, hyp, target_el);
2000
2001        CheckerCPU *checker = oc->getCheckerCpuPtr();
2002        if (checker) {
2003            checker->getITBPtr()->flushMva(mbits(newVal, 31,12),
2004                secure_lookup, hyp, target_el);
2005            checker->getDTBPtr()->flushMva(mbits(newVal, 31,12),
2006                secure_lookup, hyp, target_el);
2007        }
2008    }
2009}
2010
2011BaseISADevice &
2012ISA::getGenericTimer(ThreadContext *tc)
2013{
2014    // We only need to create an ISA interface the first time we try
2015    // to access the timer.
2016    if (timer)
2017        return *timer.get();
2018
2019    assert(system);
2020    GenericTimer *generic_timer(system->getGenericTimer());
2021    if (!generic_timer) {
2022        panic("Trying to get a generic timer from a system that hasn't "
2023              "been configured to use a generic timer.\n");
2024    }
2025
2026    timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2027    return *timer.get();
2028}
2029
2030}
2031
2032ArmISA::ISA *
2033ArmISAParams::create()
2034{
2035    return new ArmISA::ISA(this);
2036}
2037