decoder.isa revision 7823
1// -*- mode:c++ -*- 2 3// Copyright (c) 2003-2006 The Regents of The University of Michigan 4// All rights reserved. 5// 6// Redistribution and use in source and binary forms, with or without 7// modification, are permitted provided that the following conditions are 8// met: redistributions of source code must retain the above copyright 9// notice, this list of conditions and the following disclaimer; 10// redistributions in binary form must reproduce the above copyright 11// notice, this list of conditions and the following disclaimer in the 12// documentation and/or other materials provided with the distribution; 13// neither the name of the copyright holders nor the names of its 14// contributors may be used to endorse or promote products derived from 15// this software without specific prior written permission. 16// 17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28// 29// Authors: Steve Reinhardt 30 31//////////////////////////////////////////////////////////////////// 32// 33// The actual decoder specification 34// 35 36decode OPCODE default Unknown::unknown() { 37 38 format LoadAddress { 39 0x08: lda({{ Ra = Rb + disp; }}); 40 0x09: ldah({{ Ra = Rb + (disp << 16); }}); 41 } 42 43 format LoadOrNop { 44 0x0a: ldbu({{ Ra.uq = Mem.ub; }}); 45 0x0c: ldwu({{ Ra.uq = Mem.uw; }}); 46 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }}); 47 0x23: ldt({{ Fa = Mem.df; }}); 48 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LLSC); 49 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LLSC); 50 } 51 52 format LoadOrPrefetch { 53 0x28: ldl({{ Ra.sl = Mem.sl; }}); 54 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT); 55 // IsFloating flag on lds gets the prefetch to disassemble 56 // using f31 instead of r31... funcitonally it's unnecessary 57 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }}, 58 pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating); 59 } 60 61 format Store { 62 0x0e: stb({{ Mem.ub = Ra<7:0>; }}); 63 0x0d: stw({{ Mem.uw = Ra<15:0>; }}); 64 0x2c: stl({{ Mem.ul = Ra<31:0>; }}); 65 0x2d: stq({{ Mem.uq = Ra.uq; }}); 66 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }}); 67 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }}); 68 0x27: stt({{ Mem.df = Fa; }}); 69 } 70 71 format StoreCond { 72 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }}, 73 {{ 74 uint64_t tmp = write_result; 75 // see stq_c 76 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 77 if (tmp == 1) { 78 xc->setStCondFailures(0); 79 } 80 }}, mem_flags = LLSC, inst_flags = IsStoreConditional); 81 0x2f: stq_c({{ Mem.uq = Ra; }}, 82 {{ 83 uint64_t tmp = write_result; 84 // If the write operation returns 0 or 1, then 85 // this was a conventional store conditional, 86 // and the value indicates the success/failure 87 // of the operation. If another value is 88 // returned, then this was a Turbolaser 89 // mailbox access, and we don't update the 90 // result register at all. 91 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 92 if (tmp == 1) { 93 // clear failure counter... this is 94 // non-architectural and for debugging 95 // only. 96 xc->setStCondFailures(0); 97 } 98 }}, mem_flags = LLSC, inst_flags = IsStoreConditional); 99 } 100 101 format IntegerOperate { 102 103 0x10: decode INTFUNC { // integer arithmetic operations 104 105 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); 106 0x40: addlv({{ 107 int32_t tmp = Ra.sl + Rb_or_imm.sl; 108 // signed overflow occurs when operands have same sign 109 // and sign of result does not match. 110 if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 111 fault = new IntegerOverflowFault; 112 Rc.sl = tmp; 113 }}); 114 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); 115 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); 116 117 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); 118 0x60: addqv({{ 119 uint64_t tmp = Ra + Rb_or_imm; 120 // signed overflow occurs when operands have same sign 121 // and sign of result does not match. 122 if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 123 fault = new IntegerOverflowFault; 124 Rc = tmp; 125 }}); 126 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); 127 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); 128 129 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); 130 0x49: sublv({{ 131 int32_t tmp = Ra.sl - Rb_or_imm.sl; 132 // signed overflow detection is same as for add, 133 // except we need to look at the *complemented* 134 // sign bit of the subtrahend (Rb), i.e., if the initial 135 // signs are the *same* then no overflow can occur 136 if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 137 fault = new IntegerOverflowFault; 138 Rc.sl = tmp; 139 }}); 140 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); 141 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); 142 143 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); 144 0x69: subqv({{ 145 uint64_t tmp = Ra - Rb_or_imm; 146 // signed overflow detection is same as for add, 147 // except we need to look at the *complemented* 148 // sign bit of the subtrahend (Rb), i.e., if the initial 149 // signs are the *same* then no overflow can occur 150 if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 151 fault = new IntegerOverflowFault; 152 Rc = tmp; 153 }}); 154 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); 155 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); 156 157 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); 158 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); 159 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); 160 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); 161 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); 162 163 0x0f: cmpbge({{ 164 int hi = 7; 165 int lo = 0; 166 uint64_t tmp = 0; 167 for (int i = 0; i < 8; ++i) { 168 tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; 169 hi += 8; 170 lo += 8; 171 } 172 Rc = tmp; 173 }}); 174 } 175 176 0x11: decode INTFUNC { // integer logical operations 177 178 0x00: and({{ Rc = Ra & Rb_or_imm; }}); 179 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); 180 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); 181 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); 182 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); 183 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); 184 185 // conditional moves 186 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); 187 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); 188 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); 189 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); 190 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); 191 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); 192 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); 193 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); 194 195 // For AMASK, RA must be R31. 196 0x61: decode RA { 197 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); 198 } 199 200 // For IMPLVER, RA must be R31 and the B operand 201 // must be the immediate value 1. 202 0x6c: decode RA { 203 31: decode IMM { 204 1: decode INTIMM { 205 // return EV5 for FULL_SYSTEM and EV6 otherwise 206 1: implver({{ 207#if FULL_SYSTEM 208 Rc = 1; 209#else 210 Rc = 2; 211#endif 212 }}); 213 } 214 } 215 } 216 217#if FULL_SYSTEM 218 // The mysterious 11.25... 219 0x25: WarnUnimpl::eleven25(); 220#endif 221 } 222 223 0x12: decode INTFUNC { 224 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); 225 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); 226 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); 227 228 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); 229 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); 230 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); 231 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); 232 233 0x52: mskwh({{ 234 int bv = Rb_or_imm<2:0>; 235 Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; 236 }}); 237 0x62: msklh({{ 238 int bv = Rb_or_imm<2:0>; 239 Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; 240 }}); 241 0x72: mskqh({{ 242 int bv = Rb_or_imm<2:0>; 243 Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; 244 }}); 245 246 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); 247 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); 248 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); 249 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); 250 251 0x5a: extwh({{ 252 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); 253 0x6a: extlh({{ 254 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); 255 0x7a: extqh({{ 256 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); 257 258 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); 259 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); 260 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); 261 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); 262 263 0x57: inswh({{ 264 int bv = Rb_or_imm<2:0>; 265 Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; 266 }}); 267 0x67: inslh({{ 268 int bv = Rb_or_imm<2:0>; 269 Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; 270 }}); 271 0x77: insqh({{ 272 int bv = Rb_or_imm<2:0>; 273 Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; 274 }}); 275 276 0x30: zap({{ 277 uint64_t zapmask = 0; 278 for (int i = 0; i < 8; ++i) { 279 if (Rb_or_imm<i:>) 280 zapmask |= (mask(8) << (i * 8)); 281 } 282 Rc = Ra & ~zapmask; 283 }}); 284 0x31: zapnot({{ 285 uint64_t zapmask = 0; 286 for (int i = 0; i < 8; ++i) { 287 if (!Rb_or_imm<i:>) 288 zapmask |= (mask(8) << (i * 8)); 289 } 290 Rc = Ra & ~zapmask; 291 }}); 292 } 293 294 0x13: decode INTFUNC { // integer multiplies 295 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); 296 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); 297 0x30: umulh({{ 298 uint64_t hi, lo; 299 mul128(Ra, Rb_or_imm, hi, lo); 300 Rc = hi; 301 }}, IntMultOp); 302 0x40: mullv({{ 303 // 32-bit multiply with trap on overflow 304 int64_t Rax = Ra.sl; // sign extended version of Ra.sl 305 int64_t Rbx = Rb_or_imm.sl; 306 int64_t tmp = Rax * Rbx; 307 // To avoid overflow, all the upper 32 bits must match 308 // the sign bit of the lower 32. We code this as 309 // checking the upper 33 bits for all 0s or all 1s. 310 uint64_t sign_bits = tmp<63:31>; 311 if (sign_bits != 0 && sign_bits != mask(33)) 312 fault = new IntegerOverflowFault; 313 Rc.sl = tmp<31:0>; 314 }}, IntMultOp); 315 0x60: mulqv({{ 316 // 64-bit multiply with trap on overflow 317 uint64_t hi, lo; 318 mul128(Ra, Rb_or_imm, hi, lo); 319 // all the upper 64 bits must match the sign bit of 320 // the lower 64 321 if (!((hi == 0 && lo<63:> == 0) || 322 (hi == mask(64) && lo<63:> == 1))) 323 fault = new IntegerOverflowFault; 324 Rc = lo; 325 }}, IntMultOp); 326 } 327 328 0x1c: decode INTFUNC { 329 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } 330 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } 331 332 0x30: ctpop({{ 333 uint64_t count = 0; 334 for (int i = 0; Rb<63:i>; ++i) { 335 if (Rb<i:i> == 0x1) 336 ++count; 337 } 338 Rc = count; 339 }}, IntAluOp); 340 341 0x31: perr({{ 342 uint64_t temp = 0; 343 int hi = 7; 344 int lo = 0; 345 for (int i = 0; i < 8; ++i) { 346 uint8_t ra_ub = Ra.uq<hi:lo>; 347 uint8_t rb_ub = Rb.uq<hi:lo>; 348 temp += (ra_ub >= rb_ub) ? 349 (ra_ub - rb_ub) : (rb_ub - ra_ub); 350 hi += 8; 351 lo += 8; 352 } 353 Rc = temp; 354 }}); 355 356 0x32: ctlz({{ 357 uint64_t count = 0; 358 uint64_t temp = Rb; 359 if (temp<63:32>) temp >>= 32; else count += 32; 360 if (temp<31:16>) temp >>= 16; else count += 16; 361 if (temp<15:8>) temp >>= 8; else count += 8; 362 if (temp<7:4>) temp >>= 4; else count += 4; 363 if (temp<3:2>) temp >>= 2; else count += 2; 364 if (temp<1:1>) temp >>= 1; else count += 1; 365 if ((temp<0:0>) != 0x1) count += 1; 366 Rc = count; 367 }}, IntAluOp); 368 369 0x33: cttz({{ 370 uint64_t count = 0; 371 uint64_t temp = Rb; 372 if (!(temp<31:0>)) { temp >>= 32; count += 32; } 373 if (!(temp<15:0>)) { temp >>= 16; count += 16; } 374 if (!(temp<7:0>)) { temp >>= 8; count += 8; } 375 if (!(temp<3:0>)) { temp >>= 4; count += 4; } 376 if (!(temp<1:0>)) { temp >>= 2; count += 2; } 377 if (!(temp<0:0> & ULL(0x1))) { 378 temp >>= 1; count += 1; 379 } 380 if (!(temp<0:0> & ULL(0x1))) count += 1; 381 Rc = count; 382 }}, IntAluOp); 383 384 385 0x34: unpkbw({{ 386 Rc = (Rb.uq<7:0> 387 | (Rb.uq<15:8> << 16) 388 | (Rb.uq<23:16> << 32) 389 | (Rb.uq<31:24> << 48)); 390 }}, IntAluOp); 391 392 0x35: unpkbl({{ 393 Rc = (Rb.uq<7:0> | (Rb.uq<15:8> << 32)); 394 }}, IntAluOp); 395 396 0x36: pkwb({{ 397 Rc = (Rb.uq<7:0> 398 | (Rb.uq<23:16> << 8) 399 | (Rb.uq<39:32> << 16) 400 | (Rb.uq<55:48> << 24)); 401 }}, IntAluOp); 402 403 0x37: pklb({{ 404 Rc = (Rb.uq<7:0> | (Rb.uq<39:32> << 8)); 405 }}, IntAluOp); 406 407 0x38: minsb8({{ 408 uint64_t temp = 0; 409 int hi = 63; 410 int lo = 56; 411 for (int i = 7; i >= 0; --i) { 412 int8_t ra_sb = Ra.uq<hi:lo>; 413 int8_t rb_sb = Rb.uq<hi:lo>; 414 temp = ((temp << 8) 415 | ((ra_sb < rb_sb) ? Ra.uq<hi:lo> 416 : Rb.uq<hi:lo>)); 417 hi -= 8; 418 lo -= 8; 419 } 420 Rc = temp; 421 }}); 422 423 0x39: minsw4({{ 424 uint64_t temp = 0; 425 int hi = 63; 426 int lo = 48; 427 for (int i = 3; i >= 0; --i) { 428 int16_t ra_sw = Ra.uq<hi:lo>; 429 int16_t rb_sw = Rb.uq<hi:lo>; 430 temp = ((temp << 16) 431 | ((ra_sw < rb_sw) ? Ra.uq<hi:lo> 432 : Rb.uq<hi:lo>)); 433 hi -= 16; 434 lo -= 16; 435 } 436 Rc = temp; 437 }}); 438 439 0x3a: minub8({{ 440 uint64_t temp = 0; 441 int hi = 63; 442 int lo = 56; 443 for (int i = 7; i >= 0; --i) { 444 uint8_t ra_ub = Ra.uq<hi:lo>; 445 uint8_t rb_ub = Rb.uq<hi:lo>; 446 temp = ((temp << 8) 447 | ((ra_ub < rb_ub) ? Ra.uq<hi:lo> 448 : Rb.uq<hi:lo>)); 449 hi -= 8; 450 lo -= 8; 451 } 452 Rc = temp; 453 }}); 454 455 0x3b: minuw4({{ 456 uint64_t temp = 0; 457 int hi = 63; 458 int lo = 48; 459 for (int i = 3; i >= 0; --i) { 460 uint16_t ra_sw = Ra.uq<hi:lo>; 461 uint16_t rb_sw = Rb.uq<hi:lo>; 462 temp = ((temp << 16) 463 | ((ra_sw < rb_sw) ? Ra.uq<hi:lo> 464 : Rb.uq<hi:lo>)); 465 hi -= 16; 466 lo -= 16; 467 } 468 Rc = temp; 469 }}); 470 471 0x3c: maxub8({{ 472 uint64_t temp = 0; 473 int hi = 63; 474 int lo = 56; 475 for (int i = 7; i >= 0; --i) { 476 uint8_t ra_ub = Ra.uq<hi:lo>; 477 uint8_t rb_ub = Rb.uq<hi:lo>; 478 temp = ((temp << 8) 479 | ((ra_ub > rb_ub) ? Ra.uq<hi:lo> 480 : Rb.uq<hi:lo>)); 481 hi -= 8; 482 lo -= 8; 483 } 484 Rc = temp; 485 }}); 486 487 0x3d: maxuw4({{ 488 uint64_t temp = 0; 489 int hi = 63; 490 int lo = 48; 491 for (int i = 3; i >= 0; --i) { 492 uint16_t ra_uw = Ra.uq<hi:lo>; 493 uint16_t rb_uw = Rb.uq<hi:lo>; 494 temp = ((temp << 16) 495 | ((ra_uw > rb_uw) ? Ra.uq<hi:lo> 496 : Rb.uq<hi:lo>)); 497 hi -= 16; 498 lo -= 16; 499 } 500 Rc = temp; 501 }}); 502 503 0x3e: maxsb8({{ 504 uint64_t temp = 0; 505 int hi = 63; 506 int lo = 56; 507 for (int i = 7; i >= 0; --i) { 508 int8_t ra_sb = Ra.uq<hi:lo>; 509 int8_t rb_sb = Rb.uq<hi:lo>; 510 temp = ((temp << 8) 511 | ((ra_sb > rb_sb) ? Ra.uq<hi:lo> 512 : Rb.uq<hi:lo>)); 513 hi -= 8; 514 lo -= 8; 515 } 516 Rc = temp; 517 }}); 518 519 0x3f: maxsw4({{ 520 uint64_t temp = 0; 521 int hi = 63; 522 int lo = 48; 523 for (int i = 3; i >= 0; --i) { 524 int16_t ra_sw = Ra.uq<hi:lo>; 525 int16_t rb_sw = Rb.uq<hi:lo>; 526 temp = ((temp << 16) 527 | ((ra_sw > rb_sw) ? Ra.uq<hi:lo> 528 : Rb.uq<hi:lo>)); 529 hi -= 16; 530 lo -= 16; 531 } 532 Rc = temp; 533 }}); 534 535 format BasicOperateWithNopCheck { 536 0x70: decode RB { 537 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); 538 } 539 0x78: decode RB { 540 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, 541 FloatCvtOp); 542 } 543 } 544 } 545 } 546 547 // Conditional branches. 548 format CondBranch { 549 0x39: beq({{ cond = (Ra == 0); }}); 550 0x3d: bne({{ cond = (Ra != 0); }}); 551 0x3e: bge({{ cond = (Ra.sq >= 0); }}); 552 0x3f: bgt({{ cond = (Ra.sq > 0); }}); 553 0x3b: ble({{ cond = (Ra.sq <= 0); }}); 554 0x3a: blt({{ cond = (Ra.sq < 0); }}); 555 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); 556 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); 557 558 0x31: fbeq({{ cond = (Fa == 0); }}); 559 0x35: fbne({{ cond = (Fa != 0); }}); 560 0x36: fbge({{ cond = (Fa >= 0); }}); 561 0x37: fbgt({{ cond = (Fa > 0); }}); 562 0x33: fble({{ cond = (Fa <= 0); }}); 563 0x32: fblt({{ cond = (Fa < 0); }}); 564 } 565 566 // unconditional branches 567 format UncondBranch { 568 0x30: br(); 569 0x34: bsr(IsCall); 570 } 571 572 // indirect branches 573 0x1a: decode JMPFUNC { 574 format Jump { 575 0: jmp(); 576 1: jsr(IsCall); 577 2: ret(IsReturn); 578 3: jsr_coroutine(IsCall, IsReturn); 579 } 580 } 581 582 // Square root and integer-to-FP moves 583 0x14: decode FP_SHORTFUNC { 584 // Integer to FP register moves must have RB == 31 585 0x4: decode RB { 586 31: decode FP_FULLFUNC { 587 format BasicOperateWithNopCheck { 588 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); 589 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); 590 0x014: FailUnimpl::itoff(); // VAX-format conversion 591 } 592 } 593 } 594 595 // Square root instructions must have FA == 31 596 0xb: decode FA { 597 31: decode FP_TYPEFUNC { 598 format FloatingPointOperate { 599#if SS_COMPATIBLE_FP 600 0x0b: sqrts({{ 601 if (Fb < 0.0) 602 fault = new ArithmeticFault; 603 Fc = sqrt(Fb); 604 }}, FloatSqrtOp); 605#else 606 0x0b: sqrts({{ 607 if (Fb.sf < 0.0) 608 fault = new ArithmeticFault; 609 Fc.sf = sqrt(Fb.sf); 610 }}, FloatSqrtOp); 611#endif 612 0x2b: sqrtt({{ 613 if (Fb < 0.0) 614 fault = new ArithmeticFault; 615 Fc = sqrt(Fb); 616 }}, FloatSqrtOp); 617 } 618 } 619 } 620 621 // VAX-format sqrtf and sqrtg are not implemented 622 0xa: FailUnimpl::sqrtfg(); 623 } 624 625 // IEEE floating point 626 0x16: decode FP_SHORTFUNC_TOP2 { 627 // The top two bits of the short function code break this 628 // space into four groups: binary ops, compares, reserved, and 629 // conversions. See Table 4-12 of AHB. There are different 630 // special cases in these different groups, so we decode on 631 // these top two bits first just to select a decode strategy. 632 // Most of these instructions may have various trapping and 633 // rounding mode flags set; these are decoded in the 634 // FloatingPointDecode template used by the 635 // FloatingPointOperate format. 636 637 // add/sub/mul/div: just decode on the short function code 638 // and source type. All valid trapping and rounding modes apply. 639 0: decode FP_TRAPMODE { 640 // check for valid trapping modes here 641 0,1,5,7: decode FP_TYPEFUNC { 642 format FloatingPointOperate { 643#if SS_COMPATIBLE_FP 644 0x00: adds({{ Fc = Fa + Fb; }}); 645 0x01: subs({{ Fc = Fa - Fb; }}); 646 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); 647 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); 648#else 649 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); 650 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); 651 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); 652 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); 653#endif 654 655 0x20: addt({{ Fc = Fa + Fb; }}); 656 0x21: subt({{ Fc = Fa - Fb; }}); 657 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); 658 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); 659 } 660 } 661 } 662 663 // Floating-point compare instructions must have the default 664 // rounding mode, and may use the default trapping mode or 665 // /SU. Both trapping modes are treated the same by M5; the 666 // only difference on the real hardware (as far a I can tell) 667 // is that without /SU you'd get an imprecise trap if you 668 // tried to compare a NaN with something else (instead of an 669 // "unordered" result). 670 1: decode FP_FULLFUNC { 671 format BasicOperateWithNopCheck { 672 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, 673 FloatCmpOp); 674 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, 675 FloatCmpOp); 676 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, 677 FloatCmpOp); 678 0x0a4, 0x5a4: cmptun({{ // unordered 679 Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; 680 }}, FloatCmpOp); 681 } 682 } 683 684 // The FP-to-integer and integer-to-FP conversion insts 685 // require that FA be 31. 686 3: decode FA { 687 31: decode FP_TYPEFUNC { 688 format FloatingPointOperate { 689 0x2f: decode FP_ROUNDMODE { 690 format FPFixedRounding { 691 // "chopped" i.e. round toward zero 692 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, 693 Chopped); 694 // round to minus infinity 695 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, 696 MinusInfinity); 697 } 698 default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); 699 } 700 701 // The cvtts opcode is overloaded to be cvtst if the trap 702 // mode is 2 or 6 (which are not valid otherwise) 703 0x2c: decode FP_FULLFUNC { 704 format BasicOperateWithNopCheck { 705 // trap on denorm version "cvtst/s" is 706 // simulated same as cvtst 707 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); 708 } 709 default: cvtts({{ Fc.sf = Fb; }}); 710 } 711 712 // The trapping mode for integer-to-FP conversions 713 // must be /SUI or nothing; /U and /SU are not 714 // allowed. The full set of rounding modes are 715 // supported though. 716 0x3c: decode FP_TRAPMODE { 717 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); 718 } 719 0x3e: decode FP_TRAPMODE { 720 0,7: cvtqt({{ Fc = Fb.sq; }}); 721 } 722 } 723 } 724 } 725 } 726 727 // misc FP operate 728 0x17: decode FP_FULLFUNC { 729 format BasicOperateWithNopCheck { 730 0x010: cvtlq({{ 731 Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; 732 }}); 733 0x030: cvtql({{ 734 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 735 }}); 736 737 // We treat the precise & imprecise trapping versions of 738 // cvtql identically. 739 0x130, 0x530: cvtqlv({{ 740 // To avoid overflow, all the upper 32 bits must match 741 // the sign bit of the lower 32. We code this as 742 // checking the upper 33 bits for all 0s or all 1s. 743 uint64_t sign_bits = Fb.uq<63:31>; 744 if (sign_bits != 0 && sign_bits != mask(33)) 745 fault = new IntegerOverflowFault; 746 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 747 }}); 748 749 0x020: cpys({{ // copy sign 750 Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; 751 }}); 752 0x021: cpysn({{ // copy sign negated 753 Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; 754 }}); 755 0x022: cpyse({{ // copy sign and exponent 756 Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; 757 }}); 758 759 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); 760 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); 761 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); 762 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); 763 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); 764 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); 765 766 0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsIprAccess); 767 0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsIprAccess); 768 } 769 } 770 771 // miscellaneous mem-format ops 772 0x18: decode MEMFUNC { 773 format WarnUnimpl { 774 0x8000: fetch(); 775 0xa000: fetch_m(); 776 0xe800: ecb(); 777 } 778 779 format MiscPrefetch { 780 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, 781 {{ ; }}, 782 mem_flags = PREFETCH); 783 } 784 785 format BasicOperate { 786 0xc000: rpcc({{ 787#if FULL_SYSTEM 788 /* Rb is a fake dependency so here is a fun way to get 789 * the parser to understand that. 790 */ 791 Ra = xc->readMiscReg(IPR_CC) + (Rb & 0); 792 793#else 794 Ra = curTick(); 795#endif 796 }}, IsUnverifiable); 797 798 // All of the barrier instructions below do nothing in 799 // their execute() methods (hence the empty code blocks). 800 // All of their functionality is hard-coded in the 801 // pipeline based on the flags IsSerializing, 802 // IsMemBarrier, and IsWriteBarrier. In the current 803 // detailed CPU model, the execute() function only gets 804 // called at fetch, so there's no way to generate pipeline 805 // behavior at any other stage. Once we go to an 806 // exec-in-exec CPU model we should be able to get rid of 807 // these flags and implement this behavior via the 808 // execute() methods. 809 810 // trapb is just a barrier on integer traps, where excb is 811 // a barrier on integer and FP traps. "EXCB is thus a 812 // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat 813 // them the same though. 814 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 815 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 816 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); 817 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); 818 } 819 820#if FULL_SYSTEM 821 format BasicOperate { 822 0xe000: rc({{ 823 Ra = IntrFlag; 824 IntrFlag = 0; 825 }}, IsNonSpeculative, IsUnverifiable); 826 0xf000: rs({{ 827 Ra = IntrFlag; 828 IntrFlag = 1; 829 }}, IsNonSpeculative, IsUnverifiable); 830 } 831#else 832 format FailUnimpl { 833 0xe000: rc(); 834 0xf000: rs(); 835 } 836#endif 837 } 838 839#if FULL_SYSTEM 840 0x00: CallPal::call_pal({{ 841 if (!palValid || 842 (palPriv 843 && xc->readMiscReg(IPR_ICM) != mode_kernel)) { 844 // invalid pal function code, or attempt to do privileged 845 // PAL call in non-kernel mode 846 fault = new UnimplementedOpcodeFault; 847 } else { 848 // check to see if simulator wants to do something special 849 // on this PAL call (including maybe suppress it) 850 bool dopal = xc->simPalCheck(palFunc); 851 852 if (dopal) { 853 xc->setMiscReg(IPR_EXC_ADDR, NPC); 854 NPC = xc->readMiscReg(IPR_PAL_BASE) + palOffset; 855 } 856 } 857 }}, IsNonSpeculative); 858#else 859 0x00: decode PALFUNC { 860 format EmulatedCallPal { 861 0x00: halt ({{ 862 exitSimLoop("halt instruction encountered"); 863 }}, IsNonSpeculative); 864 0x83: callsys({{ 865 xc->syscall(R0); 866 }}, IsSerializeAfter, IsNonSpeculative, IsSyscall); 867 // Read uniq reg into ABI return value register (r0) 868 0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess); 869 // Write uniq reg with value from ABI arg register (r16) 870 0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess); 871 } 872 } 873#endif 874 875#if FULL_SYSTEM 876 0x1b: decode PALMODE { 877 0: OpcdecFault::hw_st_quad(); 878 1: decode HW_LDST_QUAD { 879 format HwLoad { 880 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, 881 L, IsSerializing, IsSerializeBefore); 882 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, 883 Q, IsSerializing, IsSerializeBefore); 884 } 885 } 886 } 887 888 0x1f: decode PALMODE { 889 0: OpcdecFault::hw_st_cond(); 890 format HwStore { 891 1: decode HW_LDST_COND { 892 0: decode HW_LDST_QUAD { 893 0: hw_st({{ EA = (Rb + disp) & ~3; }}, 894 {{ Mem.ul = Ra<31:0>; }}, L, IsSerializing, IsSerializeBefore); 895 1: hw_st({{ EA = (Rb + disp) & ~7; }}, 896 {{ Mem.uq = Ra.uq; }}, Q, IsSerializing, IsSerializeBefore); 897 } 898 899 1: FailUnimpl::hw_st_cond(); 900 } 901 } 902 } 903 904 0x19: decode PALMODE { 905 0: OpcdecFault::hw_mfpr(); 906 format HwMoveIPR { 907 1: hw_mfpr({{ 908 int miscRegIndex = (ipr_index < MaxInternalProcRegs) ? 909 IprToMiscRegIndex[ipr_index] : -1; 910 if(miscRegIndex < 0 || !IprIsReadable(miscRegIndex) || 911 miscRegIndex >= NumInternalProcRegs) 912 fault = new UnimplementedOpcodeFault; 913 else 914 Ra = xc->readMiscReg(miscRegIndex); 915 }}, IsIprAccess); 916 } 917 } 918 919 0x1d: decode PALMODE { 920 0: OpcdecFault::hw_mtpr(); 921 format HwMoveIPR { 922 1: hw_mtpr({{ 923 int miscRegIndex = (ipr_index < MaxInternalProcRegs) ? 924 IprToMiscRegIndex[ipr_index] : -1; 925 if(miscRegIndex < 0 || !IprIsWritable(miscRegIndex) || 926 miscRegIndex >= NumInternalProcRegs) 927 fault = new UnimplementedOpcodeFault; 928 else 929 xc->setMiscReg(miscRegIndex, Ra); 930 if (traceData) { traceData->setData(Ra); } 931 }}, IsIprAccess); 932 } 933 } 934 935 0x1e: decode PALMODE { 936 0: OpcdecFault::hw_rei(); 937 format BasicOperate { 938 1: hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore); 939 } 940 } 941 942#endif 943 944 format BasicOperate { 945 // M5 special opcodes use the reserved 0x01 opcode space 946 0x01: decode M5FUNC { 947#if FULL_SYSTEM 948 0x00: arm({{ 949 PseudoInst::arm(xc->tcBase()); 950 }}, IsNonSpeculative); 951 0x01: quiesce({{ 952 PseudoInst::quiesce(xc->tcBase()); 953 }}, IsNonSpeculative, IsQuiesce); 954 0x02: quiesceNs({{ 955 PseudoInst::quiesceNs(xc->tcBase(), R16); 956 }}, IsNonSpeculative, IsQuiesce); 957 0x03: quiesceCycles({{ 958 PseudoInst::quiesceCycles(xc->tcBase(), R16); 959 }}, IsNonSpeculative, IsQuiesce, IsUnverifiable); 960 0x04: quiesceTime({{ 961 R0 = PseudoInst::quiesceTime(xc->tcBase()); 962 }}, IsNonSpeculative, IsUnverifiable); 963#endif 964 0x07: rpns({{ 965 R0 = PseudoInst::rpns(xc->tcBase()); 966 }}, IsNonSpeculative, IsUnverifiable); 967 0x09: wakeCPU({{ 968 PseudoInst::wakeCPU(xc->tcBase(), R16); 969 }}, IsNonSpeculative, IsUnverifiable); 970 0x10: deprecated_ivlb({{ 971 warn_once("Obsolete M5 ivlb instruction encountered.\n"); 972 }}); 973 0x11: deprecated_ivle({{ 974 warn_once("Obsolete M5 ivlb instruction encountered.\n"); 975 }}); 976 0x20: deprecated_exit ({{ 977 warn_once("deprecated M5 exit instruction encountered.\n"); 978 PseudoInst::m5exit(xc->tcBase(), 0); 979 }}, No_OpClass, IsNonSpeculative); 980 0x21: m5exit({{ 981 PseudoInst::m5exit(xc->tcBase(), R16); 982 }}, No_OpClass, IsNonSpeculative); 983#if FULL_SYSTEM 984 0x31: loadsymbol({{ 985 PseudoInst::loadsymbol(xc->tcBase()); 986 }}, No_OpClass, IsNonSpeculative); 987 0x30: initparam({{ 988 Ra = xc->tcBase()->getCpuPtr()->system->init_param; 989 }}); 990#endif 991 0x40: resetstats({{ 992 PseudoInst::resetstats(xc->tcBase(), R16, R17); 993 }}, IsNonSpeculative); 994 0x41: dumpstats({{ 995 PseudoInst::dumpstats(xc->tcBase(), R16, R17); 996 }}, IsNonSpeculative); 997 0x42: dumpresetstats({{ 998 PseudoInst::dumpresetstats(xc->tcBase(), R16, R17); 999 }}, IsNonSpeculative); 1000 0x43: m5checkpoint({{ 1001 PseudoInst::m5checkpoint(xc->tcBase(), R16, R17); 1002 }}, IsNonSpeculative); 1003#if FULL_SYSTEM 1004 0x50: m5readfile({{ 1005 R0 = PseudoInst::readfile(xc->tcBase(), R16, R17, R18); 1006 }}, IsNonSpeculative); 1007#endif 1008 0x51: m5break({{ 1009 PseudoInst::debugbreak(xc->tcBase()); 1010 }}, IsNonSpeculative); 1011 0x52: m5switchcpu({{ 1012 PseudoInst::switchcpu(xc->tcBase()); 1013 }}, IsNonSpeculative); 1014#if FULL_SYSTEM 1015 0x53: m5addsymbol({{ 1016 PseudoInst::addsymbol(xc->tcBase(), R16, R17); 1017 }}, IsNonSpeculative); 1018#endif 1019 0x54: m5panic({{ 1020 panic("M5 panic instruction called at pc = %#x.", PC); 1021 }}, IsNonSpeculative); 1022#define CPANN(lbl) CPA::cpa()->lbl(xc->tcBase()) 1023 0x55: decode RA { 1024 0x00: m5a_old({{ 1025 panic("Deprecated M5 annotate instruction executed " 1026 "at pc = %#x\n", PC); 1027 }}, IsNonSpeculative); 1028 0x01: m5a_bsm({{ 1029 CPANN(swSmBegin); 1030 }}, IsNonSpeculative); 1031 0x02: m5a_esm({{ 1032 CPANN(swSmEnd); 1033 }}, IsNonSpeculative); 1034 0x03: m5a_begin({{ 1035 CPANN(swExplictBegin); 1036 }}, IsNonSpeculative); 1037 0x04: m5a_end({{ 1038 CPANN(swEnd); 1039 }}, IsNonSpeculative); 1040 0x06: m5a_q({{ 1041 CPANN(swQ); 1042 }}, IsNonSpeculative); 1043 0x07: m5a_dq({{ 1044 CPANN(swDq); 1045 }}, IsNonSpeculative); 1046 0x08: m5a_wf({{ 1047 CPANN(swWf); 1048 }}, IsNonSpeculative); 1049 0x09: m5a_we({{ 1050 CPANN(swWe); 1051 }}, IsNonSpeculative); 1052 0x0C: m5a_sq({{ 1053 CPANN(swSq); 1054 }}, IsNonSpeculative); 1055 0x0D: m5a_aq({{ 1056 CPANN(swAq); 1057 }}, IsNonSpeculative); 1058 0x0E: m5a_pq({{ 1059 CPANN(swPq); 1060 }}, IsNonSpeculative); 1061 0x0F: m5a_l({{ 1062 CPANN(swLink); 1063 }}, IsNonSpeculative); 1064 0x10: m5a_identify({{ 1065 CPANN(swIdentify); 1066 }}, IsNonSpeculative); 1067 0x11: m5a_getid({{ 1068 R0 = CPANN(swGetId); 1069 }}, IsNonSpeculative); 1070 0x13: m5a_scl({{ 1071 CPANN(swSyscallLink); 1072 }}, IsNonSpeculative); 1073 0x14: m5a_rq({{ 1074 CPANN(swRq); 1075 }}, IsNonSpeculative); 1076 } // M5 Annotate Operations 1077#undef CPANN 1078 0x56: m5reserved2({{ 1079 warn("M5 reserved opcode ignored"); 1080 }}, IsNonSpeculative); 1081 0x57: m5reserved3({{ 1082 warn("M5 reserved opcode ignored"); 1083 }}, IsNonSpeculative); 1084 0x58: m5reserved4({{ 1085 warn("M5 reserved opcode ignored"); 1086 }}, IsNonSpeculative); 1087 0x59: m5reserved5({{ 1088 warn("M5 reserved opcode ignored"); 1089 }}, IsNonSpeculative); 1090 } 1091 } 1092} 1093