isa.cc revision 10709
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Gabe Black 38 * Ali Saidi 39 */ 40 41#include "arch/arm/isa.hh" 42#include "arch/arm/pmu.hh" 43#include "arch/arm/system.hh" 44#include "cpu/checker/cpu.hh" 45#include "cpu/base.hh" 46#include "debug/Arm.hh" 47#include "debug/MiscRegs.hh" 48#include "params/ArmISA.hh" 49#include "sim/faults.hh" 50#include "sim/stat_control.hh" 51#include "sim/system.hh" 52 53namespace ArmISA 54{ 55 56 57/** 58 * Some registers aliase with others, and therefore need to be translated. 59 * For each entry: 60 * The first value is the misc register that is to be looked up 61 * the second value is the lower part of the translation 62 * the third the upper part 63 */ 64const struct ISA::MiscRegInitializerEntry 65 ISA::MiscRegSwitch[miscRegTranslateMax] = { 66 {MISCREG_CSSELR_EL1, {MISCREG_CSSELR, 0}}, 67 {MISCREG_SCTLR_EL1, {MISCREG_SCTLR, 0}}, 68 {MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}}, 69 {MISCREG_ACTLR_EL1, {MISCREG_ACTLR, 0}}, 70 {MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}}, 71 {MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}}, 72 {MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}}, 73 {MISCREG_HCR_EL2, {MISCREG_HCR, 0}}, 74 {MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}}, 75 {MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}}, 76 {MISCREG_HACR_EL2, {MISCREG_HACR, 0}}, 77 {MISCREG_TTBR0_EL1, {MISCREG_TTBR0, 0}}, 78 {MISCREG_TTBR1_EL1, {MISCREG_TTBR1, 0}}, 79 {MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}}, 80 {MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}}, 81 {MISCREG_TCR_EL1, {MISCREG_TTBCR, 0}}, 82 {MISCREG_TCR_EL2, {MISCREG_HTCR, 0}}, 83 {MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}}, 84 {MISCREG_AFSR0_EL1, {MISCREG_ADFSR, 0}}, 85 {MISCREG_AFSR1_EL1, {MISCREG_AIFSR, 0}}, 86 {MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}}, 87 {MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}}, 88 {MISCREG_ESR_EL2, {MISCREG_HSR, 0}}, 89 {MISCREG_FAR_EL1, {MISCREG_DFAR, MISCREG_IFAR}}, 90 {MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}}, 91 {MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}}, 92 {MISCREG_PAR_EL1, {MISCREG_PAR, 0}}, 93 {MISCREG_MAIR_EL1, {MISCREG_PRRR, MISCREG_NMRR}}, 94 {MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}}, 95 {MISCREG_AMAIR_EL1, {MISCREG_AMAIR0, MISCREG_AMAIR1}}, 96 {MISCREG_VBAR_EL1, {MISCREG_VBAR, 0}}, 97 {MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}}, 98 {MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR, 0}}, 99 {MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW, 0}}, 100 {MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO, 0}}, 101 {MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW, 0}}, 102 {MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}}, 103 {MISCREG_TEECR32_EL1, {MISCREG_TEECR, 0}}, 104 {MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}}, 105 {MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}}, 106 {MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}}, 107 {MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}}, 108 {MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}}, 109 {MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}}, 110 {MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL, 0}}, 111 {MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL, 0}}, 112 {MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL, 0}}, 113 {MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}}, 114 {MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}}, 115 {MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}}, 116 {MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}}, 117 {MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}}, 118 {MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}}, 119 {MISCREG_DACR32_EL2, {MISCREG_DACR, 0}}, 120 {MISCREG_IFSR32_EL2, {MISCREG_IFSR, 0}}, 121 {MISCREG_TEEHBR32_EL1, {MISCREG_TEEHBR, 0}}, 122 {MISCREG_SDER32_EL3, {MISCREG_SDER, 0}} 123}; 124 125 126ISA::ISA(Params *p) 127 : SimObject(p), 128 system(NULL), 129 pmu(p->pmu), 130 lookUpMiscReg(NUM_MISCREGS, {0,0}) 131{ 132 SCTLR sctlr; 133 sctlr = 0; 134 miscRegs[MISCREG_SCTLR_RST] = sctlr; 135 136 // Hook up a dummy device if we haven't been configured with a 137 // real PMU. By using a dummy device, we don't need to check that 138 // the PMU exist every time we try to access a PMU register. 139 if (!pmu) 140 pmu = &dummyDevice; 141 142 // Give all ISA devices a pointer to this ISA 143 pmu->setISA(this); 144 145 system = dynamic_cast<ArmSystem *>(p->system); 146 DPRINTFN("ISA system set to: %p %p\n", system, p->system); 147 148 // Cache system-level properties 149 if (FullSystem && system) { 150 haveSecurity = system->haveSecurity(); 151 haveLPAE = system->haveLPAE(); 152 haveVirtualization = system->haveVirtualization(); 153 haveLargeAsid64 = system->haveLargeAsid64(); 154 physAddrRange64 = system->physAddrRange64(); 155 } else { 156 haveSecurity = haveLPAE = haveVirtualization = false; 157 haveLargeAsid64 = false; 158 physAddrRange64 = 32; // dummy value 159 } 160 161 /** Fill in the miscReg translation table */ 162 for (uint32_t i = 0; i < miscRegTranslateMax; i++) { 163 struct MiscRegLUTEntry new_entry; 164 165 uint32_t select = MiscRegSwitch[i].index; 166 new_entry = MiscRegSwitch[i].entry; 167 168 lookUpMiscReg[select] = new_entry; 169 } 170 171 preUnflattenMiscReg(); 172 173 clear(); 174} 175 176const ArmISAParams * 177ISA::params() const 178{ 179 return dynamic_cast<const Params *>(_params); 180} 181 182void 183ISA::clear() 184{ 185 const Params *p(params()); 186 187 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST]; 188 memset(miscRegs, 0, sizeof(miscRegs)); 189 190 // Initialize configurable default values 191 miscRegs[MISCREG_MIDR] = p->midr; 192 miscRegs[MISCREG_MIDR_EL1] = p->midr; 193 miscRegs[MISCREG_VPIDR] = p->midr; 194 195 if (FullSystem && system->highestELIs64()) { 196 // Initialize AArch64 state 197 clear64(p); 198 return; 199 } 200 201 // Initialize AArch32 state... 202 203 CPSR cpsr = 0; 204 cpsr.mode = MODE_USER; 205 miscRegs[MISCREG_CPSR] = cpsr; 206 updateRegMap(cpsr); 207 208 SCTLR sctlr = 0; 209 sctlr.te = (bool) sctlr_rst.te; 210 sctlr.nmfi = (bool) sctlr_rst.nmfi; 211 sctlr.v = (bool) sctlr_rst.v; 212 sctlr.u = 1; 213 sctlr.xp = 1; 214 sctlr.rao2 = 1; 215 sctlr.rao3 = 1; 216 sctlr.rao4 = 0xf; // SCTLR[6:3] 217 sctlr.uci = 1; 218 sctlr.dze = 1; 219 miscRegs[MISCREG_SCTLR_NS] = sctlr; 220 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst; 221 miscRegs[MISCREG_HCPTR] = 0; 222 223 // Start with an event in the mailbox 224 miscRegs[MISCREG_SEV_MAILBOX] = 1; 225 226 // Separate Instruction and Data TLBs 227 miscRegs[MISCREG_TLBTR] = 1; 228 229 MVFR0 mvfr0 = 0; 230 mvfr0.advSimdRegisters = 2; 231 mvfr0.singlePrecision = 2; 232 mvfr0.doublePrecision = 2; 233 mvfr0.vfpExceptionTrapping = 0; 234 mvfr0.divide = 1; 235 mvfr0.squareRoot = 1; 236 mvfr0.shortVectors = 1; 237 mvfr0.roundingModes = 1; 238 miscRegs[MISCREG_MVFR0] = mvfr0; 239 240 MVFR1 mvfr1 = 0; 241 mvfr1.flushToZero = 1; 242 mvfr1.defaultNaN = 1; 243 mvfr1.advSimdLoadStore = 1; 244 mvfr1.advSimdInteger = 1; 245 mvfr1.advSimdSinglePrecision = 1; 246 mvfr1.advSimdHalfPrecision = 1; 247 mvfr1.vfpHalfPrecision = 1; 248 miscRegs[MISCREG_MVFR1] = mvfr1; 249 250 // Reset values of PRRR and NMRR are implementation dependent 251 252 // @todo: PRRR and NMRR in secure state? 253 miscRegs[MISCREG_PRRR_NS] = 254 (1 << 19) | // 19 255 (0 << 18) | // 18 256 (0 << 17) | // 17 257 (1 << 16) | // 16 258 (2 << 14) | // 15:14 259 (0 << 12) | // 13:12 260 (2 << 10) | // 11:10 261 (2 << 8) | // 9:8 262 (2 << 6) | // 7:6 263 (2 << 4) | // 5:4 264 (1 << 2) | // 3:2 265 0; // 1:0 266 miscRegs[MISCREG_NMRR_NS] = 267 (1 << 30) | // 31:30 268 (0 << 26) | // 27:26 269 (0 << 24) | // 25:24 270 (3 << 22) | // 23:22 271 (2 << 20) | // 21:20 272 (0 << 18) | // 19:18 273 (0 << 16) | // 17:16 274 (1 << 14) | // 15:14 275 (0 << 12) | // 13:12 276 (2 << 10) | // 11:10 277 (0 << 8) | // 9:8 278 (3 << 6) | // 7:6 279 (2 << 4) | // 5:4 280 (0 << 2) | // 3:2 281 0; // 1:0 282 283 miscRegs[MISCREG_CPACR] = 0; 284 285 286 miscRegs[MISCREG_ID_PFR0] = p->id_pfr0; 287 miscRegs[MISCREG_ID_PFR1] = p->id_pfr1; 288 289 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0; 290 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1; 291 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2; 292 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3; 293 294 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0; 295 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1; 296 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2; 297 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3; 298 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4; 299 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5; 300 301 miscRegs[MISCREG_FPSID] = p->fpsid; 302 303 if (haveLPAE) { 304 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS]; 305 ttbcr.eae = 0; 306 miscRegs[MISCREG_TTBCR_NS] = ttbcr; 307 // Enforce consistency with system-level settings 308 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5; 309 } 310 311 if (haveSecurity) { 312 miscRegs[MISCREG_SCTLR_S] = sctlr; 313 miscRegs[MISCREG_SCR] = 0; 314 miscRegs[MISCREG_VBAR_S] = 0; 315 } else { 316 // we're always non-secure 317 miscRegs[MISCREG_SCR] = 1; 318 } 319 320 //XXX We need to initialize the rest of the state. 321} 322 323void 324ISA::clear64(const ArmISAParams *p) 325{ 326 CPSR cpsr = 0; 327 Addr rvbar = system->resetAddr64(); 328 switch (system->highestEL()) { 329 // Set initial EL to highest implemented EL using associated stack 330 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset 331 // value 332 case EL3: 333 cpsr.mode = MODE_EL3H; 334 miscRegs[MISCREG_RVBAR_EL3] = rvbar; 335 break; 336 case EL2: 337 cpsr.mode = MODE_EL2H; 338 miscRegs[MISCREG_RVBAR_EL2] = rvbar; 339 break; 340 case EL1: 341 cpsr.mode = MODE_EL1H; 342 miscRegs[MISCREG_RVBAR_EL1] = rvbar; 343 break; 344 default: 345 panic("Invalid highest implemented exception level"); 346 break; 347 } 348 349 // Initialize rest of CPSR 350 cpsr.daif = 0xf; // Mask all interrupts 351 cpsr.ss = 0; 352 cpsr.il = 0; 353 miscRegs[MISCREG_CPSR] = cpsr; 354 updateRegMap(cpsr); 355 356 // Initialize other control registers 357 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000; 358 if (haveSecurity) { 359 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50870; 360 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields 361 // @todo: uncomment this to enable Virtualization 362 // } else if (haveVirtualization) { 363 // miscRegs[MISCREG_SCTLR_EL2] = 0x30c50870; 364 } else { 365 miscRegs[MISCREG_SCTLR_EL1] = 0x30c50870; 366 // Always non-secure 367 miscRegs[MISCREG_SCR_EL3] = 1; 368 } 369 370 // Initialize configurable id registers 371 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1; 372 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1; 373 miscRegs[MISCREG_ID_AA64DFR0_EL1] = 374 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) | 375 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3 376 377 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1; 378 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1; 379 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1; 380 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1; 381 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1; 382 miscRegs[MISCREG_ID_AA64PFR0_EL1] = p->id_aa64pfr0_el1; 383 miscRegs[MISCREG_ID_AA64PFR1_EL1] = p->id_aa64pfr1_el1; 384 385 miscRegs[MISCREG_ID_DFR0_EL1] = 386 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3 387 388 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1]; 389 390 // Enforce consistency with system-level settings... 391 392 // EL3 393 // (no AArch32/64 interprocessing support for now) 394 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 395 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12, 396 haveSecurity ? 0x1 : 0x0); 397 // EL2 398 // (no AArch32/64 interprocessing support for now) 399 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 400 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8, 401 haveVirtualization ? 0x1 : 0x0); 402 // Large ASID support 403 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( 404 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4, 405 haveLargeAsid64 ? 0x2 : 0x0); 406 // Physical address size 407 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( 408 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0, 409 encodePhysAddrRange64(physAddrRange64)); 410} 411 412MiscReg 413ISA::readMiscRegNoEffect(int misc_reg) const 414{ 415 assert(misc_reg < NumMiscRegs); 416 417 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64 418 // registers are left unchanged 419 MiscReg val; 420 421 if (lookUpMiscReg[flat_idx].lower == 0 || flat_idx == MISCREG_SPSR 422 || flat_idx == MISCREG_SCTLR_EL1) { 423 if (flat_idx == MISCREG_SPSR) 424 flat_idx = flattenMiscIndex(MISCREG_SPSR); 425 if (flat_idx == MISCREG_SCTLR_EL1) 426 flat_idx = flattenMiscIndex(MISCREG_SCTLR); 427 val = miscRegs[flat_idx]; 428 } else 429 if (lookUpMiscReg[flat_idx].upper > 0) 430 val = ((miscRegs[lookUpMiscReg[flat_idx].lower] & mask(32)) 431 | (miscRegs[lookUpMiscReg[flat_idx].upper] << 32)); 432 else 433 val = miscRegs[lookUpMiscReg[flat_idx].lower]; 434 435 return val; 436} 437 438 439MiscReg 440ISA::readMiscReg(int misc_reg, ThreadContext *tc) 441{ 442 CPSR cpsr = 0; 443 PCState pc = 0; 444 SCR scr = 0; 445 446 if (misc_reg == MISCREG_CPSR) { 447 cpsr = miscRegs[misc_reg]; 448 pc = tc->pcState(); 449 cpsr.j = pc.jazelle() ? 1 : 0; 450 cpsr.t = pc.thumb() ? 1 : 0; 451 return cpsr; 452 } 453 454#ifndef NDEBUG 455 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { 456 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) 457 warn("Unimplemented system register %s read.\n", 458 miscRegName[misc_reg]); 459 else 460 panic("Unimplemented system register %s read.\n", 461 miscRegName[misc_reg]); 462 } 463#endif 464 465 switch (unflattenMiscReg(misc_reg)) { 466 case MISCREG_HCR: 467 { 468 if (!haveVirtualization) 469 return 0; 470 else 471 return readMiscRegNoEffect(MISCREG_HCR); 472 } 473 case MISCREG_CPACR: 474 { 475 const uint32_t ones = (uint32_t)(-1); 476 CPACR cpacrMask = 0; 477 // Only cp10, cp11, and ase are implemented, nothing else should 478 // be readable? (straight copy from the write code) 479 cpacrMask.cp10 = ones; 480 cpacrMask.cp11 = ones; 481 cpacrMask.asedis = ones; 482 483 // Security Extensions may limit the readability of CPACR 484 if (haveSecurity) { 485 scr = readMiscRegNoEffect(MISCREG_SCR); 486 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 487 if (scr.ns && (cpsr.mode != MODE_MON)) { 488 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); 489 // NB: Skipping the full loop, here 490 if (!nsacr.cp10) cpacrMask.cp10 = 0; 491 if (!nsacr.cp11) cpacrMask.cp11 = 0; 492 } 493 } 494 MiscReg val = readMiscRegNoEffect(MISCREG_CPACR); 495 val &= cpacrMask; 496 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n", 497 miscRegName[misc_reg], val); 498 return val; 499 } 500 case MISCREG_MPIDR: 501 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 502 scr = readMiscRegNoEffect(MISCREG_SCR); 503 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) { 504 return getMPIDR(system, tc); 505 } else { 506 return readMiscReg(MISCREG_VMPIDR, tc); 507 } 508 break; 509 case MISCREG_MPIDR_EL1: 510 // @todo in the absence of v8 virtualization support just return MPIDR_EL1 511 return getMPIDR(system, tc) & 0xffffffff; 512 case MISCREG_VMPIDR: 513 // top bit defined as RES1 514 return readMiscRegNoEffect(misc_reg) | 0x80000000; 515 case MISCREG_ID_AFR0: // not implemented, so alias MIDR 516 case MISCREG_REVIDR: // not implemented, so alias MIDR 517 case MISCREG_MIDR: 518 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 519 scr = readMiscRegNoEffect(MISCREG_SCR); 520 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) { 521 return readMiscRegNoEffect(misc_reg); 522 } else { 523 return readMiscRegNoEffect(MISCREG_VPIDR); 524 } 525 break; 526 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI 527 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI 528 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI 529 case MISCREG_AIDR: // AUX ID set to 0 530 case MISCREG_TCMTR: // No TCM's 531 return 0; 532 533 case MISCREG_CLIDR: 534 warn_once("The clidr register always reports 0 caches.\n"); 535 warn_once("clidr LoUIS field of 0b001 to match current " 536 "ARM implementations.\n"); 537 return 0x00200000; 538 case MISCREG_CCSIDR: 539 warn_once("The ccsidr register isn't implemented and " 540 "always reads as 0.\n"); 541 break; 542 case MISCREG_CTR: 543 { 544 //all caches have the same line size in gem5 545 //4 byte words in ARM 546 unsigned lineSizeWords = 547 tc->getSystemPtr()->cacheLineSize() / 4; 548 unsigned log2LineSizeWords = 0; 549 550 while (lineSizeWords >>= 1) { 551 ++log2LineSizeWords; 552 } 553 554 CTR ctr = 0; 555 //log2 of minimun i-cache line size (words) 556 ctr.iCacheLineSize = log2LineSizeWords; 557 //b11 - gem5 uses pipt 558 ctr.l1IndexPolicy = 0x3; 559 //log2 of minimum d-cache line size (words) 560 ctr.dCacheLineSize = log2LineSizeWords; 561 //log2 of max reservation size (words) 562 ctr.erg = log2LineSizeWords; 563 //log2 of max writeback size (words) 564 ctr.cwg = log2LineSizeWords; 565 //b100 - gem5 format is ARMv7 566 ctr.format = 0x4; 567 568 return ctr; 569 } 570 case MISCREG_ACTLR: 571 warn("Not doing anything for miscreg ACTLR\n"); 572 break; 573 574 case MISCREG_PMXEVTYPER_PMCCFILTR: 575 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0: 576 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0: 577 case MISCREG_PMCR ... MISCREG_PMOVSSET: 578 return pmu->readMiscReg(misc_reg); 579 580 case MISCREG_CPSR_Q: 581 panic("shouldn't be reading this register seperately\n"); 582 case MISCREG_FPSCR_QC: 583 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask; 584 case MISCREG_FPSCR_EXC: 585 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask; 586 case MISCREG_FPSR: 587 { 588 const uint32_t ones = (uint32_t)(-1); 589 FPSCR fpscrMask = 0; 590 fpscrMask.ioc = ones; 591 fpscrMask.dzc = ones; 592 fpscrMask.ofc = ones; 593 fpscrMask.ufc = ones; 594 fpscrMask.ixc = ones; 595 fpscrMask.idc = ones; 596 fpscrMask.qc = ones; 597 fpscrMask.v = ones; 598 fpscrMask.c = ones; 599 fpscrMask.z = ones; 600 fpscrMask.n = ones; 601 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; 602 } 603 case MISCREG_FPCR: 604 { 605 const uint32_t ones = (uint32_t)(-1); 606 FPSCR fpscrMask = 0; 607 fpscrMask.ioe = ones; 608 fpscrMask.dze = ones; 609 fpscrMask.ofe = ones; 610 fpscrMask.ufe = ones; 611 fpscrMask.ixe = ones; 612 fpscrMask.ide = ones; 613 fpscrMask.len = ones; 614 fpscrMask.stride = ones; 615 fpscrMask.rMode = ones; 616 fpscrMask.fz = ones; 617 fpscrMask.dn = ones; 618 fpscrMask.ahp = ones; 619 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; 620 } 621 case MISCREG_NZCV: 622 { 623 CPSR cpsr = 0; 624 cpsr.nz = tc->readCCReg(CCREG_NZ); 625 cpsr.c = tc->readCCReg(CCREG_C); 626 cpsr.v = tc->readCCReg(CCREG_V); 627 return cpsr; 628 } 629 case MISCREG_DAIF: 630 { 631 CPSR cpsr = 0; 632 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif; 633 return cpsr; 634 } 635 case MISCREG_SP_EL0: 636 { 637 return tc->readIntReg(INTREG_SP0); 638 } 639 case MISCREG_SP_EL1: 640 { 641 return tc->readIntReg(INTREG_SP1); 642 } 643 case MISCREG_SP_EL2: 644 { 645 return tc->readIntReg(INTREG_SP2); 646 } 647 case MISCREG_SPSEL: 648 { 649 return miscRegs[MISCREG_CPSR] & 0x1; 650 } 651 case MISCREG_CURRENTEL: 652 { 653 return miscRegs[MISCREG_CPSR] & 0xc; 654 } 655 case MISCREG_L2CTLR: 656 { 657 // mostly unimplemented, just set NumCPUs field from sim and return 658 L2CTLR l2ctlr = 0; 659 // b00:1CPU to b11:4CPUs 660 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1; 661 return l2ctlr; 662 } 663 case MISCREG_DBGDIDR: 664 /* For now just implement the version number. 665 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5) 666 */ 667 return 0x5 << 16; 668 case MISCREG_DBGDSCRint: 669 return 0; 670 case MISCREG_ISR: 671 return tc->getCpuPtr()->getInterruptController()->getISR( 672 readMiscRegNoEffect(MISCREG_HCR), 673 readMiscRegNoEffect(MISCREG_CPSR), 674 readMiscRegNoEffect(MISCREG_SCR)); 675 case MISCREG_ISR_EL1: 676 return tc->getCpuPtr()->getInterruptController()->getISR( 677 readMiscRegNoEffect(MISCREG_HCR_EL2), 678 readMiscRegNoEffect(MISCREG_CPSR), 679 readMiscRegNoEffect(MISCREG_SCR_EL3)); 680 case MISCREG_DCZID_EL0: 681 return 0x04; // DC ZVA clear 64-byte chunks 682 case MISCREG_HCPTR: 683 { 684 MiscReg val = readMiscRegNoEffect(misc_reg); 685 // The trap bit associated with CP14 is defined as RAZ 686 val &= ~(1 << 14); 687 // If a CP bit in NSACR is 0 then the corresponding bit in 688 // HCPTR is RAO/WI 689 bool secure_lookup = haveSecurity && 690 inSecureState(readMiscRegNoEffect(MISCREG_SCR), 691 readMiscRegNoEffect(MISCREG_CPSR)); 692 if (!secure_lookup) { 693 MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR); 694 val |= (mask ^ 0x7FFF) & 0xBFFF; 695 } 696 // Set the bits for unimplemented coprocessors to RAO/WI 697 val |= 0x33FF; 698 return (val); 699 } 700 case MISCREG_HDFAR: // alias for secure DFAR 701 return readMiscRegNoEffect(MISCREG_DFAR_S); 702 case MISCREG_HIFAR: // alias for secure IFAR 703 return readMiscRegNoEffect(MISCREG_IFAR_S); 704 case MISCREG_HVBAR: // bottom bits reserved 705 return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0; 706 case MISCREG_SCTLR: // Some bits hardwired 707 // The FI field (bit 21) is common between S/NS versions of the register 708 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) | 709 (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818; // V8 SCTLR 710 case MISCREG_SCTLR_EL1: 711 // The FI field (bit 21) is common between S/NS versions of the register 712 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) | 713 (readMiscRegNoEffect(misc_reg) & 0x37DDDBFF) | 0x30D00800; // V8 SCTLR_EL1 714 case MISCREG_SCTLR_EL3: 715 // The FI field (bit 21) is common between S/NS versions of the register 716 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) | 717 (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830; // V8 SCTLR_EL3 718 case MISCREG_HSCTLR: // FI comes from SCTLR 719 { 720 uint32_t mask = 1 << 27; 721 return (readMiscRegNoEffect(MISCREG_HSCTLR) & ~mask) | 722 (readMiscRegNoEffect(MISCREG_SCTLR) & mask); 723 } 724 case MISCREG_SCR: 725 { 726 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR); 727 if (cpsr.width) { 728 return readMiscRegNoEffect(MISCREG_SCR); 729 } else { 730 return readMiscRegNoEffect(MISCREG_SCR_EL3); 731 } 732 } 733 // Generic Timer registers 734 case MISCREG_CNTFRQ: 735 case MISCREG_CNTFRQ_EL0: 736 inform_once("Read CNTFREQ_EL0 frequency\n"); 737 return getSystemCounter(tc)->freq(); 738 case MISCREG_CNTPCT: 739 case MISCREG_CNTPCT_EL0: 740 return getSystemCounter(tc)->value(); 741 case MISCREG_CNTVCT: 742 return getSystemCounter(tc)->value(); 743 case MISCREG_CNTVCT_EL0: 744 return getSystemCounter(tc)->value(); 745 case MISCREG_CNTP_CVAL: 746 case MISCREG_CNTP_CVAL_EL0: 747 return getArchTimer(tc, tc->cpuId())->compareValue(); 748 case MISCREG_CNTP_TVAL: 749 case MISCREG_CNTP_TVAL_EL0: 750 return getArchTimer(tc, tc->cpuId())->timerValue(); 751 case MISCREG_CNTP_CTL: 752 case MISCREG_CNTP_CTL_EL0: 753 return getArchTimer(tc, tc->cpuId())->control(); 754 // PL1 phys. timer, secure 755 // AArch64 756 // case MISCREG_CNTPS_CVAL_EL1: 757 // case MISCREG_CNTPS_TVAL_EL1: 758 // case MISCREG_CNTPS_CTL_EL1: 759 // PL2 phys. timer, non-secure 760 // AArch32 761 // case MISCREG_CNTHCTL: 762 // case MISCREG_CNTHP_CVAL: 763 // case MISCREG_CNTHP_TVAL: 764 // case MISCREG_CNTHP_CTL: 765 // AArch64 766 // case MISCREG_CNTHCTL_EL2: 767 // case MISCREG_CNTHP_CVAL_EL2: 768 // case MISCREG_CNTHP_TVAL_EL2: 769 // case MISCREG_CNTHP_CTL_EL2: 770 // Virtual timer 771 // AArch32 772 // case MISCREG_CNTV_CVAL: 773 // case MISCREG_CNTV_TVAL: 774 // case MISCREG_CNTV_CTL: 775 // AArch64 776 // case MISCREG_CNTV_CVAL_EL2: 777 // case MISCREG_CNTV_TVAL_EL2: 778 // case MISCREG_CNTV_CTL_EL2: 779 default: 780 break; 781 782 } 783 return readMiscRegNoEffect(misc_reg); 784} 785 786void 787ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val) 788{ 789 assert(misc_reg < NumMiscRegs); 790 791 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64 792 // registers are left unchanged 793 794 int flat_idx2 = lookUpMiscReg[flat_idx].upper; 795 796 if (flat_idx2 > 0) { 797 miscRegs[lookUpMiscReg[flat_idx].lower] = bits(val, 31, 0); 798 miscRegs[flat_idx2] = bits(val, 63, 32); 799 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n", 800 misc_reg, flat_idx, flat_idx2, val); 801 } else { 802 if (flat_idx == MISCREG_SPSR) 803 flat_idx = flattenMiscIndex(MISCREG_SPSR); 804 else if (flat_idx == MISCREG_SCTLR_EL1) 805 flat_idx = flattenMiscIndex(MISCREG_SCTLR); 806 else 807 flat_idx = (lookUpMiscReg[flat_idx].lower > 0) ? 808 lookUpMiscReg[flat_idx].lower : flat_idx; 809 miscRegs[flat_idx] = val; 810 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n", 811 misc_reg, flat_idx, val); 812 } 813} 814 815void 816ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc) 817{ 818 819 MiscReg newVal = val; 820 int x; 821 bool secure_lookup; 822 bool hyp; 823 System *sys; 824 ThreadContext *oc; 825 uint8_t target_el; 826 uint16_t asid; 827 SCR scr; 828 829 if (misc_reg == MISCREG_CPSR) { 830 updateRegMap(val); 831 832 833 CPSR old_cpsr = miscRegs[MISCREG_CPSR]; 834 int old_mode = old_cpsr.mode; 835 CPSR cpsr = val; 836 if (old_mode != cpsr.mode) { 837 tc->getITBPtr()->invalidateMiscReg(); 838 tc->getDTBPtr()->invalidateMiscReg(); 839 } 840 841 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n", 842 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode); 843 PCState pc = tc->pcState(); 844 pc.nextThumb(cpsr.t); 845 pc.nextJazelle(cpsr.j); 846 847 // Follow slightly different semantics if a CheckerCPU object 848 // is connected 849 CheckerCPU *checker = tc->getCheckerCpuPtr(); 850 if (checker) { 851 tc->pcStateNoRecord(pc); 852 } else { 853 tc->pcState(pc); 854 } 855 } else { 856#ifndef NDEBUG 857 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { 858 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) 859 warn("Unimplemented system register %s write with %#x.\n", 860 miscRegName[misc_reg], val); 861 else 862 panic("Unimplemented system register %s write with %#x.\n", 863 miscRegName[misc_reg], val); 864 } 865#endif 866 switch (unflattenMiscReg(misc_reg)) { 867 case MISCREG_CPACR: 868 { 869 870 const uint32_t ones = (uint32_t)(-1); 871 CPACR cpacrMask = 0; 872 // Only cp10, cp11, and ase are implemented, nothing else should 873 // be writable 874 cpacrMask.cp10 = ones; 875 cpacrMask.cp11 = ones; 876 cpacrMask.asedis = ones; 877 878 // Security Extensions may limit the writability of CPACR 879 if (haveSecurity) { 880 scr = readMiscRegNoEffect(MISCREG_SCR); 881 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR); 882 if (scr.ns && (cpsr.mode != MODE_MON)) { 883 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); 884 // NB: Skipping the full loop, here 885 if (!nsacr.cp10) cpacrMask.cp10 = 0; 886 if (!nsacr.cp11) cpacrMask.cp11 = 0; 887 } 888 } 889 890 MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR); 891 newVal &= cpacrMask; 892 newVal |= old_val & ~cpacrMask; 893 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 894 miscRegName[misc_reg], newVal); 895 } 896 break; 897 case MISCREG_CPACR_EL1: 898 { 899 const uint32_t ones = (uint32_t)(-1); 900 CPACR cpacrMask = 0; 901 cpacrMask.tta = ones; 902 cpacrMask.fpen = ones; 903 newVal &= cpacrMask; 904 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 905 miscRegName[misc_reg], newVal); 906 } 907 break; 908 case MISCREG_CPTR_EL2: 909 { 910 const uint32_t ones = (uint32_t)(-1); 911 CPTR cptrMask = 0; 912 cptrMask.tcpac = ones; 913 cptrMask.tta = ones; 914 cptrMask.tfp = ones; 915 newVal &= cptrMask; 916 cptrMask = 0; 917 cptrMask.res1_13_12_el2 = ones; 918 cptrMask.res1_9_0_el2 = ones; 919 newVal |= cptrMask; 920 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 921 miscRegName[misc_reg], newVal); 922 } 923 break; 924 case MISCREG_CPTR_EL3: 925 { 926 const uint32_t ones = (uint32_t)(-1); 927 CPTR cptrMask = 0; 928 cptrMask.tcpac = ones; 929 cptrMask.tta = ones; 930 cptrMask.tfp = ones; 931 newVal &= cptrMask; 932 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 933 miscRegName[misc_reg], newVal); 934 } 935 break; 936 case MISCREG_CSSELR: 937 warn_once("The csselr register isn't implemented.\n"); 938 return; 939 940 case MISCREG_DC_ZVA_Xt: 941 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n"); 942 return; 943 944 case MISCREG_FPSCR: 945 { 946 const uint32_t ones = (uint32_t)(-1); 947 FPSCR fpscrMask = 0; 948 fpscrMask.ioc = ones; 949 fpscrMask.dzc = ones; 950 fpscrMask.ofc = ones; 951 fpscrMask.ufc = ones; 952 fpscrMask.ixc = ones; 953 fpscrMask.idc = ones; 954 fpscrMask.ioe = ones; 955 fpscrMask.dze = ones; 956 fpscrMask.ofe = ones; 957 fpscrMask.ufe = ones; 958 fpscrMask.ixe = ones; 959 fpscrMask.ide = ones; 960 fpscrMask.len = ones; 961 fpscrMask.stride = ones; 962 fpscrMask.rMode = ones; 963 fpscrMask.fz = ones; 964 fpscrMask.dn = ones; 965 fpscrMask.ahp = ones; 966 fpscrMask.qc = ones; 967 fpscrMask.v = ones; 968 fpscrMask.c = ones; 969 fpscrMask.z = ones; 970 fpscrMask.n = ones; 971 newVal = (newVal & (uint32_t)fpscrMask) | 972 (readMiscRegNoEffect(MISCREG_FPSCR) & 973 ~(uint32_t)fpscrMask); 974 tc->getDecoderPtr()->setContext(newVal); 975 } 976 break; 977 case MISCREG_FPSR: 978 { 979 const uint32_t ones = (uint32_t)(-1); 980 FPSCR fpscrMask = 0; 981 fpscrMask.ioc = ones; 982 fpscrMask.dzc = ones; 983 fpscrMask.ofc = ones; 984 fpscrMask.ufc = ones; 985 fpscrMask.ixc = ones; 986 fpscrMask.idc = ones; 987 fpscrMask.qc = ones; 988 fpscrMask.v = ones; 989 fpscrMask.c = ones; 990 fpscrMask.z = ones; 991 fpscrMask.n = ones; 992 newVal = (newVal & (uint32_t)fpscrMask) | 993 (readMiscRegNoEffect(MISCREG_FPSCR) & 994 ~(uint32_t)fpscrMask); 995 misc_reg = MISCREG_FPSCR; 996 } 997 break; 998 case MISCREG_FPCR: 999 { 1000 const uint32_t ones = (uint32_t)(-1); 1001 FPSCR fpscrMask = 0; 1002 fpscrMask.ioe = ones; 1003 fpscrMask.dze = ones; 1004 fpscrMask.ofe = ones; 1005 fpscrMask.ufe = ones; 1006 fpscrMask.ixe = ones; 1007 fpscrMask.ide = ones; 1008 fpscrMask.len = ones; 1009 fpscrMask.stride = ones; 1010 fpscrMask.rMode = ones; 1011 fpscrMask.fz = ones; 1012 fpscrMask.dn = ones; 1013 fpscrMask.ahp = ones; 1014 newVal = (newVal & (uint32_t)fpscrMask) | 1015 (readMiscRegNoEffect(MISCREG_FPSCR) & 1016 ~(uint32_t)fpscrMask); 1017 misc_reg = MISCREG_FPSCR; 1018 } 1019 break; 1020 case MISCREG_CPSR_Q: 1021 { 1022 assert(!(newVal & ~CpsrMaskQ)); 1023 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal; 1024 misc_reg = MISCREG_CPSR; 1025 } 1026 break; 1027 case MISCREG_FPSCR_QC: 1028 { 1029 newVal = readMiscRegNoEffect(MISCREG_FPSCR) | 1030 (newVal & FpscrQcMask); 1031 misc_reg = MISCREG_FPSCR; 1032 } 1033 break; 1034 case MISCREG_FPSCR_EXC: 1035 { 1036 newVal = readMiscRegNoEffect(MISCREG_FPSCR) | 1037 (newVal & FpscrExcMask); 1038 misc_reg = MISCREG_FPSCR; 1039 } 1040 break; 1041 case MISCREG_FPEXC: 1042 { 1043 // vfpv3 architecture, section B.6.1 of DDI04068 1044 // bit 29 - valid only if fpexc[31] is 0 1045 const uint32_t fpexcMask = 0x60000000; 1046 newVal = (newVal & fpexcMask) | 1047 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask); 1048 } 1049 break; 1050 case MISCREG_HCR: 1051 { 1052 if (!haveVirtualization) 1053 return; 1054 } 1055 break; 1056 case MISCREG_IFSR: 1057 { 1058 // ARM ARM (ARM DDI 0406C.b) B4.1.96 1059 const uint32_t ifsrMask = 1060 mask(31, 13) | mask(11, 11) | mask(8, 6); 1061 newVal = newVal & ~ifsrMask; 1062 } 1063 break; 1064 case MISCREG_DFSR: 1065 { 1066 // ARM ARM (ARM DDI 0406C.b) B4.1.52 1067 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8); 1068 newVal = newVal & ~dfsrMask; 1069 } 1070 break; 1071 case MISCREG_AMAIR0: 1072 case MISCREG_AMAIR1: 1073 { 1074 // ARM ARM (ARM DDI 0406C.b) B4.1.5 1075 // Valid only with LPAE 1076 if (!haveLPAE) 1077 return; 1078 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal); 1079 } 1080 break; 1081 case MISCREG_SCR: 1082 tc->getITBPtr()->invalidateMiscReg(); 1083 tc->getDTBPtr()->invalidateMiscReg(); 1084 break; 1085 case MISCREG_SCTLR: 1086 { 1087 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal); 1088 MiscRegIndex sctlr_idx; 1089 scr = readMiscRegNoEffect(MISCREG_SCR); 1090 if (haveSecurity && !scr.ns) { 1091 sctlr_idx = MISCREG_SCTLR_S; 1092 } else { 1093 sctlr_idx = MISCREG_SCTLR_NS; 1094 // The FI field (bit 21) is common between S/NS versions 1095 // of the register, we store this in the secure copy of 1096 // the reg 1097 miscRegs[MISCREG_SCTLR_S] &= ~(1 << 21); 1098 miscRegs[MISCREG_SCTLR_S] |= newVal & (1 << 21); 1099 } 1100 SCTLR sctlr = miscRegs[sctlr_idx]; 1101 SCTLR new_sctlr = newVal; 1102 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization; 1103 miscRegs[sctlr_idx] = (MiscReg)new_sctlr; 1104 tc->getITBPtr()->invalidateMiscReg(); 1105 tc->getDTBPtr()->invalidateMiscReg(); 1106 1107 if (new_sctlr.c) 1108 updateBootUncacheable(sctlr_idx, tc); 1109 return; 1110 } 1111 case MISCREG_MIDR: 1112 case MISCREG_ID_PFR0: 1113 case MISCREG_ID_PFR1: 1114 case MISCREG_ID_DFR0: 1115 case MISCREG_ID_MMFR0: 1116 case MISCREG_ID_MMFR1: 1117 case MISCREG_ID_MMFR2: 1118 case MISCREG_ID_MMFR3: 1119 case MISCREG_ID_ISAR0: 1120 case MISCREG_ID_ISAR1: 1121 case MISCREG_ID_ISAR2: 1122 case MISCREG_ID_ISAR3: 1123 case MISCREG_ID_ISAR4: 1124 case MISCREG_ID_ISAR5: 1125 1126 case MISCREG_MPIDR: 1127 case MISCREG_FPSID: 1128 case MISCREG_TLBTR: 1129 case MISCREG_MVFR0: 1130 case MISCREG_MVFR1: 1131 1132 case MISCREG_ID_AA64AFR0_EL1: 1133 case MISCREG_ID_AA64AFR1_EL1: 1134 case MISCREG_ID_AA64DFR0_EL1: 1135 case MISCREG_ID_AA64DFR1_EL1: 1136 case MISCREG_ID_AA64ISAR0_EL1: 1137 case MISCREG_ID_AA64ISAR1_EL1: 1138 case MISCREG_ID_AA64MMFR0_EL1: 1139 case MISCREG_ID_AA64MMFR1_EL1: 1140 case MISCREG_ID_AA64PFR0_EL1: 1141 case MISCREG_ID_AA64PFR1_EL1: 1142 // ID registers are constants. 1143 return; 1144 1145 // TLBI all entries, EL0&1 inner sharable (ignored) 1146 case MISCREG_TLBIALLIS: 1147 case MISCREG_TLBIALL: // TLBI all entries, EL0&1, 1148 assert32(tc); 1149 target_el = 1; // el 0 and 1 are handled together 1150 scr = readMiscReg(MISCREG_SCR, tc); 1151 secure_lookup = haveSecurity && !scr.ns; 1152 sys = tc->getSystemPtr(); 1153 for (x = 0; x < sys->numContexts(); x++) { 1154 oc = sys->getThreadContext(x); 1155 assert(oc->getITBPtr() && oc->getDTBPtr()); 1156 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el); 1157 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el); 1158 1159 // If CheckerCPU is connected, need to notify it of a flush 1160 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1161 if (checker) { 1162 checker->getITBPtr()->flushAllSecurity(secure_lookup, 1163 target_el); 1164 checker->getDTBPtr()->flushAllSecurity(secure_lookup, 1165 target_el); 1166 } 1167 } 1168 return; 1169 // TLBI all entries, EL0&1, instruction side 1170 case MISCREG_ITLBIALL: 1171 assert32(tc); 1172 target_el = 1; // el 0 and 1 are handled together 1173 scr = readMiscReg(MISCREG_SCR, tc); 1174 secure_lookup = haveSecurity && !scr.ns; 1175 tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el); 1176 return; 1177 // TLBI all entries, EL0&1, data side 1178 case MISCREG_DTLBIALL: 1179 assert32(tc); 1180 target_el = 1; // el 0 and 1 are handled together 1181 scr = readMiscReg(MISCREG_SCR, tc); 1182 secure_lookup = haveSecurity && !scr.ns; 1183 tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el); 1184 return; 1185 // TLBI based on VA, EL0&1 inner sharable (ignored) 1186 case MISCREG_TLBIMVAIS: 1187 case MISCREG_TLBIMVA: 1188 assert32(tc); 1189 target_el = 1; // el 0 and 1 are handled together 1190 scr = readMiscReg(MISCREG_SCR, tc); 1191 secure_lookup = haveSecurity && !scr.ns; 1192 sys = tc->getSystemPtr(); 1193 for (x = 0; x < sys->numContexts(); x++) { 1194 oc = sys->getThreadContext(x); 1195 assert(oc->getITBPtr() && oc->getDTBPtr()); 1196 oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1197 bits(newVal, 7,0), 1198 secure_lookup, target_el); 1199 oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1200 bits(newVal, 7,0), 1201 secure_lookup, target_el); 1202 1203 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1204 if (checker) { 1205 checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1206 bits(newVal, 7,0), secure_lookup, target_el); 1207 checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1208 bits(newVal, 7,0), secure_lookup, target_el); 1209 } 1210 } 1211 return; 1212 // TLBI by ASID, EL0&1, inner sharable 1213 case MISCREG_TLBIASIDIS: 1214 case MISCREG_TLBIASID: 1215 assert32(tc); 1216 target_el = 1; // el 0 and 1 are handled together 1217 scr = readMiscReg(MISCREG_SCR, tc); 1218 secure_lookup = haveSecurity && !scr.ns; 1219 sys = tc->getSystemPtr(); 1220 for (x = 0; x < sys->numContexts(); x++) { 1221 oc = sys->getThreadContext(x); 1222 assert(oc->getITBPtr() && oc->getDTBPtr()); 1223 oc->getITBPtr()->flushAsid(bits(newVal, 7,0), 1224 secure_lookup, target_el); 1225 oc->getDTBPtr()->flushAsid(bits(newVal, 7,0), 1226 secure_lookup, target_el); 1227 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1228 if (checker) { 1229 checker->getITBPtr()->flushAsid(bits(newVal, 7,0), 1230 secure_lookup, target_el); 1231 checker->getDTBPtr()->flushAsid(bits(newVal, 7,0), 1232 secure_lookup, target_el); 1233 } 1234 } 1235 return; 1236 // TLBI by address, EL0&1, inner sharable (ignored) 1237 case MISCREG_TLBIMVAAIS: 1238 case MISCREG_TLBIMVAA: 1239 assert32(tc); 1240 target_el = 1; // el 0 and 1 are handled together 1241 scr = readMiscReg(MISCREG_SCR, tc); 1242 secure_lookup = haveSecurity && !scr.ns; 1243 hyp = 0; 1244 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el); 1245 return; 1246 // TLBI by address, EL2, hypervisor mode 1247 case MISCREG_TLBIMVAH: 1248 case MISCREG_TLBIMVAHIS: 1249 assert32(tc); 1250 target_el = 1; // aarch32, use hyp bit 1251 scr = readMiscReg(MISCREG_SCR, tc); 1252 secure_lookup = haveSecurity && !scr.ns; 1253 hyp = 1; 1254 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el); 1255 return; 1256 // TLBI by address and asid, EL0&1, instruction side only 1257 case MISCREG_ITLBIMVA: 1258 assert32(tc); 1259 target_el = 1; // el 0 and 1 are handled together 1260 scr = readMiscReg(MISCREG_SCR, tc); 1261 secure_lookup = haveSecurity && !scr.ns; 1262 tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1263 bits(newVal, 7,0), secure_lookup, target_el); 1264 return; 1265 // TLBI by address and asid, EL0&1, data side only 1266 case MISCREG_DTLBIMVA: 1267 assert32(tc); 1268 target_el = 1; // el 0 and 1 are handled together 1269 scr = readMiscReg(MISCREG_SCR, tc); 1270 secure_lookup = haveSecurity && !scr.ns; 1271 tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1272 bits(newVal, 7,0), secure_lookup, target_el); 1273 return; 1274 // TLBI by ASID, EL0&1, instrution side only 1275 case MISCREG_ITLBIASID: 1276 assert32(tc); 1277 target_el = 1; // el 0 and 1 are handled together 1278 scr = readMiscReg(MISCREG_SCR, tc); 1279 secure_lookup = haveSecurity && !scr.ns; 1280 tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup, 1281 target_el); 1282 return; 1283 // TLBI by ASID EL0&1 data size only 1284 case MISCREG_DTLBIASID: 1285 assert32(tc); 1286 target_el = 1; // el 0 and 1 are handled together 1287 scr = readMiscReg(MISCREG_SCR, tc); 1288 secure_lookup = haveSecurity && !scr.ns; 1289 tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup, 1290 target_el); 1291 return; 1292 // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB 1293 case MISCREG_TLBIALLNSNH: 1294 case MISCREG_TLBIALLNSNHIS: 1295 assert32(tc); 1296 target_el = 1; // el 0 and 1 are handled together 1297 hyp = 0; 1298 tlbiALLN(tc, hyp, target_el); 1299 return; 1300 // TLBI all entries, EL2, hyp, 1301 case MISCREG_TLBIALLH: 1302 case MISCREG_TLBIALLHIS: 1303 assert32(tc); 1304 target_el = 1; // aarch32, use hyp bit 1305 hyp = 1; 1306 tlbiALLN(tc, hyp, target_el); 1307 return; 1308 // AArch64 TLBI: invalidate all entries EL3 1309 case MISCREG_TLBI_ALLE3IS: 1310 case MISCREG_TLBI_ALLE3: 1311 assert64(tc); 1312 target_el = 3; 1313 secure_lookup = true; 1314 tlbiALL(tc, secure_lookup, target_el); 1315 return; 1316 // @todo: uncomment this to enable Virtualization 1317 // case MISCREG_TLBI_ALLE2IS: 1318 // case MISCREG_TLBI_ALLE2: 1319 // TLBI all entries, EL0&1 1320 case MISCREG_TLBI_ALLE1IS: 1321 case MISCREG_TLBI_ALLE1: 1322 // AArch64 TLBI: invalidate all entries, stage 1, current VMID 1323 case MISCREG_TLBI_VMALLE1IS: 1324 case MISCREG_TLBI_VMALLE1: 1325 // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID 1326 case MISCREG_TLBI_VMALLS12E1IS: 1327 case MISCREG_TLBI_VMALLS12E1: 1328 // @todo: handle VMID and stage 2 to enable Virtualization 1329 assert64(tc); 1330 target_el = 1; // el 0 and 1 are handled together 1331 scr = readMiscReg(MISCREG_SCR, tc); 1332 secure_lookup = haveSecurity && !scr.ns; 1333 tlbiALL(tc, secure_lookup, target_el); 1334 return; 1335 // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID 1336 // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries 1337 // from the last level of translation table walks 1338 // @todo: handle VMID to enable Virtualization 1339 // TLBI all entries, EL0&1 1340 case MISCREG_TLBI_VAE3IS_Xt: 1341 case MISCREG_TLBI_VAE3_Xt: 1342 // TLBI by VA, EL3 regime stage 1, last level walk 1343 case MISCREG_TLBI_VALE3IS_Xt: 1344 case MISCREG_TLBI_VALE3_Xt: 1345 assert64(tc); 1346 target_el = 3; 1347 asid = 0xbeef; // does not matter, tlbi is global 1348 secure_lookup = true; 1349 tlbiVA(tc, newVal, asid, secure_lookup, target_el); 1350 return; 1351 // TLBI by VA, EL2 1352 case MISCREG_TLBI_VAE2IS_Xt: 1353 case MISCREG_TLBI_VAE2_Xt: 1354 // TLBI by VA, EL2, stage1 last level walk 1355 case MISCREG_TLBI_VALE2IS_Xt: 1356 case MISCREG_TLBI_VALE2_Xt: 1357 assert64(tc); 1358 target_el = 2; 1359 asid = 0xbeef; // does not matter, tlbi is global 1360 scr = readMiscReg(MISCREG_SCR, tc); 1361 secure_lookup = haveSecurity && !scr.ns; 1362 tlbiVA(tc, newVal, asid, secure_lookup, target_el); 1363 return; 1364 // TLBI by VA EL1 & 0, stage1, ASID, current VMID 1365 case MISCREG_TLBI_VAE1IS_Xt: 1366 case MISCREG_TLBI_VAE1_Xt: 1367 case MISCREG_TLBI_VALE1IS_Xt: 1368 case MISCREG_TLBI_VALE1_Xt: 1369 assert64(tc); 1370 asid = bits(newVal, 63, 48); 1371 target_el = 1; // el 0 and 1 are handled together 1372 scr = readMiscReg(MISCREG_SCR, tc); 1373 secure_lookup = haveSecurity && !scr.ns; 1374 tlbiVA(tc, newVal, asid, secure_lookup, target_el); 1375 return; 1376 // AArch64 TLBI: invalidate by ASID, stage 1, current VMID 1377 // @todo: handle VMID to enable Virtualization 1378 case MISCREG_TLBI_ASIDE1IS_Xt: 1379 case MISCREG_TLBI_ASIDE1_Xt: 1380 assert64(tc); 1381 target_el = 1; // el 0 and 1 are handled together 1382 scr = readMiscReg(MISCREG_SCR, tc); 1383 secure_lookup = haveSecurity && !scr.ns; 1384 sys = tc->getSystemPtr(); 1385 for (x = 0; x < sys->numContexts(); x++) { 1386 oc = sys->getThreadContext(x); 1387 assert(oc->getITBPtr() && oc->getDTBPtr()); 1388 asid = bits(newVal, 63, 48); 1389 if (!haveLargeAsid64) 1390 asid &= mask(8); 1391 oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el); 1392 oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el); 1393 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1394 if (checker) { 1395 checker->getITBPtr()->flushAsid(asid, 1396 secure_lookup, target_el); 1397 checker->getDTBPtr()->flushAsid(asid, 1398 secure_lookup, target_el); 1399 } 1400 } 1401 return; 1402 // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID 1403 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store 1404 // entries from the last level of translation table walks 1405 // @todo: handle VMID to enable Virtualization 1406 case MISCREG_TLBI_VAAE1IS_Xt: 1407 case MISCREG_TLBI_VAAE1_Xt: 1408 case MISCREG_TLBI_VAALE1IS_Xt: 1409 case MISCREG_TLBI_VAALE1_Xt: 1410 assert64(tc); 1411 target_el = 1; // el 0 and 1 are handled together 1412 scr = readMiscReg(MISCREG_SCR, tc); 1413 secure_lookup = haveSecurity && !scr.ns; 1414 sys = tc->getSystemPtr(); 1415 for (x = 0; x < sys->numContexts(); x++) { 1416 // @todo: extra controls on TLBI broadcast? 1417 oc = sys->getThreadContext(x); 1418 assert(oc->getITBPtr() && oc->getDTBPtr()); 1419 Addr va = ((Addr) bits(newVal, 43, 0)) << 12; 1420 oc->getITBPtr()->flushMva(va, 1421 secure_lookup, false, target_el); 1422 oc->getDTBPtr()->flushMva(va, 1423 secure_lookup, false, target_el); 1424 1425 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1426 if (checker) { 1427 checker->getITBPtr()->flushMva(va, 1428 secure_lookup, false, target_el); 1429 checker->getDTBPtr()->flushMva(va, 1430 secure_lookup, false, target_el); 1431 } 1432 } 1433 return; 1434 // AArch64 TLBI: invalidate by IPA, stage 2, current VMID 1435 case MISCREG_TLBI_IPAS2LE1IS_Xt: 1436 case MISCREG_TLBI_IPAS2LE1_Xt: 1437 case MISCREG_TLBI_IPAS2E1IS_Xt: 1438 case MISCREG_TLBI_IPAS2E1_Xt: 1439 assert64(tc); 1440 // @todo: implement these as part of Virtualization 1441 warn("Not doing anything for write of miscreg ITLB_IPAS2\n"); 1442 return; 1443 case MISCREG_ACTLR: 1444 warn("Not doing anything for write of miscreg ACTLR\n"); 1445 break; 1446 1447 case MISCREG_PMXEVTYPER_PMCCFILTR: 1448 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0: 1449 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0: 1450 case MISCREG_PMCR ... MISCREG_PMOVSSET: 1451 pmu->setMiscReg(misc_reg, newVal); 1452 break; 1453 1454 1455 case MISCREG_HSTR: // TJDBX, now redifined to be RES0 1456 { 1457 HSTR hstrMask = 0; 1458 hstrMask.tjdbx = 1; 1459 newVal &= ~((uint32_t) hstrMask); 1460 break; 1461 } 1462 case MISCREG_HCPTR: 1463 { 1464 // If a CP bit in NSACR is 0 then the corresponding bit in 1465 // HCPTR is RAO/WI. Same applies to NSASEDIS 1466 secure_lookup = haveSecurity && 1467 inSecureState(readMiscRegNoEffect(MISCREG_SCR), 1468 readMiscRegNoEffect(MISCREG_CPSR)); 1469 if (!secure_lookup) { 1470 MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR); 1471 MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF; 1472 newVal = (newVal & ~mask) | (oldValue & mask); 1473 } 1474 break; 1475 } 1476 case MISCREG_HDFAR: // alias for secure DFAR 1477 misc_reg = MISCREG_DFAR_S; 1478 break; 1479 case MISCREG_HIFAR: // alias for secure IFAR 1480 misc_reg = MISCREG_IFAR_S; 1481 break; 1482 case MISCREG_ATS1CPR: 1483 case MISCREG_ATS1CPW: 1484 case MISCREG_ATS1CUR: 1485 case MISCREG_ATS1CUW: 1486 case MISCREG_ATS12NSOPR: 1487 case MISCREG_ATS12NSOPW: 1488 case MISCREG_ATS12NSOUR: 1489 case MISCREG_ATS12NSOUW: 1490 case MISCREG_ATS1HR: 1491 case MISCREG_ATS1HW: 1492 { 1493 unsigned flags = 0; 1494 BaseTLB::Mode mode = BaseTLB::Read; 1495 TLB::ArmTranslationType tranType = TLB::NormalTran; 1496 Fault fault; 1497 switch(misc_reg) { 1498 case MISCREG_ATS1CPR: 1499 flags = TLB::MustBeOne; 1500 tranType = TLB::S1CTran; 1501 mode = BaseTLB::Read; 1502 break; 1503 case MISCREG_ATS1CPW: 1504 flags = TLB::MustBeOne; 1505 tranType = TLB::S1CTran; 1506 mode = BaseTLB::Write; 1507 break; 1508 case MISCREG_ATS1CUR: 1509 flags = TLB::MustBeOne | TLB::UserMode; 1510 tranType = TLB::S1CTran; 1511 mode = BaseTLB::Read; 1512 break; 1513 case MISCREG_ATS1CUW: 1514 flags = TLB::MustBeOne | TLB::UserMode; 1515 tranType = TLB::S1CTran; 1516 mode = BaseTLB::Write; 1517 break; 1518 case MISCREG_ATS12NSOPR: 1519 if (!haveSecurity) 1520 panic("Security Extensions required for ATS12NSOPR"); 1521 flags = TLB::MustBeOne; 1522 tranType = TLB::S1S2NsTran; 1523 mode = BaseTLB::Read; 1524 break; 1525 case MISCREG_ATS12NSOPW: 1526 if (!haveSecurity) 1527 panic("Security Extensions required for ATS12NSOPW"); 1528 flags = TLB::MustBeOne; 1529 tranType = TLB::S1S2NsTran; 1530 mode = BaseTLB::Write; 1531 break; 1532 case MISCREG_ATS12NSOUR: 1533 if (!haveSecurity) 1534 panic("Security Extensions required for ATS12NSOUR"); 1535 flags = TLB::MustBeOne | TLB::UserMode; 1536 tranType = TLB::S1S2NsTran; 1537 mode = BaseTLB::Read; 1538 break; 1539 case MISCREG_ATS12NSOUW: 1540 if (!haveSecurity) 1541 panic("Security Extensions required for ATS12NSOUW"); 1542 flags = TLB::MustBeOne | TLB::UserMode; 1543 tranType = TLB::S1S2NsTran; 1544 mode = BaseTLB::Write; 1545 break; 1546 case MISCREG_ATS1HR: // only really useful from secure mode. 1547 flags = TLB::MustBeOne; 1548 tranType = TLB::HypMode; 1549 mode = BaseTLB::Read; 1550 break; 1551 case MISCREG_ATS1HW: 1552 flags = TLB::MustBeOne; 1553 tranType = TLB::HypMode; 1554 mode = BaseTLB::Write; 1555 break; 1556 } 1557 // If we're in timing mode then doing the translation in 1558 // functional mode then we're slightly distorting performance 1559 // results obtained from simulations. The translation should be 1560 // done in the same mode the core is running in. NOTE: This 1561 // can't be an atomic translation because that causes problems 1562 // with unexpected atomic snoop requests. 1563 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg); 1564 Request req(0, val, 1, flags, Request::funcMasterId, 1565 tc->pcState().pc(), tc->contextId(), 1566 tc->threadId()); 1567 fault = tc->getDTBPtr()->translateFunctional(&req, tc, mode, tranType); 1568 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1569 HCR hcr = readMiscRegNoEffect(MISCREG_HCR); 1570 1571 MiscReg newVal; 1572 if (fault == NoFault) { 1573 Addr paddr = req.getPaddr(); 1574 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode || 1575 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) { 1576 newVal = (paddr & mask(39, 12)) | 1577 (tc->getDTBPtr()->getAttr()); 1578 } else { 1579 newVal = (paddr & 0xfffff000) | 1580 (tc->getDTBPtr()->getAttr()); 1581 } 1582 DPRINTF(MiscRegs, 1583 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n", 1584 val, newVal); 1585 } else { 1586 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get()); 1587 // Set fault bit and FSR 1588 FSR fsr = armFault->getFsr(tc); 1589 1590 newVal = ((fsr >> 9) & 1) << 11; 1591 if (newVal) { 1592 // LPAE - rearange fault status 1593 newVal |= ((fsr >> 0) & 0x3f) << 1; 1594 } else { 1595 // VMSA - rearange fault status 1596 newVal |= ((fsr >> 0) & 0xf) << 1; 1597 newVal |= ((fsr >> 10) & 0x1) << 5; 1598 newVal |= ((fsr >> 12) & 0x1) << 6; 1599 } 1600 newVal |= 0x1; // F bit 1601 newVal |= ((armFault->iss() >> 7) & 0x1) << 8; 1602 newVal |= armFault->isStage2() ? 0x200 : 0; 1603 DPRINTF(MiscRegs, 1604 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n", 1605 val, fsr, newVal); 1606 } 1607 setMiscRegNoEffect(MISCREG_PAR, newVal); 1608 return; 1609 } 1610 case MISCREG_TTBCR: 1611 { 1612 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1613 const uint32_t ones = (uint32_t)(-1); 1614 TTBCR ttbcrMask = 0; 1615 TTBCR ttbcrNew = newVal; 1616 1617 // ARM DDI 0406C.b, ARMv7-32 1618 ttbcrMask.n = ones; // T0SZ 1619 if (haveSecurity) { 1620 ttbcrMask.pd0 = ones; 1621 ttbcrMask.pd1 = ones; 1622 } 1623 ttbcrMask.epd0 = ones; 1624 ttbcrMask.irgn0 = ones; 1625 ttbcrMask.orgn0 = ones; 1626 ttbcrMask.sh0 = ones; 1627 ttbcrMask.ps = ones; // T1SZ 1628 ttbcrMask.a1 = ones; 1629 ttbcrMask.epd1 = ones; 1630 ttbcrMask.irgn1 = ones; 1631 ttbcrMask.orgn1 = ones; 1632 ttbcrMask.sh1 = ones; 1633 if (haveLPAE) 1634 ttbcrMask.eae = ones; 1635 1636 if (haveLPAE && ttbcrNew.eae) { 1637 newVal = newVal & ttbcrMask; 1638 } else { 1639 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask)); 1640 } 1641 } 1642 case MISCREG_TTBR0: 1643 case MISCREG_TTBR1: 1644 { 1645 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1646 if (haveLPAE) { 1647 if (ttbcr.eae) { 1648 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP 1649 // ARMv8 AArch32 bit 63-56 only 1650 uint64_t ttbrMask = mask(63,56) | mask(47,40); 1651 newVal = (newVal & (~ttbrMask)); 1652 } 1653 } 1654 } 1655 case MISCREG_SCTLR_EL1: 1656 { 1657 tc->getITBPtr()->invalidateMiscReg(); 1658 tc->getDTBPtr()->invalidateMiscReg(); 1659 SCTLR new_sctlr = newVal; 1660 setMiscRegNoEffect(misc_reg, newVal); 1661 if (new_sctlr.c) 1662 updateBootUncacheable(misc_reg, tc); 1663 return; 1664 } 1665 case MISCREG_CONTEXTIDR: 1666 case MISCREG_PRRR: 1667 case MISCREG_NMRR: 1668 case MISCREG_MAIR0: 1669 case MISCREG_MAIR1: 1670 case MISCREG_DACR: 1671 case MISCREG_VTTBR: 1672 case MISCREG_SCR_EL3: 1673 case MISCREG_TCR_EL1: 1674 case MISCREG_TCR_EL2: 1675 case MISCREG_TCR_EL3: 1676 case MISCREG_SCTLR_EL2: 1677 case MISCREG_SCTLR_EL3: 1678 case MISCREG_TTBR0_EL1: 1679 case MISCREG_TTBR1_EL1: 1680 case MISCREG_TTBR0_EL2: 1681 case MISCREG_TTBR0_EL3: 1682 tc->getITBPtr()->invalidateMiscReg(); 1683 tc->getDTBPtr()->invalidateMiscReg(); 1684 break; 1685 case MISCREG_NZCV: 1686 { 1687 CPSR cpsr = val; 1688 1689 tc->setCCReg(CCREG_NZ, cpsr.nz); 1690 tc->setCCReg(CCREG_C, cpsr.c); 1691 tc->setCCReg(CCREG_V, cpsr.v); 1692 } 1693 break; 1694 case MISCREG_DAIF: 1695 { 1696 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1697 cpsr.daif = (uint8_t) ((CPSR) newVal).daif; 1698 newVal = cpsr; 1699 misc_reg = MISCREG_CPSR; 1700 } 1701 break; 1702 case MISCREG_SP_EL0: 1703 tc->setIntReg(INTREG_SP0, newVal); 1704 break; 1705 case MISCREG_SP_EL1: 1706 tc->setIntReg(INTREG_SP1, newVal); 1707 break; 1708 case MISCREG_SP_EL2: 1709 tc->setIntReg(INTREG_SP2, newVal); 1710 break; 1711 case MISCREG_SPSEL: 1712 { 1713 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1714 cpsr.sp = (uint8_t) ((CPSR) newVal).sp; 1715 newVal = cpsr; 1716 misc_reg = MISCREG_CPSR; 1717 } 1718 break; 1719 case MISCREG_CURRENTEL: 1720 { 1721 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1722 cpsr.el = (uint8_t) ((CPSR) newVal).el; 1723 newVal = cpsr; 1724 misc_reg = MISCREG_CPSR; 1725 } 1726 break; 1727 case MISCREG_AT_S1E1R_Xt: 1728 case MISCREG_AT_S1E1W_Xt: 1729 case MISCREG_AT_S1E0R_Xt: 1730 case MISCREG_AT_S1E0W_Xt: 1731 case MISCREG_AT_S1E2R_Xt: 1732 case MISCREG_AT_S1E2W_Xt: 1733 case MISCREG_AT_S12E1R_Xt: 1734 case MISCREG_AT_S12E1W_Xt: 1735 case MISCREG_AT_S12E0R_Xt: 1736 case MISCREG_AT_S12E0W_Xt: 1737 case MISCREG_AT_S1E3R_Xt: 1738 case MISCREG_AT_S1E3W_Xt: 1739 { 1740 RequestPtr req = new Request; 1741 unsigned flags = 0; 1742 BaseTLB::Mode mode = BaseTLB::Read; 1743 TLB::ArmTranslationType tranType = TLB::NormalTran; 1744 Fault fault; 1745 switch(misc_reg) { 1746 case MISCREG_AT_S1E1R_Xt: 1747 flags = TLB::MustBeOne; 1748 tranType = TLB::S1CTran; 1749 mode = BaseTLB::Read; 1750 break; 1751 case MISCREG_AT_S1E1W_Xt: 1752 flags = TLB::MustBeOne; 1753 tranType = TLB::S1CTran; 1754 mode = BaseTLB::Write; 1755 break; 1756 case MISCREG_AT_S1E0R_Xt: 1757 flags = TLB::MustBeOne | TLB::UserMode; 1758 tranType = TLB::S1CTran; 1759 mode = BaseTLB::Read; 1760 break; 1761 case MISCREG_AT_S1E0W_Xt: 1762 flags = TLB::MustBeOne | TLB::UserMode; 1763 tranType = TLB::S1CTran; 1764 mode = BaseTLB::Write; 1765 break; 1766 case MISCREG_AT_S1E2R_Xt: 1767 flags = TLB::MustBeOne; 1768 tranType = TLB::HypMode; 1769 mode = BaseTLB::Read; 1770 break; 1771 case MISCREG_AT_S1E2W_Xt: 1772 flags = TLB::MustBeOne; 1773 tranType = TLB::HypMode; 1774 mode = BaseTLB::Write; 1775 break; 1776 case MISCREG_AT_S12E0R_Xt: 1777 flags = TLB::MustBeOne | TLB::UserMode; 1778 tranType = TLB::S1S2NsTran; 1779 mode = BaseTLB::Read; 1780 break; 1781 case MISCREG_AT_S12E0W_Xt: 1782 flags = TLB::MustBeOne | TLB::UserMode; 1783 tranType = TLB::S1S2NsTran; 1784 mode = BaseTLB::Write; 1785 break; 1786 case MISCREG_AT_S12E1R_Xt: 1787 flags = TLB::MustBeOne; 1788 tranType = TLB::S1S2NsTran; 1789 mode = BaseTLB::Read; 1790 break; 1791 case MISCREG_AT_S12E1W_Xt: 1792 flags = TLB::MustBeOne; 1793 tranType = TLB::S1S2NsTran; 1794 mode = BaseTLB::Write; 1795 break; 1796 case MISCREG_AT_S1E3R_Xt: 1797 flags = TLB::MustBeOne; 1798 tranType = TLB::HypMode; // There is no TZ mode defined. 1799 mode = BaseTLB::Read; 1800 break; 1801 case MISCREG_AT_S1E3W_Xt: 1802 flags = TLB::MustBeOne; 1803 tranType = TLB::HypMode; // There is no TZ mode defined. 1804 mode = BaseTLB::Write; 1805 break; 1806 } 1807 // If we're in timing mode then doing the translation in 1808 // functional mode then we're slightly distorting performance 1809 // results obtained from simulations. The translation should be 1810 // done in the same mode the core is running in. NOTE: This 1811 // can't be an atomic translation because that causes problems 1812 // with unexpected atomic snoop requests. 1813 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg); 1814 req->setVirt(0, val, 1, flags, Request::funcMasterId, 1815 tc->pcState().pc()); 1816 req->setThreadContext(tc->contextId(), tc->threadId()); 1817 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode, 1818 tranType); 1819 1820 MiscReg newVal; 1821 if (fault == NoFault) { 1822 Addr paddr = req->getPaddr(); 1823 uint64_t attr = tc->getDTBPtr()->getAttr(); 1824 uint64_t attr1 = attr >> 56; 1825 if (!attr1 || attr1 ==0x44) { 1826 attr |= 0x100; 1827 attr &= ~ uint64_t(0x80); 1828 } 1829 newVal = (paddr & mask(47, 12)) | attr; 1830 DPRINTF(MiscRegs, 1831 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n", 1832 val, newVal); 1833 } else { 1834 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get()); 1835 // Set fault bit and FSR 1836 FSR fsr = armFault->getFsr(tc); 1837 1838 newVal = ((fsr >> 9) & 1) << 11; 1839 // rearange fault status 1840 newVal |= ((fsr >> 0) & 0x3f) << 1; 1841 newVal |= 0x1; // F bit 1842 newVal |= ((armFault->iss() >> 7) & 0x1) << 8; 1843 newVal |= armFault->isStage2() ? 0x200 : 0; 1844 DPRINTF(MiscRegs, 1845 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n", 1846 val, fsr, newVal); 1847 } 1848 delete req; 1849 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal); 1850 return; 1851 } 1852 case MISCREG_SPSR_EL3: 1853 case MISCREG_SPSR_EL2: 1854 case MISCREG_SPSR_EL1: 1855 // Force bits 23:21 to 0 1856 newVal = val & ~(0x7 << 21); 1857 break; 1858 case MISCREG_L2CTLR: 1859 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n", 1860 miscRegName[misc_reg], uint32_t(val)); 1861 break; 1862 1863 // Generic Timer registers 1864 case MISCREG_CNTFRQ: 1865 case MISCREG_CNTFRQ_EL0: 1866 getSystemCounter(tc)->setFreq(val); 1867 break; 1868 case MISCREG_CNTP_CVAL: 1869 case MISCREG_CNTP_CVAL_EL0: 1870 getArchTimer(tc, tc->cpuId())->setCompareValue(val); 1871 break; 1872 case MISCREG_CNTP_TVAL: 1873 case MISCREG_CNTP_TVAL_EL0: 1874 getArchTimer(tc, tc->cpuId())->setTimerValue(val); 1875 break; 1876 case MISCREG_CNTP_CTL: 1877 case MISCREG_CNTP_CTL_EL0: 1878 getArchTimer(tc, tc->cpuId())->setControl(val); 1879 break; 1880 // PL1 phys. timer, secure 1881 // AArch64 1882 case MISCREG_CNTPS_CVAL_EL1: 1883 case MISCREG_CNTPS_TVAL_EL1: 1884 case MISCREG_CNTPS_CTL_EL1: 1885 // PL2 phys. timer, non-secure 1886 // AArch32 1887 case MISCREG_CNTHCTL: 1888 case MISCREG_CNTHP_CVAL: 1889 case MISCREG_CNTHP_TVAL: 1890 case MISCREG_CNTHP_CTL: 1891 // AArch64 1892 case MISCREG_CNTHCTL_EL2: 1893 case MISCREG_CNTHP_CVAL_EL2: 1894 case MISCREG_CNTHP_TVAL_EL2: 1895 case MISCREG_CNTHP_CTL_EL2: 1896 // Virtual timer 1897 // AArch32 1898 case MISCREG_CNTV_CVAL: 1899 case MISCREG_CNTV_TVAL: 1900 case MISCREG_CNTV_CTL: 1901 // AArch64 1902 // case MISCREG_CNTV_CVAL_EL2: 1903 // case MISCREG_CNTV_TVAL_EL2: 1904 // case MISCREG_CNTV_CTL_EL2: 1905 break; 1906 } 1907 } 1908 setMiscRegNoEffect(misc_reg, newVal); 1909} 1910 1911void 1912ISA::updateBootUncacheable(int sctlr_idx, ThreadContext *tc) 1913{ 1914 System *sys; 1915 ThreadContext *oc; 1916 1917 // Check if all CPUs are booted with caches enabled 1918 // so we can stop enforcing coherency of some kernel 1919 // structures manually. 1920 sys = tc->getSystemPtr(); 1921 for (int x = 0; x < sys->numContexts(); x++) { 1922 oc = sys->getThreadContext(x); 1923 // @todo: double check this for security 1924 SCTLR other_sctlr = oc->readMiscRegNoEffect(sctlr_idx); 1925 if (!other_sctlr.c && oc->status() != ThreadContext::Halted) 1926 return; 1927 } 1928 1929 for (int x = 0; x < sys->numContexts(); x++) { 1930 oc = sys->getThreadContext(x); 1931 oc->getDTBPtr()->allCpusCaching(); 1932 oc->getITBPtr()->allCpusCaching(); 1933 1934 // If CheckerCPU is connected, need to notify it. 1935 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1936 if (checker) { 1937 checker->getDTBPtr()->allCpusCaching(); 1938 checker->getITBPtr()->allCpusCaching(); 1939 } 1940 } 1941} 1942 1943void 1944ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint16_t asid, 1945 bool secure_lookup, uint8_t target_el) 1946{ 1947 if (!haveLargeAsid64) 1948 asid &= mask(8); 1949 Addr va = ((Addr) bits(newVal, 43, 0)) << 12; 1950 System *sys = tc->getSystemPtr(); 1951 for (int x = 0; x < sys->numContexts(); x++) { 1952 ThreadContext *oc = sys->getThreadContext(x); 1953 assert(oc->getITBPtr() && oc->getDTBPtr()); 1954 oc->getITBPtr()->flushMvaAsid(va, asid, 1955 secure_lookup, target_el); 1956 oc->getDTBPtr()->flushMvaAsid(va, asid, 1957 secure_lookup, target_el); 1958 1959 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1960 if (checker) { 1961 checker->getITBPtr()->flushMvaAsid( 1962 va, asid, secure_lookup, target_el); 1963 checker->getDTBPtr()->flushMvaAsid( 1964 va, asid, secure_lookup, target_el); 1965 } 1966 } 1967} 1968 1969void 1970ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el) 1971{ 1972 System *sys = tc->getSystemPtr(); 1973 for (int x = 0; x < sys->numContexts(); x++) { 1974 ThreadContext *oc = sys->getThreadContext(x); 1975 assert(oc->getITBPtr() && oc->getDTBPtr()); 1976 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el); 1977 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el); 1978 1979 // If CheckerCPU is connected, need to notify it of a flush 1980 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1981 if (checker) { 1982 checker->getITBPtr()->flushAllSecurity(secure_lookup, 1983 target_el); 1984 checker->getDTBPtr()->flushAllSecurity(secure_lookup, 1985 target_el); 1986 } 1987 } 1988} 1989 1990void 1991ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el) 1992{ 1993 System *sys = tc->getSystemPtr(); 1994 for (int x = 0; x < sys->numContexts(); x++) { 1995 ThreadContext *oc = sys->getThreadContext(x); 1996 assert(oc->getITBPtr() && oc->getDTBPtr()); 1997 oc->getITBPtr()->flushAllNs(hyp, target_el); 1998 oc->getDTBPtr()->flushAllNs(hyp, target_el); 1999 2000 CheckerCPU *checker = oc->getCheckerCpuPtr(); 2001 if (checker) { 2002 checker->getITBPtr()->flushAllNs(hyp, target_el); 2003 checker->getDTBPtr()->flushAllNs(hyp, target_el); 2004 } 2005 } 2006} 2007 2008void 2009ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp, 2010 uint8_t target_el) 2011{ 2012 System *sys = tc->getSystemPtr(); 2013 for (int x = 0; x < sys->numContexts(); x++) { 2014 ThreadContext *oc = sys->getThreadContext(x); 2015 assert(oc->getITBPtr() && oc->getDTBPtr()); 2016 oc->getITBPtr()->flushMva(mbits(newVal, 31,12), 2017 secure_lookup, hyp, target_el); 2018 oc->getDTBPtr()->flushMva(mbits(newVal, 31,12), 2019 secure_lookup, hyp, target_el); 2020 2021 CheckerCPU *checker = oc->getCheckerCpuPtr(); 2022 if (checker) { 2023 checker->getITBPtr()->flushMva(mbits(newVal, 31,12), 2024 secure_lookup, hyp, target_el); 2025 checker->getDTBPtr()->flushMva(mbits(newVal, 31,12), 2026 secure_lookup, hyp, target_el); 2027 } 2028 } 2029} 2030 2031::GenericTimer::SystemCounter * 2032ISA::getSystemCounter(ThreadContext *tc) 2033{ 2034 ::GenericTimer::SystemCounter *cnt = ((ArmSystem *) tc->getSystemPtr())-> 2035 getSystemCounter(); 2036 if (cnt == NULL) { 2037 panic("System counter not available\n"); 2038 } 2039 return cnt; 2040} 2041 2042::GenericTimer::ArchTimer * 2043ISA::getArchTimer(ThreadContext *tc, int cpu_id) 2044{ 2045 ::GenericTimer::ArchTimer *timer = ((ArmSystem *) tc->getSystemPtr())-> 2046 getArchTimer(cpu_id); 2047 if (timer == NULL) { 2048 panic("Architected timer not available\n"); 2049 } 2050 return timer; 2051} 2052 2053} 2054 2055ArmISA::ISA * 2056ArmISAParams::create() 2057{ 2058 return new ArmISA::ISA(this); 2059} 2060