isa.cc revision 10204:82d8f37e5b57
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 *          Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/system.hh"
43#include "cpu/checker/cpu.hh"
44#include "debug/Arm.hh"
45#include "debug/MiscRegs.hh"
46#include "params/ArmISA.hh"
47#include "sim/faults.hh"
48#include "sim/stat_control.hh"
49#include "sim/system.hh"
50
51namespace ArmISA
52{
53
54
55/**
56 * Some registers aliase with others, and therefore need to be translated.
57 * For each entry:
58 * The first value is the misc register that is to be looked up
59 * the second value is the lower part of the translation
60 * the third the upper part
61 */
62const struct ISA::MiscRegInitializerEntry
63    ISA::MiscRegSwitch[miscRegTranslateMax] = {
64    {MISCREG_CSSELR_EL1, {MISCREG_CSSELR, 0}},
65    {MISCREG_SCTLR_EL1, {MISCREG_SCTLR, 0}},
66    {MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}},
67    {MISCREG_ACTLR_EL1, {MISCREG_ACTLR, 0}},
68    {MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}},
69    {MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}},
70    {MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}},
71    {MISCREG_HCR_EL2, {MISCREG_HCR, 0}},
72    {MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}},
73    {MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}},
74    {MISCREG_HACR_EL2, {MISCREG_HACR, 0}},
75    {MISCREG_TTBR0_EL1, {MISCREG_TTBR0, 0}},
76    {MISCREG_TTBR1_EL1, {MISCREG_TTBR1, 0}},
77    {MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}},
78    {MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}},
79    {MISCREG_TCR_EL1, {MISCREG_TTBCR, 0}},
80    {MISCREG_TCR_EL2, {MISCREG_HTCR, 0}},
81    {MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}},
82    {MISCREG_AFSR0_EL1, {MISCREG_ADFSR, 0}},
83    {MISCREG_AFSR1_EL1, {MISCREG_AIFSR, 0}},
84    {MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}},
85    {MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}},
86    {MISCREG_ESR_EL2, {MISCREG_HSR, 0}},
87    {MISCREG_FAR_EL1, {MISCREG_DFAR, MISCREG_IFAR}},
88    {MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}},
89    {MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}},
90    {MISCREG_PAR_EL1, {MISCREG_PAR, 0}},
91    {MISCREG_MAIR_EL1, {MISCREG_PRRR, MISCREG_NMRR}},
92    {MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}},
93    {MISCREG_AMAIR_EL1, {MISCREG_AMAIR0, MISCREG_AMAIR1}},
94    {MISCREG_VBAR_EL1, {MISCREG_VBAR, 0}},
95    {MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}},
96    {MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR, 0}},
97    {MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW, 0}},
98    {MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO, 0}},
99    {MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW, 0}},
100    {MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}},
101    {MISCREG_TEECR32_EL1, {MISCREG_TEECR, 0}},
102    {MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}},
103    {MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}},
104    {MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}},
105    {MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}},
106    {MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}},
107    {MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}},
108    {MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL, 0}},
109    {MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL, 0}},
110    {MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL, 0}},
111    {MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}},
112    {MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}},
113    {MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}},
114    {MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}},
115    {MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}},
116    {MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}},
117    {MISCREG_DACR32_EL2, {MISCREG_DACR, 0}},
118    {MISCREG_IFSR32_EL2, {MISCREG_IFSR, 0}},
119    {MISCREG_TEEHBR32_EL1, {MISCREG_TEEHBR, 0}},
120    {MISCREG_SDER32_EL3, {MISCREG_SDER, 0}}
121};
122
123
124ISA::ISA(Params *p)
125    : SimObject(p), system(NULL), lookUpMiscReg(NUM_MISCREGS, {0,0})
126{
127    SCTLR sctlr;
128    sctlr = 0;
129    miscRegs[MISCREG_SCTLR_RST] = sctlr;
130
131    system = dynamic_cast<ArmSystem *>(p->system);
132    DPRINTFN("ISA system set to: %p %p\n", system, p->system);
133
134    // Cache system-level properties
135    if (FullSystem && system) {
136        haveSecurity = system->haveSecurity();
137        haveLPAE = system->haveLPAE();
138        haveVirtualization = system->haveVirtualization();
139        haveLargeAsid64 = system->haveLargeAsid64();
140        physAddrRange64 = system->physAddrRange64();
141    } else {
142        haveSecurity = haveLPAE = haveVirtualization = false;
143        haveLargeAsid64 = false;
144        physAddrRange64 = 32;  // dummy value
145    }
146
147    /** Fill in the miscReg translation table */
148    for (uint32_t i = 0; i < miscRegTranslateMax; i++) {
149        struct MiscRegLUTEntry new_entry;
150
151        uint32_t select = MiscRegSwitch[i].index;
152        new_entry = MiscRegSwitch[i].entry;
153
154        lookUpMiscReg[select] = new_entry;
155    }
156
157    preUnflattenMiscReg();
158
159    clear();
160}
161
162const ArmISAParams *
163ISA::params() const
164{
165    return dynamic_cast<const Params *>(_params);
166}
167
168void
169ISA::clear()
170{
171    const Params *p(params());
172
173    SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
174    memset(miscRegs, 0, sizeof(miscRegs));
175
176    // Initialize configurable default values
177    miscRegs[MISCREG_MIDR] = p->midr;
178    miscRegs[MISCREG_MIDR_EL1] = p->midr;
179    miscRegs[MISCREG_VPIDR] = p->midr;
180
181    if (FullSystem && system->highestELIs64()) {
182        // Initialize AArch64 state
183        clear64(p);
184        return;
185    }
186
187    // Initialize AArch32 state...
188
189    CPSR cpsr = 0;
190    cpsr.mode = MODE_USER;
191    miscRegs[MISCREG_CPSR] = cpsr;
192    updateRegMap(cpsr);
193
194    SCTLR sctlr = 0;
195    sctlr.te = (bool) sctlr_rst.te;
196    sctlr.nmfi = (bool) sctlr_rst.nmfi;
197    sctlr.v = (bool) sctlr_rst.v;
198    sctlr.u = 1;
199    sctlr.xp = 1;
200    sctlr.rao2 = 1;
201    sctlr.rao3 = 1;
202    sctlr.rao4 = 0xf;  // SCTLR[6:3]
203    sctlr.uci = 1;
204    sctlr.dze = 1;
205    miscRegs[MISCREG_SCTLR_NS] = sctlr;
206    miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
207    miscRegs[MISCREG_HCPTR] = 0;
208
209    // Start with an event in the mailbox
210    miscRegs[MISCREG_SEV_MAILBOX] = 1;
211
212    // Separate Instruction and Data TLBs
213    miscRegs[MISCREG_TLBTR] = 1;
214
215    MVFR0 mvfr0 = 0;
216    mvfr0.advSimdRegisters = 2;
217    mvfr0.singlePrecision = 2;
218    mvfr0.doublePrecision = 2;
219    mvfr0.vfpExceptionTrapping = 0;
220    mvfr0.divide = 1;
221    mvfr0.squareRoot = 1;
222    mvfr0.shortVectors = 1;
223    mvfr0.roundingModes = 1;
224    miscRegs[MISCREG_MVFR0] = mvfr0;
225
226    MVFR1 mvfr1 = 0;
227    mvfr1.flushToZero = 1;
228    mvfr1.defaultNaN = 1;
229    mvfr1.advSimdLoadStore = 1;
230    mvfr1.advSimdInteger = 1;
231    mvfr1.advSimdSinglePrecision = 1;
232    mvfr1.advSimdHalfPrecision = 1;
233    mvfr1.vfpHalfPrecision = 1;
234    miscRegs[MISCREG_MVFR1] = mvfr1;
235
236    // Reset values of PRRR and NMRR are implementation dependent
237
238    // @todo: PRRR and NMRR in secure state?
239    miscRegs[MISCREG_PRRR_NS] =
240        (1 << 19) | // 19
241        (0 << 18) | // 18
242        (0 << 17) | // 17
243        (1 << 16) | // 16
244        (2 << 14) | // 15:14
245        (0 << 12) | // 13:12
246        (2 << 10) | // 11:10
247        (2 << 8)  | // 9:8
248        (2 << 6)  | // 7:6
249        (2 << 4)  | // 5:4
250        (1 << 2)  | // 3:2
251        0;          // 1:0
252    miscRegs[MISCREG_NMRR_NS] =
253        (1 << 30) | // 31:30
254        (0 << 26) | // 27:26
255        (0 << 24) | // 25:24
256        (3 << 22) | // 23:22
257        (2 << 20) | // 21:20
258        (0 << 18) | // 19:18
259        (0 << 16) | // 17:16
260        (1 << 14) | // 15:14
261        (0 << 12) | // 13:12
262        (2 << 10) | // 11:10
263        (0 << 8)  | // 9:8
264        (3 << 6)  | // 7:6
265        (2 << 4)  | // 5:4
266        (0 << 2)  | // 3:2
267        0;          // 1:0
268
269    miscRegs[MISCREG_CPACR] = 0;
270
271
272    miscRegs[MISCREG_ID_PFR0] = p->id_pfr0;
273    miscRegs[MISCREG_ID_PFR1] = p->id_pfr1;
274
275    miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
276    miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
277    miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
278    miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
279
280    miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
281    miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
282    miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
283    miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
284    miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
285    miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
286
287    miscRegs[MISCREG_FPSID] = p->fpsid;
288
289    if (haveLPAE) {
290        TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
291        ttbcr.eae = 0;
292        miscRegs[MISCREG_TTBCR_NS] = ttbcr;
293        // Enforce consistency with system-level settings
294        miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
295    }
296
297    if (haveSecurity) {
298        miscRegs[MISCREG_SCTLR_S] = sctlr;
299        miscRegs[MISCREG_SCR] = 0;
300        miscRegs[MISCREG_VBAR_S] = 0;
301    } else {
302        // we're always non-secure
303        miscRegs[MISCREG_SCR] = 1;
304    }
305
306    //XXX We need to initialize the rest of the state.
307}
308
309void
310ISA::clear64(const ArmISAParams *p)
311{
312    CPSR cpsr = 0;
313    Addr rvbar = system->resetAddr64();
314    switch (system->highestEL()) {
315        // Set initial EL to highest implemented EL using associated stack
316        // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
317        // value
318      case EL3:
319        cpsr.mode = MODE_EL3H;
320        miscRegs[MISCREG_RVBAR_EL3] = rvbar;
321        break;
322      case EL2:
323        cpsr.mode = MODE_EL2H;
324        miscRegs[MISCREG_RVBAR_EL2] = rvbar;
325        break;
326      case EL1:
327        cpsr.mode = MODE_EL1H;
328        miscRegs[MISCREG_RVBAR_EL1] = rvbar;
329        break;
330      default:
331        panic("Invalid highest implemented exception level");
332        break;
333    }
334
335    // Initialize rest of CPSR
336    cpsr.daif = 0xf;  // Mask all interrupts
337    cpsr.ss = 0;
338    cpsr.il = 0;
339    miscRegs[MISCREG_CPSR] = cpsr;
340    updateRegMap(cpsr);
341
342    // Initialize other control registers
343    miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
344    if (haveSecurity) {
345        miscRegs[MISCREG_SCTLR_EL3] = 0x30c50870;
346        miscRegs[MISCREG_SCR_EL3]   = 0x00000030;  // RES1 fields
347    // @todo: uncomment this to enable Virtualization
348    // } else if (haveVirtualization) {
349    //     miscRegs[MISCREG_SCTLR_EL2] = 0x30c50870;
350    } else {
351        miscRegs[MISCREG_SCTLR_EL1] = 0x30c50870;
352        // Always non-secure
353        miscRegs[MISCREG_SCR_EL3] = 1;
354    }
355
356    // Initialize configurable id registers
357    miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
358    miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
359    miscRegs[MISCREG_ID_AA64DFR0_EL1] = p->id_aa64dfr0_el1;
360    miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
361    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
362    miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
363    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
364    miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
365    miscRegs[MISCREG_ID_AA64PFR0_EL1] = p->id_aa64pfr0_el1;
366    miscRegs[MISCREG_ID_AA64PFR1_EL1] = p->id_aa64pfr1_el1;
367
368    // Enforce consistency with system-level settings...
369
370    // EL3
371    // (no AArch32/64 interprocessing support for now)
372    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
373        miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
374        haveSecurity ? 0x1 : 0x0);
375    // EL2
376    // (no AArch32/64 interprocessing support for now)
377    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
378        miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
379        haveVirtualization ? 0x1 : 0x0);
380    // Large ASID support
381    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
382        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
383        haveLargeAsid64 ? 0x2 : 0x0);
384    // Physical address size
385    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
386        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
387        encodePhysAddrRange64(physAddrRange64));
388}
389
390MiscReg
391ISA::readMiscRegNoEffect(int misc_reg) const
392{
393    assert(misc_reg < NumMiscRegs);
394
395    int flat_idx = flattenMiscIndex(misc_reg);  // Note: indexes of AArch64
396                                                // registers are left unchanged
397    MiscReg val;
398
399    if (lookUpMiscReg[flat_idx].lower == 0 || flat_idx == MISCREG_SPSR
400            || flat_idx == MISCREG_SCTLR_EL1) {
401        if (flat_idx == MISCREG_SPSR)
402            flat_idx = flattenMiscIndex(MISCREG_SPSR);
403        if (flat_idx == MISCREG_SCTLR_EL1)
404            flat_idx = flattenMiscIndex(MISCREG_SCTLR);
405        val = miscRegs[flat_idx];
406    } else
407        if (lookUpMiscReg[flat_idx].upper > 0)
408            val = ((miscRegs[lookUpMiscReg[flat_idx].lower] & mask(32))
409                    | (miscRegs[lookUpMiscReg[flat_idx].upper] << 32));
410        else
411            val = miscRegs[lookUpMiscReg[flat_idx].lower];
412
413    return val;
414}
415
416
417MiscReg
418ISA::readMiscReg(int misc_reg, ThreadContext *tc)
419{
420    CPSR cpsr = 0;
421    PCState pc = 0;
422    SCR scr = 0;
423
424    if (misc_reg == MISCREG_CPSR) {
425        cpsr = miscRegs[misc_reg];
426        pc = tc->pcState();
427        cpsr.j = pc.jazelle() ? 1 : 0;
428        cpsr.t = pc.thumb() ? 1 : 0;
429        return cpsr;
430    }
431
432#ifndef NDEBUG
433    if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
434        if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
435            warn("Unimplemented system register %s read.\n",
436                 miscRegName[misc_reg]);
437        else
438            panic("Unimplemented system register %s read.\n",
439                  miscRegName[misc_reg]);
440    }
441#endif
442
443    switch (unflattenMiscReg(misc_reg)) {
444      case MISCREG_HCR:
445        {
446            if (!haveVirtualization)
447                return 0;
448            else
449                return readMiscRegNoEffect(MISCREG_HCR);
450        }
451      case MISCREG_CPACR:
452        {
453            const uint32_t ones = (uint32_t)(-1);
454            CPACR cpacrMask = 0;
455            // Only cp10, cp11, and ase are implemented, nothing else should
456            // be readable? (straight copy from the write code)
457            cpacrMask.cp10 = ones;
458            cpacrMask.cp11 = ones;
459            cpacrMask.asedis = ones;
460
461            // Security Extensions may limit the readability of CPACR
462            if (haveSecurity) {
463                scr = readMiscRegNoEffect(MISCREG_SCR);
464                cpsr = readMiscRegNoEffect(MISCREG_CPSR);
465                if (scr.ns && (cpsr.mode != MODE_MON)) {
466                    NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
467                    // NB: Skipping the full loop, here
468                    if (!nsacr.cp10) cpacrMask.cp10 = 0;
469                    if (!nsacr.cp11) cpacrMask.cp11 = 0;
470                }
471            }
472            MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
473            val &= cpacrMask;
474            DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
475                    miscRegName[misc_reg], val);
476            return val;
477        }
478      case MISCREG_MPIDR:
479        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
480        scr  = readMiscRegNoEffect(MISCREG_SCR);
481        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
482            return getMPIDR(system, tc);
483        } else {
484            return readMiscReg(MISCREG_VMPIDR, tc);
485        }
486            break;
487      case MISCREG_MPIDR_EL1:
488        // @todo in the absence of v8 virtualization support just return MPIDR_EL1
489        return getMPIDR(system, tc) & 0xffffffff;
490      case MISCREG_VMPIDR:
491        // top bit defined as RES1
492        return readMiscRegNoEffect(misc_reg) | 0x80000000;
493      case MISCREG_ID_AFR0: // not implemented, so alias MIDR
494      case MISCREG_ID_DFR0: // not implemented, so alias MIDR
495      case MISCREG_REVIDR:  // not implemented, so alias MIDR
496      case MISCREG_MIDR:
497        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
498        scr  = readMiscRegNoEffect(MISCREG_SCR);
499        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
500            return readMiscRegNoEffect(misc_reg);
501        } else {
502            return readMiscRegNoEffect(MISCREG_VPIDR);
503        }
504        break;
505      case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
506      case MISCREG_JMCR:  // Jazelle trivial implementation, RAZ/WI
507      case MISCREG_JIDR:  // Jazelle trivial implementation, RAZ/WI
508      case MISCREG_AIDR:  // AUX ID set to 0
509      case MISCREG_TCMTR: // No TCM's
510        return 0;
511
512      case MISCREG_CLIDR:
513        warn_once("The clidr register always reports 0 caches.\n");
514        warn_once("clidr LoUIS field of 0b001 to match current "
515                  "ARM implementations.\n");
516        return 0x00200000;
517      case MISCREG_CCSIDR:
518        warn_once("The ccsidr register isn't implemented and "
519                "always reads as 0.\n");
520        break;
521      case MISCREG_CTR:
522        {
523            //all caches have the same line size in gem5
524            //4 byte words in ARM
525            unsigned lineSizeWords =
526                tc->getSystemPtr()->cacheLineSize() / 4;
527            unsigned log2LineSizeWords = 0;
528
529            while (lineSizeWords >>= 1) {
530                ++log2LineSizeWords;
531            }
532
533            CTR ctr = 0;
534            //log2 of minimun i-cache line size (words)
535            ctr.iCacheLineSize = log2LineSizeWords;
536            //b11 - gem5 uses pipt
537            ctr.l1IndexPolicy = 0x3;
538            //log2 of minimum d-cache line size (words)
539            ctr.dCacheLineSize = log2LineSizeWords;
540            //log2 of max reservation size (words)
541            ctr.erg = log2LineSizeWords;
542            //log2 of max writeback size (words)
543            ctr.cwg = log2LineSizeWords;
544            //b100 - gem5 format is ARMv7
545            ctr.format = 0x4;
546
547            return ctr;
548        }
549      case MISCREG_ACTLR:
550        warn("Not doing anything for miscreg ACTLR\n");
551        break;
552      case MISCREG_PMCR:
553      case MISCREG_PMCCNTR:
554      case MISCREG_PMSELR:
555        warn("Not doing anything for read to miscreg %s\n",
556                miscRegName[misc_reg]);
557        break;
558      case MISCREG_CPSR_Q:
559        panic("shouldn't be reading this register seperately\n");
560      case MISCREG_FPSCR_QC:
561        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
562      case MISCREG_FPSCR_EXC:
563        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
564      case MISCREG_FPSR:
565        {
566            const uint32_t ones = (uint32_t)(-1);
567            FPSCR fpscrMask = 0;
568            fpscrMask.ioc = ones;
569            fpscrMask.dzc = ones;
570            fpscrMask.ofc = ones;
571            fpscrMask.ufc = ones;
572            fpscrMask.ixc = ones;
573            fpscrMask.idc = ones;
574            fpscrMask.qc = ones;
575            fpscrMask.v = ones;
576            fpscrMask.c = ones;
577            fpscrMask.z = ones;
578            fpscrMask.n = ones;
579            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
580        }
581      case MISCREG_FPCR:
582        {
583            const uint32_t ones = (uint32_t)(-1);
584            FPSCR fpscrMask  = 0;
585            fpscrMask.ioe = ones;
586            fpscrMask.dze = ones;
587            fpscrMask.ofe = ones;
588            fpscrMask.ufe = ones;
589            fpscrMask.ixe = ones;
590            fpscrMask.ide = ones;
591            fpscrMask.len    = ones;
592            fpscrMask.stride = ones;
593            fpscrMask.rMode  = ones;
594            fpscrMask.fz     = ones;
595            fpscrMask.dn     = ones;
596            fpscrMask.ahp    = ones;
597            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
598        }
599      case MISCREG_NZCV:
600        {
601            CPSR cpsr = 0;
602            cpsr.nz   = tc->readIntReg(INTREG_CONDCODES_NZ);
603            cpsr.c    = tc->readIntReg(INTREG_CONDCODES_C);
604            cpsr.v    = tc->readIntReg(INTREG_CONDCODES_V);
605            return cpsr;
606        }
607      case MISCREG_DAIF:
608        {
609            CPSR cpsr = 0;
610            cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
611            return cpsr;
612        }
613      case MISCREG_SP_EL0:
614        {
615            return tc->readIntReg(INTREG_SP0);
616        }
617      case MISCREG_SP_EL1:
618        {
619            return tc->readIntReg(INTREG_SP1);
620        }
621      case MISCREG_SP_EL2:
622        {
623            return tc->readIntReg(INTREG_SP2);
624        }
625      case MISCREG_SPSEL:
626        {
627            return miscRegs[MISCREG_CPSR] & 0x1;
628        }
629      case MISCREG_CURRENTEL:
630        {
631            return miscRegs[MISCREG_CPSR] & 0xc;
632        }
633      case MISCREG_L2CTLR:
634        {
635            // mostly unimplemented, just set NumCPUs field from sim and return
636            L2CTLR l2ctlr = 0;
637            // b00:1CPU to b11:4CPUs
638            l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
639            return l2ctlr;
640        }
641      case MISCREG_DBGDIDR:
642        /* For now just implement the version number.
643         * Return 0 as we don't support debug architecture yet.
644         */
645        return 0;
646      case MISCREG_DBGDSCRint:
647        return 0;
648      case MISCREG_ISR:
649        return tc->getCpuPtr()->getInterruptController()->getISR(
650            readMiscRegNoEffect(MISCREG_HCR),
651            readMiscRegNoEffect(MISCREG_CPSR),
652            readMiscRegNoEffect(MISCREG_SCR));
653      case MISCREG_ISR_EL1:
654        return tc->getCpuPtr()->getInterruptController()->getISR(
655            readMiscRegNoEffect(MISCREG_HCR_EL2),
656            readMiscRegNoEffect(MISCREG_CPSR),
657            readMiscRegNoEffect(MISCREG_SCR_EL3));
658      case MISCREG_DCZID_EL0:
659        return 0x04;  // DC ZVA clear 64-byte chunks
660      case MISCREG_HCPTR:
661        {
662            MiscReg val = readMiscRegNoEffect(misc_reg);
663            // The trap bit associated with CP14 is defined as RAZ
664            val &= ~(1 << 14);
665            // If a CP bit in NSACR is 0 then the corresponding bit in
666            // HCPTR is RAO/WI
667            bool secure_lookup = haveSecurity &&
668                inSecureState(readMiscRegNoEffect(MISCREG_SCR),
669                              readMiscRegNoEffect(MISCREG_CPSR));
670            if (!secure_lookup) {
671                MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
672                val |= (mask ^ 0x7FFF) & 0xBFFF;
673            }
674            // Set the bits for unimplemented coprocessors to RAO/WI
675            val |= 0x33FF;
676            return (val);
677        }
678      case MISCREG_HDFAR: // alias for secure DFAR
679        return readMiscRegNoEffect(MISCREG_DFAR_S);
680      case MISCREG_HIFAR: // alias for secure IFAR
681        return readMiscRegNoEffect(MISCREG_IFAR_S);
682      case MISCREG_HVBAR: // bottom bits reserved
683        return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
684      case MISCREG_SCTLR: // Some bits hardwired
685        // The FI field (bit 21) is common between S/NS versions of the register
686        return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21))  |
687               (readMiscRegNoEffect(misc_reg)        & 0x72DD39FF) | 0x00C00818; // V8 SCTLR
688      case MISCREG_SCTLR_EL1:
689        // The FI field (bit 21) is common between S/NS versions of the register
690        return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21))  |
691               (readMiscRegNoEffect(misc_reg)        & 0x37DDDBFF) | 0x30D00800; // V8 SCTLR_EL1
692      case MISCREG_SCTLR_EL3:
693        // The FI field (bit 21) is common between S/NS versions of the register
694        return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21))  |
695               (readMiscRegNoEffect(misc_reg)        & 0x32CD183F) | 0x30C50830; // V8 SCTLR_EL3
696      case MISCREG_HSCTLR: // FI comes from SCTLR
697        {
698            uint32_t mask = 1 << 27;
699            return (readMiscRegNoEffect(MISCREG_HSCTLR) & ~mask) |
700                (readMiscRegNoEffect(MISCREG_SCTLR)  &  mask);
701        }
702      case MISCREG_SCR:
703        {
704            CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
705            if (cpsr.width) {
706                return readMiscRegNoEffect(MISCREG_SCR);
707            } else {
708                return readMiscRegNoEffect(MISCREG_SCR_EL3);
709            }
710        }
711      // Generic Timer registers
712      case MISCREG_CNTFRQ:
713      case MISCREG_CNTFRQ_EL0:
714        inform_once("Read CNTFREQ_EL0 frequency\n");
715        return getSystemCounter(tc)->freq();
716      case MISCREG_CNTPCT:
717      case MISCREG_CNTPCT_EL0:
718        return getSystemCounter(tc)->value();
719      case MISCREG_CNTVCT:
720        return getSystemCounter(tc)->value();
721      case MISCREG_CNTVCT_EL0:
722        return getSystemCounter(tc)->value();
723      case MISCREG_CNTP_CVAL:
724      case MISCREG_CNTP_CVAL_EL0:
725        return getArchTimer(tc, tc->cpuId())->compareValue();
726      case MISCREG_CNTP_TVAL:
727      case MISCREG_CNTP_TVAL_EL0:
728        return getArchTimer(tc, tc->cpuId())->timerValue();
729      case MISCREG_CNTP_CTL:
730      case MISCREG_CNTP_CTL_EL0:
731        return getArchTimer(tc, tc->cpuId())->control();
732      // PL1 phys. timer, secure
733      //   AArch64
734      // case MISCREG_CNTPS_CVAL_EL1:
735      // case MISCREG_CNTPS_TVAL_EL1:
736      // case MISCREG_CNTPS_CTL_EL1:
737      // PL2 phys. timer, non-secure
738      //   AArch32
739      // case MISCREG_CNTHCTL:
740      // case MISCREG_CNTHP_CVAL:
741      // case MISCREG_CNTHP_TVAL:
742      // case MISCREG_CNTHP_CTL:
743      //   AArch64
744      // case MISCREG_CNTHCTL_EL2:
745      // case MISCREG_CNTHP_CVAL_EL2:
746      // case MISCREG_CNTHP_TVAL_EL2:
747      // case MISCREG_CNTHP_CTL_EL2:
748      // Virtual timer
749      //   AArch32
750      // case MISCREG_CNTV_CVAL:
751      // case MISCREG_CNTV_TVAL:
752      // case MISCREG_CNTV_CTL:
753      //   AArch64
754      // case MISCREG_CNTV_CVAL_EL2:
755      // case MISCREG_CNTV_TVAL_EL2:
756      // case MISCREG_CNTV_CTL_EL2:
757      default:
758        break;
759
760    }
761    return readMiscRegNoEffect(misc_reg);
762}
763
764void
765ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
766{
767    assert(misc_reg < NumMiscRegs);
768
769    int flat_idx = flattenMiscIndex(misc_reg);  // Note: indexes of AArch64
770                                                // registers are left unchanged
771
772    int flat_idx2 = lookUpMiscReg[flat_idx].upper;
773
774    if (flat_idx2 > 0) {
775        miscRegs[lookUpMiscReg[flat_idx].lower] = bits(val, 31, 0);
776        miscRegs[flat_idx2] = bits(val, 63, 32);
777        DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
778                misc_reg, flat_idx, flat_idx2, val);
779    } else {
780        if (flat_idx == MISCREG_SPSR)
781            flat_idx = flattenMiscIndex(MISCREG_SPSR);
782        else if (flat_idx == MISCREG_SCTLR_EL1)
783            flat_idx = flattenMiscIndex(MISCREG_SCTLR);
784        else
785            flat_idx = (lookUpMiscReg[flat_idx].lower > 0) ?
786                       lookUpMiscReg[flat_idx].lower : flat_idx;
787        miscRegs[flat_idx] = val;
788        DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
789                misc_reg, flat_idx, val);
790    }
791}
792
793void
794ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
795{
796
797    MiscReg newVal = val;
798    int x;
799    bool secure_lookup;
800    bool hyp;
801    System *sys;
802    ThreadContext *oc;
803    uint8_t target_el;
804    uint16_t asid;
805    SCR scr;
806
807    if (misc_reg == MISCREG_CPSR) {
808        updateRegMap(val);
809
810
811        CPSR old_cpsr = miscRegs[MISCREG_CPSR];
812        int old_mode = old_cpsr.mode;
813        CPSR cpsr = val;
814        if (old_mode != cpsr.mode) {
815            tc->getITBPtr()->invalidateMiscReg();
816            tc->getDTBPtr()->invalidateMiscReg();
817        }
818
819        DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
820                miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
821        PCState pc = tc->pcState();
822        pc.nextThumb(cpsr.t);
823        pc.nextJazelle(cpsr.j);
824
825        // Follow slightly different semantics if a CheckerCPU object
826        // is connected
827        CheckerCPU *checker = tc->getCheckerCpuPtr();
828        if (checker) {
829            tc->pcStateNoRecord(pc);
830        } else {
831            tc->pcState(pc);
832        }
833    } else {
834#ifndef NDEBUG
835        if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
836            if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
837                warn("Unimplemented system register %s write with %#x.\n",
838                    miscRegName[misc_reg], val);
839            else
840                panic("Unimplemented system register %s write with %#x.\n",
841                    miscRegName[misc_reg], val);
842        }
843#endif
844        switch (unflattenMiscReg(misc_reg)) {
845          case MISCREG_CPACR:
846            {
847
848                const uint32_t ones = (uint32_t)(-1);
849                CPACR cpacrMask = 0;
850                // Only cp10, cp11, and ase are implemented, nothing else should
851                // be writable
852                cpacrMask.cp10 = ones;
853                cpacrMask.cp11 = ones;
854                cpacrMask.asedis = ones;
855
856                // Security Extensions may limit the writability of CPACR
857                if (haveSecurity) {
858                    scr = readMiscRegNoEffect(MISCREG_SCR);
859                    CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
860                    if (scr.ns && (cpsr.mode != MODE_MON)) {
861                        NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
862                        // NB: Skipping the full loop, here
863                        if (!nsacr.cp10) cpacrMask.cp10 = 0;
864                        if (!nsacr.cp11) cpacrMask.cp11 = 0;
865                    }
866                }
867
868                MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
869                newVal &= cpacrMask;
870                newVal |= old_val & ~cpacrMask;
871                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
872                        miscRegName[misc_reg], newVal);
873            }
874            break;
875          case MISCREG_CPACR_EL1:
876            {
877                const uint32_t ones = (uint32_t)(-1);
878                CPACR cpacrMask = 0;
879                cpacrMask.tta = ones;
880                cpacrMask.fpen = ones;
881                newVal &= cpacrMask;
882                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
883                        miscRegName[misc_reg], newVal);
884            }
885            break;
886          case MISCREG_CPTR_EL2:
887            {
888                const uint32_t ones = (uint32_t)(-1);
889                CPTR cptrMask = 0;
890                cptrMask.tcpac = ones;
891                cptrMask.tta = ones;
892                cptrMask.tfp = ones;
893                newVal &= cptrMask;
894                cptrMask = 0;
895                cptrMask.res1_13_12_el2 = ones;
896                cptrMask.res1_9_0_el2 = ones;
897                newVal |= cptrMask;
898                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
899                        miscRegName[misc_reg], newVal);
900            }
901            break;
902          case MISCREG_CPTR_EL3:
903            {
904                const uint32_t ones = (uint32_t)(-1);
905                CPTR cptrMask = 0;
906                cptrMask.tcpac = ones;
907                cptrMask.tta = ones;
908                cptrMask.tfp = ones;
909                newVal &= cptrMask;
910                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
911                        miscRegName[misc_reg], newVal);
912            }
913            break;
914          case MISCREG_CSSELR:
915            warn_once("The csselr register isn't implemented.\n");
916            return;
917
918          case MISCREG_DC_ZVA_Xt:
919            warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
920            return;
921
922          case MISCREG_FPSCR:
923            {
924                const uint32_t ones = (uint32_t)(-1);
925                FPSCR fpscrMask = 0;
926                fpscrMask.ioc = ones;
927                fpscrMask.dzc = ones;
928                fpscrMask.ofc = ones;
929                fpscrMask.ufc = ones;
930                fpscrMask.ixc = ones;
931                fpscrMask.idc = ones;
932                fpscrMask.ioe = ones;
933                fpscrMask.dze = ones;
934                fpscrMask.ofe = ones;
935                fpscrMask.ufe = ones;
936                fpscrMask.ixe = ones;
937                fpscrMask.ide = ones;
938                fpscrMask.len = ones;
939                fpscrMask.stride = ones;
940                fpscrMask.rMode = ones;
941                fpscrMask.fz = ones;
942                fpscrMask.dn = ones;
943                fpscrMask.ahp = ones;
944                fpscrMask.qc = ones;
945                fpscrMask.v = ones;
946                fpscrMask.c = ones;
947                fpscrMask.z = ones;
948                fpscrMask.n = ones;
949                newVal = (newVal & (uint32_t)fpscrMask) |
950                         (readMiscRegNoEffect(MISCREG_FPSCR) &
951                          ~(uint32_t)fpscrMask);
952                tc->getDecoderPtr()->setContext(newVal);
953            }
954            break;
955          case MISCREG_FPSR:
956            {
957                const uint32_t ones = (uint32_t)(-1);
958                FPSCR fpscrMask = 0;
959                fpscrMask.ioc = ones;
960                fpscrMask.dzc = ones;
961                fpscrMask.ofc = ones;
962                fpscrMask.ufc = ones;
963                fpscrMask.ixc = ones;
964                fpscrMask.idc = ones;
965                fpscrMask.qc = ones;
966                fpscrMask.v = ones;
967                fpscrMask.c = ones;
968                fpscrMask.z = ones;
969                fpscrMask.n = ones;
970                newVal = (newVal & (uint32_t)fpscrMask) |
971                         (readMiscRegNoEffect(MISCREG_FPSCR) &
972                          ~(uint32_t)fpscrMask);
973                misc_reg = MISCREG_FPSCR;
974            }
975            break;
976          case MISCREG_FPCR:
977            {
978                const uint32_t ones = (uint32_t)(-1);
979                FPSCR fpscrMask  = 0;
980                fpscrMask.ioe = ones;
981                fpscrMask.dze = ones;
982                fpscrMask.ofe = ones;
983                fpscrMask.ufe = ones;
984                fpscrMask.ixe = ones;
985                fpscrMask.ide = ones;
986                fpscrMask.len    = ones;
987                fpscrMask.stride = ones;
988                fpscrMask.rMode  = ones;
989                fpscrMask.fz     = ones;
990                fpscrMask.dn     = ones;
991                fpscrMask.ahp    = ones;
992                newVal = (newVal & (uint32_t)fpscrMask) |
993                         (readMiscRegNoEffect(MISCREG_FPSCR) &
994                          ~(uint32_t)fpscrMask);
995                misc_reg = MISCREG_FPSCR;
996            }
997            break;
998          case MISCREG_CPSR_Q:
999            {
1000                assert(!(newVal & ~CpsrMaskQ));
1001                newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
1002                misc_reg = MISCREG_CPSR;
1003            }
1004            break;
1005          case MISCREG_FPSCR_QC:
1006            {
1007                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1008                         (newVal & FpscrQcMask);
1009                misc_reg = MISCREG_FPSCR;
1010            }
1011            break;
1012          case MISCREG_FPSCR_EXC:
1013            {
1014                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1015                         (newVal & FpscrExcMask);
1016                misc_reg = MISCREG_FPSCR;
1017            }
1018            break;
1019          case MISCREG_FPEXC:
1020            {
1021                // vfpv3 architecture, section B.6.1 of DDI04068
1022                // bit 29 - valid only if fpexc[31] is 0
1023                const uint32_t fpexcMask = 0x60000000;
1024                newVal = (newVal & fpexcMask) |
1025                         (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1026            }
1027            break;
1028          case MISCREG_HCR:
1029            {
1030                if (!haveVirtualization)
1031                    return;
1032            }
1033            break;
1034          case MISCREG_IFSR:
1035            {
1036                // ARM ARM (ARM DDI 0406C.b) B4.1.96
1037                const uint32_t ifsrMask =
1038                    mask(31, 13) | mask(11, 11) | mask(8, 6);
1039                newVal = newVal & ~ifsrMask;
1040            }
1041            break;
1042          case MISCREG_DFSR:
1043            {
1044                // ARM ARM (ARM DDI 0406C.b) B4.1.52
1045                const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1046                newVal = newVal & ~dfsrMask;
1047            }
1048            break;
1049          case MISCREG_AMAIR0:
1050          case MISCREG_AMAIR1:
1051            {
1052                // ARM ARM (ARM DDI 0406C.b) B4.1.5
1053                // Valid only with LPAE
1054                if (!haveLPAE)
1055                    return;
1056                DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1057            }
1058            break;
1059          case MISCREG_SCR:
1060            tc->getITBPtr()->invalidateMiscReg();
1061            tc->getDTBPtr()->invalidateMiscReg();
1062            break;
1063          case MISCREG_SCTLR:
1064            {
1065                DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1066                MiscRegIndex sctlr_idx;
1067                scr = readMiscRegNoEffect(MISCREG_SCR);
1068                if (haveSecurity && !scr.ns) {
1069                    sctlr_idx = MISCREG_SCTLR_S;
1070                } else {
1071                    sctlr_idx = MISCREG_SCTLR_NS;
1072                    // The FI field (bit 21) is common between S/NS versions
1073                    // of the register, we store this in the secure copy of
1074                    // the reg
1075                    miscRegs[MISCREG_SCTLR_S] &=         ~(1 << 21);
1076                    miscRegs[MISCREG_SCTLR_S] |= newVal & (1 << 21);
1077                }
1078                SCTLR sctlr = miscRegs[sctlr_idx];
1079                SCTLR new_sctlr = newVal;
1080                new_sctlr.nmfi =  ((bool)sctlr.nmfi) && !haveVirtualization;
1081                miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
1082                tc->getITBPtr()->invalidateMiscReg();
1083                tc->getDTBPtr()->invalidateMiscReg();
1084
1085                // Check if all CPUs are booted with caches enabled
1086                // so we can stop enforcing coherency of some kernel
1087                // structures manually.
1088                sys = tc->getSystemPtr();
1089                for (x = 0; x < sys->numContexts(); x++) {
1090                    oc = sys->getThreadContext(x);
1091                    // @todo: double check this for security
1092                    SCTLR other_sctlr = oc->readMiscRegNoEffect(MISCREG_SCTLR);
1093                    if (!other_sctlr.c && oc->status() != ThreadContext::Halted)
1094                        return;
1095                }
1096
1097                for (x = 0; x < sys->numContexts(); x++) {
1098                    oc = sys->getThreadContext(x);
1099                    oc->getDTBPtr()->allCpusCaching();
1100                    oc->getITBPtr()->allCpusCaching();
1101
1102                    // If CheckerCPU is connected, need to notify it.
1103                    CheckerCPU *checker = oc->getCheckerCpuPtr();
1104                    if (checker) {
1105                        checker->getDTBPtr()->allCpusCaching();
1106                        checker->getITBPtr()->allCpusCaching();
1107                    }
1108                }
1109                return;
1110            }
1111
1112          case MISCREG_MIDR:
1113          case MISCREG_ID_PFR0:
1114          case MISCREG_ID_PFR1:
1115          case MISCREG_ID_MMFR0:
1116          case MISCREG_ID_MMFR1:
1117          case MISCREG_ID_MMFR2:
1118          case MISCREG_ID_MMFR3:
1119          case MISCREG_ID_ISAR0:
1120          case MISCREG_ID_ISAR1:
1121          case MISCREG_ID_ISAR2:
1122          case MISCREG_ID_ISAR3:
1123          case MISCREG_ID_ISAR4:
1124          case MISCREG_ID_ISAR5:
1125
1126          case MISCREG_MPIDR:
1127          case MISCREG_FPSID:
1128          case MISCREG_TLBTR:
1129          case MISCREG_MVFR0:
1130          case MISCREG_MVFR1:
1131
1132          case MISCREG_ID_AA64AFR0_EL1:
1133          case MISCREG_ID_AA64AFR1_EL1:
1134          case MISCREG_ID_AA64DFR0_EL1:
1135          case MISCREG_ID_AA64DFR1_EL1:
1136          case MISCREG_ID_AA64ISAR0_EL1:
1137          case MISCREG_ID_AA64ISAR1_EL1:
1138          case MISCREG_ID_AA64MMFR0_EL1:
1139          case MISCREG_ID_AA64MMFR1_EL1:
1140          case MISCREG_ID_AA64PFR0_EL1:
1141          case MISCREG_ID_AA64PFR1_EL1:
1142            // ID registers are constants.
1143            return;
1144
1145          // TLBI all entries, EL0&1 inner sharable (ignored)
1146          case MISCREG_TLBIALLIS:
1147          case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1148            assert32(tc);
1149            target_el = 1; // el 0 and 1 are handled together
1150            scr = readMiscReg(MISCREG_SCR, tc);
1151            secure_lookup = haveSecurity && !scr.ns;
1152            sys = tc->getSystemPtr();
1153            for (x = 0; x < sys->numContexts(); x++) {
1154                oc = sys->getThreadContext(x);
1155                assert(oc->getITBPtr() && oc->getDTBPtr());
1156                oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1157                oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1158
1159                // If CheckerCPU is connected, need to notify it of a flush
1160                CheckerCPU *checker = oc->getCheckerCpuPtr();
1161                if (checker) {
1162                    checker->getITBPtr()->flushAllSecurity(secure_lookup,
1163                                                           target_el);
1164                    checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1165                                                           target_el);
1166                }
1167            }
1168            return;
1169          // TLBI all entries, EL0&1, instruction side
1170          case MISCREG_ITLBIALL:
1171            assert32(tc);
1172            target_el = 1; // el 0 and 1 are handled together
1173            scr = readMiscReg(MISCREG_SCR, tc);
1174            secure_lookup = haveSecurity && !scr.ns;
1175            tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1176            return;
1177          // TLBI all entries, EL0&1, data side
1178          case MISCREG_DTLBIALL:
1179            assert32(tc);
1180            target_el = 1; // el 0 and 1 are handled together
1181            scr = readMiscReg(MISCREG_SCR, tc);
1182            secure_lookup = haveSecurity && !scr.ns;
1183            tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1184            return;
1185          // TLBI based on VA, EL0&1 inner sharable (ignored)
1186          case MISCREG_TLBIMVAIS:
1187          case MISCREG_TLBIMVA:
1188            assert32(tc);
1189            target_el = 1; // el 0 and 1 are handled together
1190            scr = readMiscReg(MISCREG_SCR, tc);
1191            secure_lookup = haveSecurity && !scr.ns;
1192            sys = tc->getSystemPtr();
1193            for (x = 0; x < sys->numContexts(); x++) {
1194                oc = sys->getThreadContext(x);
1195                assert(oc->getITBPtr() && oc->getDTBPtr());
1196                oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1197                                              bits(newVal, 7,0),
1198                                              secure_lookup, target_el);
1199                oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1200                                              bits(newVal, 7,0),
1201                                              secure_lookup, target_el);
1202
1203                CheckerCPU *checker = oc->getCheckerCpuPtr();
1204                if (checker) {
1205                    checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1206                        bits(newVal, 7,0), secure_lookup, target_el);
1207                    checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1208                        bits(newVal, 7,0), secure_lookup, target_el);
1209                }
1210            }
1211            return;
1212          // TLBI by ASID, EL0&1, inner sharable
1213          case MISCREG_TLBIASIDIS:
1214          case MISCREG_TLBIASID:
1215            assert32(tc);
1216            target_el = 1; // el 0 and 1 are handled together
1217            scr = readMiscReg(MISCREG_SCR, tc);
1218            secure_lookup = haveSecurity && !scr.ns;
1219            sys = tc->getSystemPtr();
1220            for (x = 0; x < sys->numContexts(); x++) {
1221                oc = sys->getThreadContext(x);
1222                assert(oc->getITBPtr() && oc->getDTBPtr());
1223                oc->getITBPtr()->flushAsid(bits(newVal, 7,0),
1224                    secure_lookup, target_el);
1225                oc->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1226                    secure_lookup, target_el);
1227                CheckerCPU *checker = oc->getCheckerCpuPtr();
1228                if (checker) {
1229                    checker->getITBPtr()->flushAsid(bits(newVal, 7,0),
1230                        secure_lookup, target_el);
1231                    checker->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1232                        secure_lookup, target_el);
1233                }
1234            }
1235            return;
1236          // TLBI by address, EL0&1, inner sharable (ignored)
1237          case MISCREG_TLBIMVAAIS:
1238          case MISCREG_TLBIMVAA:
1239            assert32(tc);
1240            target_el = 1; // el 0 and 1 are handled together
1241            scr = readMiscReg(MISCREG_SCR, tc);
1242            secure_lookup = haveSecurity && !scr.ns;
1243            hyp = 0;
1244            tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1245            return;
1246          // TLBI by address, EL2, hypervisor mode
1247          case MISCREG_TLBIMVAH:
1248          case MISCREG_TLBIMVAHIS:
1249            assert32(tc);
1250            target_el = 1; // aarch32, use hyp bit
1251            scr = readMiscReg(MISCREG_SCR, tc);
1252            secure_lookup = haveSecurity && !scr.ns;
1253            hyp = 1;
1254            tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1255            return;
1256          // TLBI by address and asid, EL0&1, instruction side only
1257          case MISCREG_ITLBIMVA:
1258            assert32(tc);
1259            target_el = 1; // el 0 and 1 are handled together
1260            scr = readMiscReg(MISCREG_SCR, tc);
1261            secure_lookup = haveSecurity && !scr.ns;
1262            tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1263                bits(newVal, 7,0), secure_lookup, target_el);
1264            return;
1265          // TLBI by address and asid, EL0&1, data side only
1266          case MISCREG_DTLBIMVA:
1267            assert32(tc);
1268            target_el = 1; // el 0 and 1 are handled together
1269            scr = readMiscReg(MISCREG_SCR, tc);
1270            secure_lookup = haveSecurity && !scr.ns;
1271            tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1272                bits(newVal, 7,0), secure_lookup, target_el);
1273            return;
1274          // TLBI by ASID, EL0&1, instrution side only
1275          case MISCREG_ITLBIASID:
1276            assert32(tc);
1277            target_el = 1; // el 0 and 1 are handled together
1278            scr = readMiscReg(MISCREG_SCR, tc);
1279            secure_lookup = haveSecurity && !scr.ns;
1280            tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1281                                       target_el);
1282            return;
1283          // TLBI by ASID EL0&1 data size only
1284          case MISCREG_DTLBIASID:
1285            assert32(tc);
1286            target_el = 1; // el 0 and 1 are handled together
1287            scr = readMiscReg(MISCREG_SCR, tc);
1288            secure_lookup = haveSecurity && !scr.ns;
1289            tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1290                                       target_el);
1291            return;
1292          // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
1293          case MISCREG_TLBIALLNSNH:
1294          case MISCREG_TLBIALLNSNHIS:
1295            assert32(tc);
1296            target_el = 1; // el 0 and 1 are handled together
1297            hyp = 0;
1298            tlbiALLN(tc, hyp, target_el);
1299            return;
1300          // TLBI all entries, EL2, hyp,
1301          case MISCREG_TLBIALLH:
1302          case MISCREG_TLBIALLHIS:
1303            assert32(tc);
1304            target_el = 1; // aarch32, use hyp bit
1305            hyp = 1;
1306            tlbiALLN(tc, hyp, target_el);
1307            return;
1308          // AArch64 TLBI: invalidate all entries EL3
1309          case MISCREG_TLBI_ALLE3IS:
1310          case MISCREG_TLBI_ALLE3:
1311            assert64(tc);
1312            target_el = 3;
1313            secure_lookup = true;
1314            tlbiALL(tc, secure_lookup, target_el);
1315            return;
1316          // @todo: uncomment this to enable Virtualization
1317          // case MISCREG_TLBI_ALLE2IS:
1318          // case MISCREG_TLBI_ALLE2:
1319          // TLBI all entries, EL0&1
1320          case MISCREG_TLBI_ALLE1IS:
1321          case MISCREG_TLBI_ALLE1:
1322          // AArch64 TLBI: invalidate all entries, stage 1, current VMID
1323          case MISCREG_TLBI_VMALLE1IS:
1324          case MISCREG_TLBI_VMALLE1:
1325          // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
1326          case MISCREG_TLBI_VMALLS12E1IS:
1327          case MISCREG_TLBI_VMALLS12E1:
1328            // @todo: handle VMID and stage 2 to enable Virtualization
1329            assert64(tc);
1330            target_el = 1; // el 0 and 1 are handled together
1331            scr = readMiscReg(MISCREG_SCR, tc);
1332            secure_lookup = haveSecurity && !scr.ns;
1333            tlbiALL(tc, secure_lookup, target_el);
1334            return;
1335          // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
1336          // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
1337          // from the last level of translation table walks
1338          // @todo: handle VMID to enable Virtualization
1339          // TLBI all entries, EL0&1
1340          case MISCREG_TLBI_VAE3IS_Xt:
1341          case MISCREG_TLBI_VAE3_Xt:
1342          // TLBI by VA, EL3  regime stage 1, last level walk
1343          case MISCREG_TLBI_VALE3IS_Xt:
1344          case MISCREG_TLBI_VALE3_Xt:
1345            assert64(tc);
1346            target_el = 3;
1347            asid = 0xbeef; // does not matter, tlbi is global
1348            secure_lookup = true;
1349            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1350            return;
1351          // TLBI by VA, EL2
1352          case MISCREG_TLBI_VAE2IS_Xt:
1353          case MISCREG_TLBI_VAE2_Xt:
1354          // TLBI by VA, EL2, stage1 last level walk
1355          case MISCREG_TLBI_VALE2IS_Xt:
1356          case MISCREG_TLBI_VALE2_Xt:
1357            assert64(tc);
1358            target_el = 2;
1359            asid = 0xbeef; // does not matter, tlbi is global
1360            scr = readMiscReg(MISCREG_SCR, tc);
1361            secure_lookup = haveSecurity && !scr.ns;
1362            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1363            return;
1364          // TLBI by VA EL1 & 0, stage1, ASID, current VMID
1365          case MISCREG_TLBI_VAE1IS_Xt:
1366          case MISCREG_TLBI_VAE1_Xt:
1367          case MISCREG_TLBI_VALE1IS_Xt:
1368          case MISCREG_TLBI_VALE1_Xt:
1369            assert64(tc);
1370            asid = bits(newVal, 63, 48);
1371            target_el = 1; // el 0 and 1 are handled together
1372            scr = readMiscReg(MISCREG_SCR, tc);
1373            secure_lookup = haveSecurity && !scr.ns;
1374            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1375            return;
1376          // AArch64 TLBI: invalidate by ASID, stage 1, current VMID
1377          // @todo: handle VMID to enable Virtualization
1378          case MISCREG_TLBI_ASIDE1IS_Xt:
1379          case MISCREG_TLBI_ASIDE1_Xt:
1380            assert64(tc);
1381            target_el = 1; // el 0 and 1 are handled together
1382            scr = readMiscReg(MISCREG_SCR, tc);
1383            secure_lookup = haveSecurity && !scr.ns;
1384            sys = tc->getSystemPtr();
1385            for (x = 0; x < sys->numContexts(); x++) {
1386                oc = sys->getThreadContext(x);
1387                assert(oc->getITBPtr() && oc->getDTBPtr());
1388                asid = bits(newVal, 63, 48);
1389                if (haveLargeAsid64)
1390                    asid &= mask(8);
1391                oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el);
1392                oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el);
1393                CheckerCPU *checker = oc->getCheckerCpuPtr();
1394                if (checker) {
1395                    checker->getITBPtr()->flushAsid(asid,
1396                        secure_lookup, target_el);
1397                    checker->getDTBPtr()->flushAsid(asid,
1398                        secure_lookup, target_el);
1399                }
1400            }
1401            return;
1402          // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
1403          // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1404          // entries from the last level of translation table walks
1405          // @todo: handle VMID to enable Virtualization
1406          case MISCREG_TLBI_VAAE1IS_Xt:
1407          case MISCREG_TLBI_VAAE1_Xt:
1408          case MISCREG_TLBI_VAALE1IS_Xt:
1409          case MISCREG_TLBI_VAALE1_Xt:
1410            assert64(tc);
1411            target_el = 1; // el 0 and 1 are handled together
1412            scr = readMiscReg(MISCREG_SCR, tc);
1413            secure_lookup = haveSecurity && !scr.ns;
1414            sys = tc->getSystemPtr();
1415            for (x = 0; x < sys->numContexts(); x++) {
1416                // @todo: extra controls on TLBI broadcast?
1417                oc = sys->getThreadContext(x);
1418                assert(oc->getITBPtr() && oc->getDTBPtr());
1419                Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1420                oc->getITBPtr()->flushMva(va,
1421                    secure_lookup, false, target_el);
1422                oc->getDTBPtr()->flushMva(va,
1423                    secure_lookup, false, target_el);
1424
1425                CheckerCPU *checker = oc->getCheckerCpuPtr();
1426                if (checker) {
1427                    checker->getITBPtr()->flushMva(va,
1428                        secure_lookup, false, target_el);
1429                    checker->getDTBPtr()->flushMva(va,
1430                        secure_lookup, false, target_el);
1431                }
1432            }
1433            return;
1434          // AArch64 TLBI: invalidate by IPA, stage 2, current VMID
1435          case MISCREG_TLBI_IPAS2LE1IS_Xt:
1436          case MISCREG_TLBI_IPAS2LE1_Xt:
1437          case MISCREG_TLBI_IPAS2E1IS_Xt:
1438          case MISCREG_TLBI_IPAS2E1_Xt:
1439            assert64(tc);
1440            // @todo: implement these as part of Virtualization
1441            warn("Not doing anything for write of miscreg ITLB_IPAS2\n");
1442            return;
1443          case MISCREG_ACTLR:
1444            warn("Not doing anything for write of miscreg ACTLR\n");
1445            break;
1446          case MISCREG_PMCR:
1447            {
1448              // Performance counters not implemented.  Instead, interpret
1449              //   a reset command to this register to reset the simulator
1450              //   statistics.
1451              // PMCR_E | PMCR_P | PMCR_C
1452              const int ResetAndEnableCounters = 0x7;
1453              if (newVal == ResetAndEnableCounters) {
1454                  inform("Resetting all simobject stats\n");
1455                  Stats::schedStatEvent(false, true);
1456                  break;
1457              }
1458            }
1459          case MISCREG_PMCCNTR:
1460          case MISCREG_PMSELR:
1461            warn("Not doing anything for write to miscreg %s\n",
1462                    miscRegName[misc_reg]);
1463            break;
1464          case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1465            {
1466                HSTR hstrMask = 0;
1467                hstrMask.tjdbx = 1;
1468                newVal &= ~((uint32_t) hstrMask);
1469                break;
1470            }
1471          case MISCREG_HCPTR:
1472            {
1473                // If a CP bit in NSACR is 0 then the corresponding bit in
1474                // HCPTR is RAO/WI. Same applies to NSASEDIS
1475                secure_lookup = haveSecurity &&
1476                    inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1477                                  readMiscRegNoEffect(MISCREG_CPSR));
1478                if (!secure_lookup) {
1479                    MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1480                    MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1481                    newVal = (newVal & ~mask) | (oldValue & mask);
1482                }
1483                break;
1484            }
1485          case MISCREG_HDFAR: // alias for secure DFAR
1486            misc_reg = MISCREG_DFAR_S;
1487            break;
1488          case MISCREG_HIFAR: // alias for secure IFAR
1489            misc_reg = MISCREG_IFAR_S;
1490            break;
1491          case MISCREG_ATS1CPR:
1492          case MISCREG_ATS1CPW:
1493          case MISCREG_ATS1CUR:
1494          case MISCREG_ATS1CUW:
1495          case MISCREG_ATS12NSOPR:
1496          case MISCREG_ATS12NSOPW:
1497          case MISCREG_ATS12NSOUR:
1498          case MISCREG_ATS12NSOUW:
1499          case MISCREG_ATS1HR:
1500          case MISCREG_ATS1HW:
1501            {
1502              RequestPtr req = new Request;
1503              unsigned flags = 0;
1504              BaseTLB::Mode mode = BaseTLB::Read;
1505              TLB::ArmTranslationType tranType = TLB::NormalTran;
1506              Fault fault;
1507              switch(misc_reg) {
1508                case MISCREG_ATS1CPR:
1509                  flags    = TLB::MustBeOne;
1510                  tranType = TLB::S1CTran;
1511                  mode     = BaseTLB::Read;
1512                  break;
1513                case MISCREG_ATS1CPW:
1514                  flags    = TLB::MustBeOne;
1515                  tranType = TLB::S1CTran;
1516                  mode     = BaseTLB::Write;
1517                  break;
1518                case MISCREG_ATS1CUR:
1519                  flags    = TLB::MustBeOne | TLB::UserMode;
1520                  tranType = TLB::S1CTran;
1521                  mode     = BaseTLB::Read;
1522                  break;
1523                case MISCREG_ATS1CUW:
1524                  flags    = TLB::MustBeOne | TLB::UserMode;
1525                  tranType = TLB::S1CTran;
1526                  mode     = BaseTLB::Write;
1527                  break;
1528                case MISCREG_ATS12NSOPR:
1529                  if (!haveSecurity)
1530                      panic("Security Extensions required for ATS12NSOPR");
1531                  flags    = TLB::MustBeOne;
1532                  tranType = TLB::S1S2NsTran;
1533                  mode     = BaseTLB::Read;
1534                  break;
1535                case MISCREG_ATS12NSOPW:
1536                  if (!haveSecurity)
1537                      panic("Security Extensions required for ATS12NSOPW");
1538                  flags    = TLB::MustBeOne;
1539                  tranType = TLB::S1S2NsTran;
1540                  mode     = BaseTLB::Write;
1541                  break;
1542                case MISCREG_ATS12NSOUR:
1543                  if (!haveSecurity)
1544                      panic("Security Extensions required for ATS12NSOUR");
1545                  flags    = TLB::MustBeOne | TLB::UserMode;
1546                  tranType = TLB::S1S2NsTran;
1547                  mode     = BaseTLB::Read;
1548                  break;
1549                case MISCREG_ATS12NSOUW:
1550                  if (!haveSecurity)
1551                      panic("Security Extensions required for ATS12NSOUW");
1552                  flags    = TLB::MustBeOne | TLB::UserMode;
1553                  tranType = TLB::S1S2NsTran;
1554                  mode     = BaseTLB::Write;
1555                  break;
1556                case MISCREG_ATS1HR: // only really useful from secure mode.
1557                  flags    = TLB::MustBeOne;
1558                  tranType = TLB::HypMode;
1559                  mode     = BaseTLB::Read;
1560                  break;
1561                case MISCREG_ATS1HW:
1562                  flags    = TLB::MustBeOne;
1563                  tranType = TLB::HypMode;
1564                  mode     = BaseTLB::Write;
1565                  break;
1566              }
1567              // If we're in timing mode then doing the translation in
1568              // functional mode then we're slightly distorting performance
1569              // results obtained from simulations. The translation should be
1570              // done in the same mode the core is running in. NOTE: This
1571              // can't be an atomic translation because that causes problems
1572              // with unexpected atomic snoop requests.
1573              warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1574              req->setVirt(0, val, 1, flags,  Request::funcMasterId,
1575                           tc->pcState().pc());
1576              req->setThreadContext(tc->contextId(), tc->threadId());
1577              fault = tc->getDTBPtr()->translateFunctional(req, tc, mode, tranType);
1578              TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1579              HCR   hcr   = readMiscRegNoEffect(MISCREG_HCR);
1580
1581              MiscReg newVal;
1582              if (fault == NoFault) {
1583                  Addr paddr = req->getPaddr();
1584                  if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1585                     ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1586                      newVal = (paddr & mask(39, 12)) |
1587                               (tc->getDTBPtr()->getAttr());
1588                  } else {
1589                      newVal = (paddr & 0xfffff000) |
1590                               (tc->getDTBPtr()->getAttr());
1591                  }
1592                  DPRINTF(MiscRegs,
1593                          "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1594                          val, newVal);
1595              } else {
1596                  ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1597                  // Set fault bit and FSR
1598                  FSR fsr = armFault->getFsr(tc);
1599
1600                  newVal = ((fsr >> 9) & 1) << 11;
1601                  if (newVal) {
1602                    // LPAE - rearange fault status
1603                    newVal |= ((fsr >>  0) & 0x3f) << 1;
1604                  } else {
1605                    // VMSA - rearange fault status
1606                    newVal |= ((fsr >>  0) & 0xf) << 1;
1607                    newVal |= ((fsr >> 10) & 0x1) << 5;
1608                    newVal |= ((fsr >> 12) & 0x1) << 6;
1609                  }
1610                  newVal |= 0x1; // F bit
1611                  newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1612                  newVal |= armFault->isStage2() ? 0x200 : 0;
1613                  DPRINTF(MiscRegs,
1614                          "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1615                          val, fsr, newVal);
1616              }
1617              delete req;
1618              setMiscRegNoEffect(MISCREG_PAR, newVal);
1619              return;
1620            }
1621          case MISCREG_TTBCR:
1622            {
1623                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1624                const uint32_t ones = (uint32_t)(-1);
1625                TTBCR ttbcrMask = 0;
1626                TTBCR ttbcrNew = newVal;
1627
1628                // ARM DDI 0406C.b, ARMv7-32
1629                ttbcrMask.n = ones; // T0SZ
1630                if (haveSecurity) {
1631                    ttbcrMask.pd0 = ones;
1632                    ttbcrMask.pd1 = ones;
1633                }
1634                ttbcrMask.epd0 = ones;
1635                ttbcrMask.irgn0 = ones;
1636                ttbcrMask.orgn0 = ones;
1637                ttbcrMask.sh0 = ones;
1638                ttbcrMask.ps = ones; // T1SZ
1639                ttbcrMask.a1 = ones;
1640                ttbcrMask.epd1 = ones;
1641                ttbcrMask.irgn1 = ones;
1642                ttbcrMask.orgn1 = ones;
1643                ttbcrMask.sh1 = ones;
1644                if (haveLPAE)
1645                    ttbcrMask.eae = ones;
1646
1647                if (haveLPAE && ttbcrNew.eae) {
1648                    newVal = newVal & ttbcrMask;
1649                } else {
1650                    newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1651                }
1652            }
1653          case MISCREG_TTBR0:
1654          case MISCREG_TTBR1:
1655            {
1656                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1657                if (haveLPAE) {
1658                    if (ttbcr.eae) {
1659                        // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1660                        // ARMv8 AArch32 bit 63-56 only
1661                        uint64_t ttbrMask = mask(63,56) | mask(47,40);
1662                        newVal = (newVal & (~ttbrMask));
1663                    }
1664                }
1665            }
1666          case MISCREG_CONTEXTIDR:
1667          case MISCREG_PRRR:
1668          case MISCREG_NMRR:
1669          case MISCREG_MAIR0:
1670          case MISCREG_MAIR1:
1671          case MISCREG_DACR:
1672          case MISCREG_VTTBR:
1673          case MISCREG_SCR_EL3:
1674          case MISCREG_SCTLR_EL1:
1675          case MISCREG_SCTLR_EL2:
1676          case MISCREG_SCTLR_EL3:
1677          case MISCREG_TCR_EL1:
1678          case MISCREG_TCR_EL2:
1679          case MISCREG_TCR_EL3:
1680          case MISCREG_TTBR0_EL1:
1681          case MISCREG_TTBR1_EL1:
1682          case MISCREG_TTBR0_EL2:
1683          case MISCREG_TTBR0_EL3:
1684            tc->getITBPtr()->invalidateMiscReg();
1685            tc->getDTBPtr()->invalidateMiscReg();
1686            break;
1687          case MISCREG_NZCV:
1688            {
1689                CPSR cpsr = val;
1690
1691                tc->setIntReg(INTREG_CONDCODES_NZ, cpsr.nz);
1692                tc->setIntReg(INTREG_CONDCODES_C,  cpsr.c);
1693                tc->setIntReg(INTREG_CONDCODES_V,  cpsr.v);
1694            }
1695            break;
1696          case MISCREG_DAIF:
1697            {
1698                CPSR cpsr = miscRegs[MISCREG_CPSR];
1699                cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1700                newVal = cpsr;
1701                misc_reg = MISCREG_CPSR;
1702            }
1703            break;
1704          case MISCREG_SP_EL0:
1705            tc->setIntReg(INTREG_SP0, newVal);
1706            break;
1707          case MISCREG_SP_EL1:
1708            tc->setIntReg(INTREG_SP1, newVal);
1709            break;
1710          case MISCREG_SP_EL2:
1711            tc->setIntReg(INTREG_SP2, newVal);
1712            break;
1713          case MISCREG_SPSEL:
1714            {
1715                CPSR cpsr = miscRegs[MISCREG_CPSR];
1716                cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1717                newVal = cpsr;
1718                misc_reg = MISCREG_CPSR;
1719            }
1720            break;
1721          case MISCREG_CURRENTEL:
1722            {
1723                CPSR cpsr = miscRegs[MISCREG_CPSR];
1724                cpsr.el = (uint8_t) ((CPSR) newVal).el;
1725                newVal = cpsr;
1726                misc_reg = MISCREG_CPSR;
1727            }
1728            break;
1729          case MISCREG_AT_S1E1R_Xt:
1730          case MISCREG_AT_S1E1W_Xt:
1731          case MISCREG_AT_S1E0R_Xt:
1732          case MISCREG_AT_S1E0W_Xt:
1733          case MISCREG_AT_S1E2R_Xt:
1734          case MISCREG_AT_S1E2W_Xt:
1735          case MISCREG_AT_S12E1R_Xt:
1736          case MISCREG_AT_S12E1W_Xt:
1737          case MISCREG_AT_S12E0R_Xt:
1738          case MISCREG_AT_S12E0W_Xt:
1739          case MISCREG_AT_S1E3R_Xt:
1740          case MISCREG_AT_S1E3W_Xt:
1741            {
1742                RequestPtr req = new Request;
1743                unsigned flags = 0;
1744                BaseTLB::Mode mode = BaseTLB::Read;
1745                TLB::ArmTranslationType tranType = TLB::NormalTran;
1746                Fault fault;
1747                switch(misc_reg) {
1748                  case MISCREG_AT_S1E1R_Xt:
1749                    flags    = TLB::MustBeOne;
1750                    tranType = TLB::S1CTran;
1751                    mode     = BaseTLB::Read;
1752                    break;
1753                  case MISCREG_AT_S1E1W_Xt:
1754                    flags    = TLB::MustBeOne;
1755                    tranType = TLB::S1CTran;
1756                    mode     = BaseTLB::Write;
1757                    break;
1758                  case MISCREG_AT_S1E0R_Xt:
1759                    flags    = TLB::MustBeOne | TLB::UserMode;
1760                    tranType = TLB::S1CTran;
1761                    mode     = BaseTLB::Read;
1762                    break;
1763                  case MISCREG_AT_S1E0W_Xt:
1764                    flags    = TLB::MustBeOne | TLB::UserMode;
1765                    tranType = TLB::S1CTran;
1766                    mode     = BaseTLB::Write;
1767                    break;
1768                  case MISCREG_AT_S1E2R_Xt:
1769                    flags    = TLB::MustBeOne;
1770                    tranType = TLB::HypMode;
1771                    mode     = BaseTLB::Read;
1772                    break;
1773                  case MISCREG_AT_S1E2W_Xt:
1774                    flags    = TLB::MustBeOne;
1775                    tranType = TLB::HypMode;
1776                    mode     = BaseTLB::Write;
1777                    break;
1778                  case MISCREG_AT_S12E0R_Xt:
1779                    flags    = TLB::MustBeOne | TLB::UserMode;
1780                    tranType = TLB::S1S2NsTran;
1781                    mode     = BaseTLB::Read;
1782                    break;
1783                  case MISCREG_AT_S12E0W_Xt:
1784                    flags    = TLB::MustBeOne | TLB::UserMode;
1785                    tranType = TLB::S1S2NsTran;
1786                    mode     = BaseTLB::Write;
1787                    break;
1788                  case MISCREG_AT_S12E1R_Xt:
1789                    flags    = TLB::MustBeOne;
1790                    tranType = TLB::S1S2NsTran;
1791                    mode     = BaseTLB::Read;
1792                    break;
1793                  case MISCREG_AT_S12E1W_Xt:
1794                    flags    = TLB::MustBeOne;
1795                    tranType = TLB::S1S2NsTran;
1796                    mode     = BaseTLB::Write;
1797                    break;
1798                  case MISCREG_AT_S1E3R_Xt:
1799                    flags    = TLB::MustBeOne;
1800                    tranType = TLB::HypMode; // There is no TZ mode defined.
1801                    mode     = BaseTLB::Read;
1802                    break;
1803                  case MISCREG_AT_S1E3W_Xt:
1804                    flags    = TLB::MustBeOne;
1805                    tranType = TLB::HypMode; // There is no TZ mode defined.
1806                    mode     = BaseTLB::Write;
1807                    break;
1808                }
1809                // If we're in timing mode then doing the translation in
1810                // functional mode then we're slightly distorting performance
1811                // results obtained from simulations. The translation should be
1812                // done in the same mode the core is running in. NOTE: This
1813                // can't be an atomic translation because that causes problems
1814                // with unexpected atomic snoop requests.
1815                warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1816                req->setVirt(0, val, 1, flags,  Request::funcMasterId,
1817                               tc->pcState().pc());
1818                req->setThreadContext(tc->contextId(), tc->threadId());
1819                fault = tc->getDTBPtr()->translateFunctional(req, tc, mode,
1820                                                             tranType);
1821
1822                MiscReg newVal;
1823                if (fault == NoFault) {
1824                    Addr paddr = req->getPaddr();
1825                    uint64_t attr = tc->getDTBPtr()->getAttr();
1826                    uint64_t attr1 = attr >> 56;
1827                    if (!attr1 || attr1 ==0x44) {
1828                        attr |= 0x100;
1829                        attr &= ~ uint64_t(0x80);
1830                    }
1831                    newVal = (paddr & mask(47, 12)) | attr;
1832                    DPRINTF(MiscRegs,
1833                          "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1834                          val, newVal);
1835                } else {
1836                    ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1837                    // Set fault bit and FSR
1838                    FSR fsr = armFault->getFsr(tc);
1839
1840                    newVal = ((fsr >> 9) & 1) << 11;
1841                    // rearange fault status
1842                    newVal |= ((fsr >>  0) & 0x3f) << 1;
1843                    newVal |= 0x1; // F bit
1844                    newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1845                    newVal |= armFault->isStage2() ? 0x200 : 0;
1846                    DPRINTF(MiscRegs,
1847                            "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1848                            val, fsr, newVal);
1849                }
1850                delete req;
1851                setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1852                return;
1853            }
1854          case MISCREG_SPSR_EL3:
1855          case MISCREG_SPSR_EL2:
1856          case MISCREG_SPSR_EL1:
1857            // Force bits 23:21 to 0
1858            newVal = val & ~(0x7 << 21);
1859            break;
1860          case MISCREG_L2CTLR:
1861            warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1862                 miscRegName[misc_reg], uint32_t(val));
1863            break;
1864
1865          // Generic Timer registers
1866          case MISCREG_CNTFRQ:
1867          case MISCREG_CNTFRQ_EL0:
1868            getSystemCounter(tc)->setFreq(val);
1869            break;
1870          case MISCREG_CNTP_CVAL:
1871          case MISCREG_CNTP_CVAL_EL0:
1872            getArchTimer(tc, tc->cpuId())->setCompareValue(val);
1873            break;
1874          case MISCREG_CNTP_TVAL:
1875          case MISCREG_CNTP_TVAL_EL0:
1876            getArchTimer(tc, tc->cpuId())->setTimerValue(val);
1877            break;
1878          case MISCREG_CNTP_CTL:
1879          case MISCREG_CNTP_CTL_EL0:
1880            getArchTimer(tc, tc->cpuId())->setControl(val);
1881            break;
1882          // PL1 phys. timer, secure
1883          //   AArch64
1884          case MISCREG_CNTPS_CVAL_EL1:
1885          case MISCREG_CNTPS_TVAL_EL1:
1886          case MISCREG_CNTPS_CTL_EL1:
1887          // PL2 phys. timer, non-secure
1888          //   AArch32
1889          case MISCREG_CNTHCTL:
1890          case MISCREG_CNTHP_CVAL:
1891          case MISCREG_CNTHP_TVAL:
1892          case MISCREG_CNTHP_CTL:
1893          //   AArch64
1894          case MISCREG_CNTHCTL_EL2:
1895          case MISCREG_CNTHP_CVAL_EL2:
1896          case MISCREG_CNTHP_TVAL_EL2:
1897          case MISCREG_CNTHP_CTL_EL2:
1898          // Virtual timer
1899          //   AArch32
1900          case MISCREG_CNTV_CVAL:
1901          case MISCREG_CNTV_TVAL:
1902          case MISCREG_CNTV_CTL:
1903          //   AArch64
1904          // case MISCREG_CNTV_CVAL_EL2:
1905          // case MISCREG_CNTV_TVAL_EL2:
1906          // case MISCREG_CNTV_CTL_EL2:
1907            break;
1908        }
1909    }
1910    setMiscRegNoEffect(misc_reg, newVal);
1911}
1912
1913void
1914ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint8_t asid, bool secure_lookup,
1915            uint8_t target_el)
1916{
1917    if (haveLargeAsid64)
1918        asid &= mask(8);
1919    Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1920    System *sys = tc->getSystemPtr();
1921    for (int x = 0; x < sys->numContexts(); x++) {
1922        ThreadContext *oc = sys->getThreadContext(x);
1923        assert(oc->getITBPtr() && oc->getDTBPtr());
1924        oc->getITBPtr()->flushMvaAsid(va, asid,
1925                                      secure_lookup, target_el);
1926        oc->getDTBPtr()->flushMvaAsid(va, asid,
1927                                      secure_lookup, target_el);
1928
1929        CheckerCPU *checker = oc->getCheckerCpuPtr();
1930        if (checker) {
1931            checker->getITBPtr()->flushMvaAsid(
1932                va, asid, secure_lookup, target_el);
1933            checker->getDTBPtr()->flushMvaAsid(
1934                va, asid, secure_lookup, target_el);
1935        }
1936    }
1937}
1938
1939void
1940ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
1941{
1942    System *sys = tc->getSystemPtr();
1943    for (int x = 0; x < sys->numContexts(); x++) {
1944        ThreadContext *oc = sys->getThreadContext(x);
1945        assert(oc->getITBPtr() && oc->getDTBPtr());
1946        oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1947        oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1948
1949        // If CheckerCPU is connected, need to notify it of a flush
1950        CheckerCPU *checker = oc->getCheckerCpuPtr();
1951        if (checker) {
1952            checker->getITBPtr()->flushAllSecurity(secure_lookup,
1953                                                   target_el);
1954            checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1955                                                   target_el);
1956        }
1957    }
1958}
1959
1960void
1961ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
1962{
1963    System *sys = tc->getSystemPtr();
1964    for (int x = 0; x < sys->numContexts(); x++) {
1965      ThreadContext *oc = sys->getThreadContext(x);
1966      assert(oc->getITBPtr() && oc->getDTBPtr());
1967      oc->getITBPtr()->flushAllNs(hyp, target_el);
1968      oc->getDTBPtr()->flushAllNs(hyp, target_el);
1969
1970      CheckerCPU *checker = oc->getCheckerCpuPtr();
1971      if (checker) {
1972          checker->getITBPtr()->flushAllNs(hyp, target_el);
1973          checker->getDTBPtr()->flushAllNs(hyp, target_el);
1974      }
1975    }
1976}
1977
1978void
1979ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
1980             uint8_t target_el)
1981{
1982    System *sys = tc->getSystemPtr();
1983    for (int x = 0; x < sys->numContexts(); x++) {
1984        ThreadContext *oc = sys->getThreadContext(x);
1985        assert(oc->getITBPtr() && oc->getDTBPtr());
1986        oc->getITBPtr()->flushMva(mbits(newVal, 31,12),
1987            secure_lookup, hyp, target_el);
1988        oc->getDTBPtr()->flushMva(mbits(newVal, 31,12),
1989            secure_lookup, hyp, target_el);
1990
1991        CheckerCPU *checker = oc->getCheckerCpuPtr();
1992        if (checker) {
1993            checker->getITBPtr()->flushMva(mbits(newVal, 31,12),
1994                secure_lookup, hyp, target_el);
1995            checker->getDTBPtr()->flushMva(mbits(newVal, 31,12),
1996                secure_lookup, hyp, target_el);
1997        }
1998    }
1999}
2000
2001::GenericTimer::SystemCounter *
2002ISA::getSystemCounter(ThreadContext *tc)
2003{
2004    ::GenericTimer::SystemCounter *cnt = ((ArmSystem *) tc->getSystemPtr())->
2005        getSystemCounter();
2006    if (cnt == NULL) {
2007        panic("System counter not available\n");
2008    }
2009    return cnt;
2010}
2011
2012::GenericTimer::ArchTimer *
2013ISA::getArchTimer(ThreadContext *tc, int cpu_id)
2014{
2015    ::GenericTimer::ArchTimer *timer = ((ArmSystem *) tc->getSystemPtr())->
2016        getArchTimer(cpu_id);
2017    if (timer == NULL) {
2018        panic("Architected timer not available\n");
2019    }
2020    return timer;
2021}
2022
2023}
2024
2025ArmISA::ISA *
2026ArmISAParams::create()
2027{
2028    return new ArmISA::ISA(this);
2029}
2030