decoder.isa revision 2665
1// -*- mode:c++ -*- 2 3// Copyright (c) 2003-2006 The Regents of The University of Michigan 4// All rights reserved. 5// 6// Redistribution and use in source and binary forms, with or without 7// modification, are permitted provided that the following conditions are 8// met: redistributions of source code must retain the above copyright 9// notice, this list of conditions and the following disclaimer; 10// redistributions in binary form must reproduce the above copyright 11// notice, this list of conditions and the following disclaimer in the 12// documentation and/or other materials provided with the distribution; 13// neither the name of the copyright holders nor the names of its 14// contributors may be used to endorse or promote products derived from 15// this software without specific prior written permission. 16// 17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28// 29// Authors: Steve Reinhardt 30 31//////////////////////////////////////////////////////////////////// 32// 33// The actual decoder specification 34// 35 36decode OPCODE default Unknown::unknown() { 37 38 format LoadAddress { 39 0x08: lda({{ Ra = Rb + disp; }}); 40 0x09: ldah({{ Ra = Rb + (disp << 16); }}); 41 } 42 43 format LoadOrNop { 44 0x0a: ldbu({{ Ra.uq = Mem.ub; }}); 45 0x0c: ldwu({{ Ra.uq = Mem.uw; }}); 46 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }}); 47 0x23: ldt({{ Fa = Mem.df; }}); 48 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED); 49 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED); 50 0x20: MiscPrefetch::copy_load({{ EA = Ra; }}, 51 {{ fault = xc->copySrcTranslate(EA); }}, 52 inst_flags = [IsMemRef, IsLoad, IsCopy]); 53 } 54 55 format LoadOrPrefetch { 56 0x28: ldl({{ Ra.sl = Mem.sl; }}); 57 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT); 58 // IsFloating flag on lds gets the prefetch to disassemble 59 // using f31 instead of r31... funcitonally it's unnecessary 60 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }}, 61 pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating); 62 } 63 64 format Store { 65 0x0e: stb({{ Mem.ub = Ra<7:0>; }}); 66 0x0d: stw({{ Mem.uw = Ra<15:0>; }}); 67 0x2c: stl({{ Mem.ul = Ra<31:0>; }}); 68 0x2d: stq({{ Mem.uq = Ra.uq; }}); 69 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }}); 70 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }}); 71 0x27: stt({{ Mem.df = Fa; }}); 72 0x24: MiscPrefetch::copy_store({{ EA = Rb; }}, 73 {{ fault = xc->copy(EA); }}, 74 inst_flags = [IsMemRef, IsStore, IsCopy]); 75 } 76 77 format StoreCond { 78 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }}, 79 {{ 80 uint64_t tmp = write_result; 81 // see stq_c 82 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 83 }}, mem_flags = LOCKED); 84 0x2f: stq_c({{ Mem.uq = Ra; }}, 85 {{ 86 uint64_t tmp = write_result; 87 // If the write operation returns 0 or 1, then 88 // this was a conventional store conditional, 89 // and the value indicates the success/failure 90 // of the operation. If another value is 91 // returned, then this was a Turbolaser 92 // mailbox access, and we don't update the 93 // result register at all. 94 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 95 }}, mem_flags = LOCKED); 96 } 97 98 format IntegerOperate { 99 100 0x10: decode INTFUNC { // integer arithmetic operations 101 102 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); 103 0x40: addlv({{ 104 uint32_t tmp = Ra.sl + Rb_or_imm.sl; 105 // signed overflow occurs when operands have same sign 106 // and sign of result does not match. 107 if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 108 fault = new IntegerOverflowFault; 109 Rc.sl = tmp; 110 }}); 111 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); 112 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); 113 114 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); 115 0x60: addqv({{ 116 uint64_t tmp = Ra + Rb_or_imm; 117 // signed overflow occurs when operands have same sign 118 // and sign of result does not match. 119 if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 120 fault = new IntegerOverflowFault; 121 Rc = tmp; 122 }}); 123 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); 124 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); 125 126 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); 127 0x49: sublv({{ 128 uint32_t tmp = Ra.sl - Rb_or_imm.sl; 129 // signed overflow detection is same as for add, 130 // except we need to look at the *complemented* 131 // sign bit of the subtrahend (Rb), i.e., if the initial 132 // signs are the *same* then no overflow can occur 133 if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 134 fault = new IntegerOverflowFault; 135 Rc.sl = tmp; 136 }}); 137 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); 138 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); 139 140 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); 141 0x69: subqv({{ 142 uint64_t tmp = Ra - Rb_or_imm; 143 // signed overflow detection is same as for add, 144 // except we need to look at the *complemented* 145 // sign bit of the subtrahend (Rb), i.e., if the initial 146 // signs are the *same* then no overflow can occur 147 if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 148 fault = new IntegerOverflowFault; 149 Rc = tmp; 150 }}); 151 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); 152 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); 153 154 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); 155 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); 156 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); 157 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); 158 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); 159 160 0x0f: cmpbge({{ 161 int hi = 7; 162 int lo = 0; 163 uint64_t tmp = 0; 164 for (int i = 0; i < 8; ++i) { 165 tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; 166 hi += 8; 167 lo += 8; 168 } 169 Rc = tmp; 170 }}); 171 } 172 173 0x11: decode INTFUNC { // integer logical operations 174 175 0x00: and({{ Rc = Ra & Rb_or_imm; }}); 176 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); 177 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); 178 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); 179 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); 180 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); 181 182 // conditional moves 183 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); 184 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); 185 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); 186 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); 187 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); 188 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); 189 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); 190 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); 191 192 // For AMASK, RA must be R31. 193 0x61: decode RA { 194 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); 195 } 196 197 // For IMPLVER, RA must be R31 and the B operand 198 // must be the immediate value 1. 199 0x6c: decode RA { 200 31: decode IMM { 201 1: decode INTIMM { 202 // return EV5 for FULL_SYSTEM and EV6 otherwise 203 1: implver({{ 204#if FULL_SYSTEM 205 Rc = 1; 206#else 207 Rc = 2; 208#endif 209 }}); 210 } 211 } 212 } 213 214#if FULL_SYSTEM 215 // The mysterious 11.25... 216 0x25: WarnUnimpl::eleven25(); 217#endif 218 } 219 220 0x12: decode INTFUNC { 221 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); 222 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); 223 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); 224 225 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); 226 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); 227 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); 228 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); 229 230 0x52: mskwh({{ 231 int bv = Rb_or_imm<2:0>; 232 Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; 233 }}); 234 0x62: msklh({{ 235 int bv = Rb_or_imm<2:0>; 236 Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; 237 }}); 238 0x72: mskqh({{ 239 int bv = Rb_or_imm<2:0>; 240 Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; 241 }}); 242 243 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); 244 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); 245 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); 246 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); 247 248 0x5a: extwh({{ 249 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); 250 0x6a: extlh({{ 251 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); 252 0x7a: extqh({{ 253 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); 254 255 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); 256 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); 257 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); 258 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); 259 260 0x57: inswh({{ 261 int bv = Rb_or_imm<2:0>; 262 Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; 263 }}); 264 0x67: inslh({{ 265 int bv = Rb_or_imm<2:0>; 266 Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; 267 }}); 268 0x77: insqh({{ 269 int bv = Rb_or_imm<2:0>; 270 Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; 271 }}); 272 273 0x30: zap({{ 274 uint64_t zapmask = 0; 275 for (int i = 0; i < 8; ++i) { 276 if (Rb_or_imm<i:>) 277 zapmask |= (mask(8) << (i * 8)); 278 } 279 Rc = Ra & ~zapmask; 280 }}); 281 0x31: zapnot({{ 282 uint64_t zapmask = 0; 283 for (int i = 0; i < 8; ++i) { 284 if (!Rb_or_imm<i:>) 285 zapmask |= (mask(8) << (i * 8)); 286 } 287 Rc = Ra & ~zapmask; 288 }}); 289 } 290 291 0x13: decode INTFUNC { // integer multiplies 292 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); 293 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); 294 0x30: umulh({{ 295 uint64_t hi, lo; 296 mul128(Ra, Rb_or_imm, hi, lo); 297 Rc = hi; 298 }}, IntMultOp); 299 0x40: mullv({{ 300 // 32-bit multiply with trap on overflow 301 int64_t Rax = Ra.sl; // sign extended version of Ra.sl 302 int64_t Rbx = Rb_or_imm.sl; 303 int64_t tmp = Rax * Rbx; 304 // To avoid overflow, all the upper 32 bits must match 305 // the sign bit of the lower 32. We code this as 306 // checking the upper 33 bits for all 0s or all 1s. 307 uint64_t sign_bits = tmp<63:31>; 308 if (sign_bits != 0 && sign_bits != mask(33)) 309 fault = new IntegerOverflowFault; 310 Rc.sl = tmp<31:0>; 311 }}, IntMultOp); 312 0x60: mulqv({{ 313 // 64-bit multiply with trap on overflow 314 uint64_t hi, lo; 315 mul128(Ra, Rb_or_imm, hi, lo); 316 // all the upper 64 bits must match the sign bit of 317 // the lower 64 318 if (!((hi == 0 && lo<63:> == 0) || 319 (hi == mask(64) && lo<63:> == 1))) 320 fault = new IntegerOverflowFault; 321 Rc = lo; 322 }}, IntMultOp); 323 } 324 325 0x1c: decode INTFUNC { 326 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } 327 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } 328 0x32: ctlz({{ 329 uint64_t count = 0; 330 uint64_t temp = Rb; 331 if (temp<63:32>) temp >>= 32; else count += 32; 332 if (temp<31:16>) temp >>= 16; else count += 16; 333 if (temp<15:8>) temp >>= 8; else count += 8; 334 if (temp<7:4>) temp >>= 4; else count += 4; 335 if (temp<3:2>) temp >>= 2; else count += 2; 336 if (temp<1:1>) temp >>= 1; else count += 1; 337 if ((temp<0:0>) != 0x1) count += 1; 338 Rc = count; 339 }}, IntAluOp); 340 341 0x33: cttz({{ 342 uint64_t count = 0; 343 uint64_t temp = Rb; 344 if (!(temp<31:0>)) { temp >>= 32; count += 32; } 345 if (!(temp<15:0>)) { temp >>= 16; count += 16; } 346 if (!(temp<7:0>)) { temp >>= 8; count += 8; } 347 if (!(temp<3:0>)) { temp >>= 4; count += 4; } 348 if (!(temp<1:0>)) { temp >>= 2; count += 2; } 349 if (!(temp<0:0> & ULL(0x1))) count += 1; 350 Rc = count; 351 }}, IntAluOp); 352 353 format FailUnimpl { 354 0x30: ctpop(); 355 0x31: perr(); 356 0x34: unpkbw(); 357 0x35: unpkbl(); 358 0x36: pkwb(); 359 0x37: pklb(); 360 0x38: minsb8(); 361 0x39: minsw4(); 362 0x3a: minub8(); 363 0x3b: minuw4(); 364 0x3c: maxub8(); 365 0x3d: maxuw4(); 366 0x3e: maxsb8(); 367 0x3f: maxsw4(); 368 } 369 370 format BasicOperateWithNopCheck { 371 0x70: decode RB { 372 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); 373 } 374 0x78: decode RB { 375 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, 376 FloatCvtOp); 377 } 378 } 379 } 380 } 381 382 // Conditional branches. 383 format CondBranch { 384 0x39: beq({{ cond = (Ra == 0); }}); 385 0x3d: bne({{ cond = (Ra != 0); }}); 386 0x3e: bge({{ cond = (Ra.sq >= 0); }}); 387 0x3f: bgt({{ cond = (Ra.sq > 0); }}); 388 0x3b: ble({{ cond = (Ra.sq <= 0); }}); 389 0x3a: blt({{ cond = (Ra.sq < 0); }}); 390 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); 391 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); 392 393 0x31: fbeq({{ cond = (Fa == 0); }}); 394 0x35: fbne({{ cond = (Fa != 0); }}); 395 0x36: fbge({{ cond = (Fa >= 0); }}); 396 0x37: fbgt({{ cond = (Fa > 0); }}); 397 0x33: fble({{ cond = (Fa <= 0); }}); 398 0x32: fblt({{ cond = (Fa < 0); }}); 399 } 400 401 // unconditional branches 402 format UncondBranch { 403 0x30: br(); 404 0x34: bsr(IsCall); 405 } 406 407 // indirect branches 408 0x1a: decode JMPFUNC { 409 format Jump { 410 0: jmp(); 411 1: jsr(IsCall); 412 2: ret(IsReturn); 413 3: jsr_coroutine(IsCall, IsReturn); 414 } 415 } 416 417 // Square root and integer-to-FP moves 418 0x14: decode FP_SHORTFUNC { 419 // Integer to FP register moves must have RB == 31 420 0x4: decode RB { 421 31: decode FP_FULLFUNC { 422 format BasicOperateWithNopCheck { 423 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); 424 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); 425 0x014: FailUnimpl::itoff(); // VAX-format conversion 426 } 427 } 428 } 429 430 // Square root instructions must have FA == 31 431 0xb: decode FA { 432 31: decode FP_TYPEFUNC { 433 format FloatingPointOperate { 434#if SS_COMPATIBLE_FP 435 0x0b: sqrts({{ 436 if (Fb < 0.0) 437 fault = new ArithmeticFault; 438 Fc = sqrt(Fb); 439 }}, FloatSqrtOp); 440#else 441 0x0b: sqrts({{ 442 if (Fb.sf < 0.0) 443 fault = new ArithmeticFault; 444 Fc.sf = sqrt(Fb.sf); 445 }}, FloatSqrtOp); 446#endif 447 0x2b: sqrtt({{ 448 if (Fb < 0.0) 449 fault = new ArithmeticFault; 450 Fc = sqrt(Fb); 451 }}, FloatSqrtOp); 452 } 453 } 454 } 455 456 // VAX-format sqrtf and sqrtg are not implemented 457 0xa: FailUnimpl::sqrtfg(); 458 } 459 460 // IEEE floating point 461 0x16: decode FP_SHORTFUNC_TOP2 { 462 // The top two bits of the short function code break this 463 // space into four groups: binary ops, compares, reserved, and 464 // conversions. See Table 4-12 of AHB. There are different 465 // special cases in these different groups, so we decode on 466 // these top two bits first just to select a decode strategy. 467 // Most of these instructions may have various trapping and 468 // rounding mode flags set; these are decoded in the 469 // FloatingPointDecode template used by the 470 // FloatingPointOperate format. 471 472 // add/sub/mul/div: just decode on the short function code 473 // and source type. All valid trapping and rounding modes apply. 474 0: decode FP_TRAPMODE { 475 // check for valid trapping modes here 476 0,1,5,7: decode FP_TYPEFUNC { 477 format FloatingPointOperate { 478#if SS_COMPATIBLE_FP 479 0x00: adds({{ Fc = Fa + Fb; }}); 480 0x01: subs({{ Fc = Fa - Fb; }}); 481 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); 482 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); 483#else 484 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); 485 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); 486 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); 487 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); 488#endif 489 490 0x20: addt({{ Fc = Fa + Fb; }}); 491 0x21: subt({{ Fc = Fa - Fb; }}); 492 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); 493 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); 494 } 495 } 496 } 497 498 // Floating-point compare instructions must have the default 499 // rounding mode, and may use the default trapping mode or 500 // /SU. Both trapping modes are treated the same by M5; the 501 // only difference on the real hardware (as far a I can tell) 502 // is that without /SU you'd get an imprecise trap if you 503 // tried to compare a NaN with something else (instead of an 504 // "unordered" result). 505 1: decode FP_FULLFUNC { 506 format BasicOperateWithNopCheck { 507 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, 508 FloatCmpOp); 509 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, 510 FloatCmpOp); 511 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, 512 FloatCmpOp); 513 0x0a4, 0x5a4: cmptun({{ // unordered 514 Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; 515 }}, FloatCmpOp); 516 } 517 } 518 519 // The FP-to-integer and integer-to-FP conversion insts 520 // require that FA be 31. 521 3: decode FA { 522 31: decode FP_TYPEFUNC { 523 format FloatingPointOperate { 524 0x2f: decode FP_ROUNDMODE { 525 format FPFixedRounding { 526 // "chopped" i.e. round toward zero 527 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, 528 Chopped); 529 // round to minus infinity 530 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, 531 MinusInfinity); 532 } 533 default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); 534 } 535 536 // The cvtts opcode is overloaded to be cvtst if the trap 537 // mode is 2 or 6 (which are not valid otherwise) 538 0x2c: decode FP_FULLFUNC { 539 format BasicOperateWithNopCheck { 540 // trap on denorm version "cvtst/s" is 541 // simulated same as cvtst 542 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); 543 } 544 default: cvtts({{ Fc.sf = Fb; }}); 545 } 546 547 // The trapping mode for integer-to-FP conversions 548 // must be /SUI or nothing; /U and /SU are not 549 // allowed. The full set of rounding modes are 550 // supported though. 551 0x3c: decode FP_TRAPMODE { 552 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); 553 } 554 0x3e: decode FP_TRAPMODE { 555 0,7: cvtqt({{ Fc = Fb.sq; }}); 556 } 557 } 558 } 559 } 560 } 561 562 // misc FP operate 563 0x17: decode FP_FULLFUNC { 564 format BasicOperateWithNopCheck { 565 0x010: cvtlq({{ 566 Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; 567 }}); 568 0x030: cvtql({{ 569 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 570 }}); 571 572 // We treat the precise & imprecise trapping versions of 573 // cvtql identically. 574 0x130, 0x530: cvtqlv({{ 575 // To avoid overflow, all the upper 32 bits must match 576 // the sign bit of the lower 32. We code this as 577 // checking the upper 33 bits for all 0s or all 1s. 578 uint64_t sign_bits = Fb.uq<63:31>; 579 if (sign_bits != 0 && sign_bits != mask(33)) 580 fault = new IntegerOverflowFault; 581 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 582 }}); 583 584 0x020: cpys({{ // copy sign 585 Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; 586 }}); 587 0x021: cpysn({{ // copy sign negated 588 Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; 589 }}); 590 0x022: cpyse({{ // copy sign and exponent 591 Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; 592 }}); 593 594 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); 595 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); 596 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); 597 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); 598 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); 599 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); 600 601 0x024: mt_fpcr({{ FPCR = Fa.uq; }}); 602 0x025: mf_fpcr({{ Fa.uq = FPCR; }}); 603 } 604 } 605 606 // miscellaneous mem-format ops 607 0x18: decode MEMFUNC { 608 format WarnUnimpl { 609 0x8000: fetch(); 610 0xa000: fetch_m(); 611 0xe800: ecb(); 612 } 613 614 format MiscPrefetch { 615 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, 616 {{ xc->writeHint(EA, 64, memAccessFlags); }}, 617 mem_flags = NO_FAULT, 618 inst_flags = [IsMemRef, IsDataPrefetch, 619 IsStore, MemWriteOp]); 620 } 621 622 format BasicOperate { 623 0xc000: rpcc({{ 624#if FULL_SYSTEM 625 /* Rb is a fake dependency so here is a fun way to get 626 * the parser to understand that. 627 */ 628 Ra = xc->readMiscRegWithEffect(AlphaISA::IPR_CC, fault) + (Rb & 0); 629 630#else 631 Ra = curTick; 632#endif 633 }}); 634 635 // All of the barrier instructions below do nothing in 636 // their execute() methods (hence the empty code blocks). 637 // All of their functionality is hard-coded in the 638 // pipeline based on the flags IsSerializing, 639 // IsMemBarrier, and IsWriteBarrier. In the current 640 // detailed CPU model, the execute() function only gets 641 // called at fetch, so there's no way to generate pipeline 642 // behavior at any other stage. Once we go to an 643 // exec-in-exec CPU model we should be able to get rid of 644 // these flags and implement this behavior via the 645 // execute() methods. 646 647 // trapb is just a barrier on integer traps, where excb is 648 // a barrier on integer and FP traps. "EXCB is thus a 649 // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat 650 // them the same though. 651 0x0000: trapb({{ }}, IsSerializing, No_OpClass); 652 0x0400: excb({{ }}, IsSerializing, No_OpClass); 653 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); 654 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); 655 } 656 657#if FULL_SYSTEM 658 format BasicOperate { 659 0xe000: rc({{ 660 Ra = xc->readIntrFlag(); 661 xc->setIntrFlag(0); 662 }}, IsNonSpeculative); 663 0xf000: rs({{ 664 Ra = xc->readIntrFlag(); 665 xc->setIntrFlag(1); 666 }}, IsNonSpeculative); 667 } 668#else 669 format FailUnimpl { 670 0xe000: rc(); 671 0xf000: rs(); 672 } 673#endif 674 } 675 676#if FULL_SYSTEM 677 0x00: CallPal::call_pal({{ 678 if (!palValid || 679 (palPriv 680 && xc->readMiscRegWithEffect(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) { 681 // invalid pal function code, or attempt to do privileged 682 // PAL call in non-kernel mode 683 fault = new UnimplementedOpcodeFault; 684 } 685 else { 686 // check to see if simulator wants to do something special 687 // on this PAL call (including maybe suppress it) 688 bool dopal = xc->simPalCheck(palFunc); 689 690 if (dopal) { 691 xc->setMiscRegWithEffect(AlphaISA::IPR_EXC_ADDR, NPC); 692 NPC = xc->readMiscRegWithEffect(AlphaISA::IPR_PAL_BASE, fault) + palOffset; 693 } 694 } 695 }}, IsNonSpeculative); 696#else 697 0x00: decode PALFUNC { 698 format EmulatedCallPal { 699 0x00: halt ({{ 700 SimExit(curTick, "halt instruction encountered"); 701 }}, IsNonSpeculative); 702 0x83: callsys({{ 703 xc->syscall(R0); 704 }}, IsNonSpeculative); 705 // Read uniq reg into ABI return value register (r0) 706 0x9e: rduniq({{ R0 = Runiq; }}); 707 // Write uniq reg with value from ABI arg register (r16) 708 0x9f: wruniq({{ Runiq = R16; }}); 709 } 710 } 711#endif 712 713#if FULL_SYSTEM 714 0x1b: decode PALMODE { 715 0: OpcdecFault::hw_st_quad(); 716 1: decode HW_LDST_QUAD { 717 format HwLoad { 718 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); 719 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); 720 } 721 } 722 } 723 724 0x1f: decode PALMODE { 725 0: OpcdecFault::hw_st_cond(); 726 format HwStore { 727 1: decode HW_LDST_COND { 728 0: decode HW_LDST_QUAD { 729 0: hw_st({{ EA = (Rb + disp) & ~3; }}, 730 {{ Mem.ul = Ra<31:0>; }}, L); 731 1: hw_st({{ EA = (Rb + disp) & ~7; }}, 732 {{ Mem.uq = Ra.uq; }}, Q); 733 } 734 735 1: FailUnimpl::hw_st_cond(); 736 } 737 } 738 } 739 740 0x19: decode PALMODE { 741 0: OpcdecFault::hw_mfpr(); 742 format HwMoveIPR { 743 1: hw_mfpr({{ 744 Ra = xc->readMiscRegWithEffect(ipr_index, fault); 745 }}); 746 } 747 } 748 749 0x1d: decode PALMODE { 750 0: OpcdecFault::hw_mtpr(); 751 format HwMoveIPR { 752 1: hw_mtpr({{ 753 xc->setMiscRegWithEffect(ipr_index, Ra); 754 if (traceData) { traceData->setData(Ra); } 755 }}); 756 } 757 } 758 759 format BasicOperate { 760 0x1e: decode PALMODE { 761 0: OpcdecFault::hw_rei(); 762 1:hw_rei({{ xc->hwrei(); }}, IsSerializing); 763 } 764 765 // M5 special opcodes use the reserved 0x01 opcode space 766 0x01: decode M5FUNC { 767 0x00: arm({{ 768 AlphaPseudo::arm(xc->xcBase()); 769 }}, IsNonSpeculative); 770 0x01: quiesce({{ 771 AlphaPseudo::quiesce(xc->xcBase()); 772 }}, IsNonSpeculative); 773 0x02: quiesceNs({{ 774 AlphaPseudo::quiesceNs(xc->xcBase(), R16); 775 }}, IsNonSpeculative); 776 0x03: quiesceCycles({{ 777 AlphaPseudo::quiesceCycles(xc->xcBase(), R16); 778 }}, IsNonSpeculative); 779 0x04: quiesceTime({{ 780 R0 = AlphaPseudo::quiesceTime(xc->xcBase()); 781 }}, IsNonSpeculative); 782 0x10: ivlb({{ 783 AlphaPseudo::ivlb(xc->xcBase()); 784 }}, No_OpClass, IsNonSpeculative); 785 0x11: ivle({{ 786 AlphaPseudo::ivle(xc->xcBase()); 787 }}, No_OpClass, IsNonSpeculative); 788 0x20: m5exit_old({{ 789 AlphaPseudo::m5exit_old(xc->xcBase()); 790 }}, No_OpClass, IsNonSpeculative); 791 0x21: m5exit({{ 792 AlphaPseudo::m5exit(xc->xcBase(), R16); 793 }}, No_OpClass, IsNonSpeculative); 794 0x30: initparam({{ Ra = xc->xcBase()->getCpuPtr()->system->init_param; }}); 795 0x40: resetstats({{ 796 AlphaPseudo::resetstats(xc->xcBase(), R16, R17); 797 }}, IsNonSpeculative); 798 0x41: dumpstats({{ 799 AlphaPseudo::dumpstats(xc->xcBase(), R16, R17); 800 }}, IsNonSpeculative); 801 0x42: dumpresetstats({{ 802 AlphaPseudo::dumpresetstats(xc->xcBase(), R16, R17); 803 }}, IsNonSpeculative); 804 0x43: m5checkpoint({{ 805 AlphaPseudo::m5checkpoint(xc->xcBase(), R16, R17); 806 }}, IsNonSpeculative); 807 0x50: m5readfile({{ 808 R0 = AlphaPseudo::readfile(xc->xcBase(), R16, R17, R18); 809 }}, IsNonSpeculative); 810 0x51: m5break({{ 811 AlphaPseudo::debugbreak(xc->xcBase()); 812 }}, IsNonSpeculative); 813 0x52: m5switchcpu({{ 814 AlphaPseudo::switchcpu(xc->xcBase()); 815 }}, IsNonSpeculative); 816 0x53: m5addsymbol({{ 817 AlphaPseudo::addsymbol(xc->xcBase(), R16, R17); 818 }}, IsNonSpeculative); 819 0x54: m5panic({{ 820 panic("M5 panic instruction called at pc=%#x.", xc->readPC()); 821 }}, IsNonSpeculative); 822 823 } 824 } 825#endif 826} 827