decoder.isa revision 8555
12068SN/A// -*- mode:c++ -*- 22068SN/A 32188SN/A// Copyright (c) 2003-2006 The Regents of The University of Michigan 42068SN/A// All rights reserved. 52068SN/A// 62068SN/A// Redistribution and use in source and binary forms, with or without 72068SN/A// modification, are permitted provided that the following conditions are 82068SN/A// met: redistributions of source code must retain the above copyright 92068SN/A// notice, this list of conditions and the following disclaimer; 102068SN/A// redistributions in binary form must reproduce the above copyright 112068SN/A// notice, this list of conditions and the following disclaimer in the 122068SN/A// documentation and/or other materials provided with the distribution; 132068SN/A// neither the name of the copyright holders nor the names of its 142068SN/A// contributors may be used to endorse or promote products derived from 152068SN/A// this software without specific prior written permission. 162068SN/A// 172068SN/A// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 182068SN/A// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 192068SN/A// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 202068SN/A// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 212068SN/A// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 222068SN/A// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 232068SN/A// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 242068SN/A// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 252068SN/A// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 262068SN/A// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 272068SN/A// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 282665Ssaidi@eecs.umich.edu// 292665Ssaidi@eecs.umich.edu// Authors: Steve Reinhardt 302068SN/A 312649Ssaidi@eecs.umich.edu//////////////////////////////////////////////////////////////////// 322649Ssaidi@eecs.umich.edu// 332649Ssaidi@eecs.umich.edu// The actual decoder specification 342649Ssaidi@eecs.umich.edu// 352649Ssaidi@eecs.umich.edu 362068SN/Adecode OPCODE default Unknown::unknown() { 372068SN/A 382068SN/A format LoadAddress { 392068SN/A 0x08: lda({{ Ra = Rb + disp; }}); 402068SN/A 0x09: ldah({{ Ra = Rb + (disp << 16); }}); 412068SN/A } 422068SN/A 432068SN/A format LoadOrNop { 442075SN/A 0x0a: ldbu({{ Ra.uq = Mem.ub; }}); 452075SN/A 0x0c: ldwu({{ Ra.uq = Mem.uw; }}); 462075SN/A 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }}); 472075SN/A 0x23: ldt({{ Fa = Mem.df; }}); 486076Sgblack@eecs.umich.edu 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LLSC); 496076Sgblack@eecs.umich.edu 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LLSC); 502068SN/A } 512068SN/A 522068SN/A format LoadOrPrefetch { 532075SN/A 0x28: ldl({{ Ra.sl = Mem.sl; }}); 542075SN/A 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT); 552068SN/A // IsFloating flag on lds gets the prefetch to disassemble 562068SN/A // using f31 instead of r31... funcitonally it's unnecessary 572075SN/A 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }}, 582075SN/A pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating); 592068SN/A } 602068SN/A 612068SN/A format Store { 622075SN/A 0x0e: stb({{ Mem.ub = Ra<7:0>; }}); 632075SN/A 0x0d: stw({{ Mem.uw = Ra<15:0>; }}); 642075SN/A 0x2c: stl({{ Mem.ul = Ra<31:0>; }}); 652075SN/A 0x2d: stq({{ Mem.uq = Ra.uq; }}); 662075SN/A 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }}); 672075SN/A 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }}); 682075SN/A 0x27: stt({{ Mem.df = Fa; }}); 692068SN/A } 702068SN/A 712068SN/A format StoreCond { 722075SN/A 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }}, 732068SN/A {{ 742069SN/A uint64_t tmp = write_result; 752068SN/A // see stq_c 762068SN/A Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 774027Sstever@eecs.umich.edu if (tmp == 1) { 784027Sstever@eecs.umich.edu xc->setStCondFailures(0); 794027Sstever@eecs.umich.edu } 806076Sgblack@eecs.umich.edu }}, mem_flags = LLSC, inst_flags = IsStoreConditional); 812075SN/A 0x2f: stq_c({{ Mem.uq = Ra; }}, 822068SN/A {{ 832069SN/A uint64_t tmp = write_result; 842068SN/A // If the write operation returns 0 or 1, then 852068SN/A // this was a conventional store conditional, 862068SN/A // and the value indicates the success/failure 872068SN/A // of the operation. If another value is 882068SN/A // returned, then this was a Turbolaser 892068SN/A // mailbox access, and we don't update the 902068SN/A // result register at all. 912068SN/A Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 924027Sstever@eecs.umich.edu if (tmp == 1) { 934027Sstever@eecs.umich.edu // clear failure counter... this is 944027Sstever@eecs.umich.edu // non-architectural and for debugging 954027Sstever@eecs.umich.edu // only. 964027Sstever@eecs.umich.edu xc->setStCondFailures(0); 974027Sstever@eecs.umich.edu } 986076Sgblack@eecs.umich.edu }}, mem_flags = LLSC, inst_flags = IsStoreConditional); 992068SN/A } 1002068SN/A 1012068SN/A format IntegerOperate { 1022068SN/A 1037799Sgblack@eecs.umich.edu 0x10: decode INTFUNC { // integer arithmetic operations 1042068SN/A 1052068SN/A 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); 1062068SN/A 0x40: addlv({{ 1076227Snate@binkert.org int32_t tmp = Ra.sl + Rb_or_imm.sl; 1082068SN/A // signed overflow occurs when operands have same sign 1092068SN/A // and sign of result does not match. 1102068SN/A if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 1112147SN/A fault = new IntegerOverflowFault; 1122068SN/A Rc.sl = tmp; 1132068SN/A }}); 1142068SN/A 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); 1152068SN/A 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); 1162068SN/A 1172068SN/A 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); 1182068SN/A 0x60: addqv({{ 1192068SN/A uint64_t tmp = Ra + Rb_or_imm; 1202068SN/A // signed overflow occurs when operands have same sign 1212068SN/A // and sign of result does not match. 1222068SN/A if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 1232147SN/A fault = new IntegerOverflowFault; 1242068SN/A Rc = tmp; 1252068SN/A }}); 1262068SN/A 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); 1272068SN/A 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); 1282068SN/A 1292068SN/A 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); 1302068SN/A 0x49: sublv({{ 1316227Snate@binkert.org int32_t tmp = Ra.sl - Rb_or_imm.sl; 1322068SN/A // signed overflow detection is same as for add, 1332068SN/A // except we need to look at the *complemented* 1342068SN/A // sign bit of the subtrahend (Rb), i.e., if the initial 1352068SN/A // signs are the *same* then no overflow can occur 1362068SN/A if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 1372147SN/A fault = new IntegerOverflowFault; 1382068SN/A Rc.sl = tmp; 1392068SN/A }}); 1402068SN/A 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); 1412068SN/A 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); 1422068SN/A 1432068SN/A 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); 1442068SN/A 0x69: subqv({{ 1452068SN/A uint64_t tmp = Ra - Rb_or_imm; 1462068SN/A // signed overflow detection is same as for add, 1472068SN/A // except we need to look at the *complemented* 1482068SN/A // sign bit of the subtrahend (Rb), i.e., if the initial 1492068SN/A // signs are the *same* then no overflow can occur 1502068SN/A if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 1512147SN/A fault = new IntegerOverflowFault; 1522068SN/A Rc = tmp; 1532068SN/A }}); 1542068SN/A 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); 1552068SN/A 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); 1562068SN/A 1572068SN/A 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); 1582068SN/A 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); 1592068SN/A 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); 1602068SN/A 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); 1612068SN/A 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); 1622068SN/A 1632068SN/A 0x0f: cmpbge({{ 1642068SN/A int hi = 7; 1652068SN/A int lo = 0; 1662068SN/A uint64_t tmp = 0; 1672068SN/A for (int i = 0; i < 8; ++i) { 1682068SN/A tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; 1692068SN/A hi += 8; 1702068SN/A lo += 8; 1712068SN/A } 1722068SN/A Rc = tmp; 1732068SN/A }}); 1742068SN/A } 1752068SN/A 1767799Sgblack@eecs.umich.edu 0x11: decode INTFUNC { // integer logical operations 1772068SN/A 1782068SN/A 0x00: and({{ Rc = Ra & Rb_or_imm; }}); 1792068SN/A 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); 1802068SN/A 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); 1812068SN/A 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); 1822068SN/A 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); 1832068SN/A 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); 1842068SN/A 1852068SN/A // conditional moves 1862068SN/A 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); 1872068SN/A 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); 1882068SN/A 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); 1892068SN/A 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); 1902068SN/A 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); 1912068SN/A 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); 1922068SN/A 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); 1932068SN/A 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); 1942068SN/A 1952068SN/A // For AMASK, RA must be R31. 1962068SN/A 0x61: decode RA { 1972068SN/A 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); 1982068SN/A } 1992068SN/A 2002068SN/A // For IMPLVER, RA must be R31 and the B operand 2012068SN/A // must be the immediate value 1. 2022068SN/A 0x6c: decode RA { 2032068SN/A 31: decode IMM { 2042068SN/A 1: decode INTIMM { 2052068SN/A // return EV5 for FULL_SYSTEM and EV6 otherwise 2062068SN/A 1: implver({{ 2072068SN/A#if FULL_SYSTEM 2082068SN/A Rc = 1; 2092068SN/A#else 2102068SN/A Rc = 2; 2112068SN/A#endif 2122068SN/A }}); 2132068SN/A } 2142068SN/A } 2152068SN/A } 2162068SN/A 2172068SN/A#if FULL_SYSTEM 2182068SN/A // The mysterious 11.25... 2192068SN/A 0x25: WarnUnimpl::eleven25(); 2202068SN/A#endif 2212068SN/A } 2222068SN/A 2232068SN/A 0x12: decode INTFUNC { 2242068SN/A 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); 2252068SN/A 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); 2262068SN/A 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); 2272068SN/A 2282068SN/A 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); 2292068SN/A 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); 2302068SN/A 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); 2312068SN/A 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); 2322068SN/A 2332068SN/A 0x52: mskwh({{ 2342068SN/A int bv = Rb_or_imm<2:0>; 2352068SN/A Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; 2362068SN/A }}); 2372068SN/A 0x62: msklh({{ 2382068SN/A int bv = Rb_or_imm<2:0>; 2392068SN/A Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; 2402068SN/A }}); 2412068SN/A 0x72: mskqh({{ 2422068SN/A int bv = Rb_or_imm<2:0>; 2432068SN/A Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; 2442068SN/A }}); 2452068SN/A 2462068SN/A 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); 2472068SN/A 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); 2482068SN/A 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); 2492068SN/A 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); 2502068SN/A 2512068SN/A 0x5a: extwh({{ 2522068SN/A Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); 2532068SN/A 0x6a: extlh({{ 2542068SN/A Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); 2552068SN/A 0x7a: extqh({{ 2562068SN/A Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); 2572068SN/A 2582068SN/A 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); 2592068SN/A 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); 2602068SN/A 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); 2612068SN/A 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); 2622068SN/A 2632068SN/A 0x57: inswh({{ 2642068SN/A int bv = Rb_or_imm<2:0>; 2652068SN/A Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; 2662068SN/A }}); 2672068SN/A 0x67: inslh({{ 2682068SN/A int bv = Rb_or_imm<2:0>; 2692068SN/A Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; 2702068SN/A }}); 2712068SN/A 0x77: insqh({{ 2722068SN/A int bv = Rb_or_imm<2:0>; 2732068SN/A Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; 2742068SN/A }}); 2752068SN/A 2762068SN/A 0x30: zap({{ 2772068SN/A uint64_t zapmask = 0; 2782068SN/A for (int i = 0; i < 8; ++i) { 2792068SN/A if (Rb_or_imm<i:>) 2802068SN/A zapmask |= (mask(8) << (i * 8)); 2812068SN/A } 2822068SN/A Rc = Ra & ~zapmask; 2832068SN/A }}); 2842068SN/A 0x31: zapnot({{ 2852068SN/A uint64_t zapmask = 0; 2862068SN/A for (int i = 0; i < 8; ++i) { 2872068SN/A if (!Rb_or_imm<i:>) 2882068SN/A zapmask |= (mask(8) << (i * 8)); 2892068SN/A } 2902068SN/A Rc = Ra & ~zapmask; 2912068SN/A }}); 2922068SN/A } 2932068SN/A 2947799Sgblack@eecs.umich.edu 0x13: decode INTFUNC { // integer multiplies 2952068SN/A 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); 2962068SN/A 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); 2972068SN/A 0x30: umulh({{ 2982068SN/A uint64_t hi, lo; 2992068SN/A mul128(Ra, Rb_or_imm, hi, lo); 3002068SN/A Rc = hi; 3012068SN/A }}, IntMultOp); 3022068SN/A 0x40: mullv({{ 3032068SN/A // 32-bit multiply with trap on overflow 3047799Sgblack@eecs.umich.edu int64_t Rax = Ra.sl; // sign extended version of Ra.sl 3052068SN/A int64_t Rbx = Rb_or_imm.sl; 3062068SN/A int64_t tmp = Rax * Rbx; 3072068SN/A // To avoid overflow, all the upper 32 bits must match 3082068SN/A // the sign bit of the lower 32. We code this as 3092068SN/A // checking the upper 33 bits for all 0s or all 1s. 3102068SN/A uint64_t sign_bits = tmp<63:31>; 3112068SN/A if (sign_bits != 0 && sign_bits != mask(33)) 3122147SN/A fault = new IntegerOverflowFault; 3132068SN/A Rc.sl = tmp<31:0>; 3142068SN/A }}, IntMultOp); 3152068SN/A 0x60: mulqv({{ 3162068SN/A // 64-bit multiply with trap on overflow 3172068SN/A uint64_t hi, lo; 3182068SN/A mul128(Ra, Rb_or_imm, hi, lo); 3192068SN/A // all the upper 64 bits must match the sign bit of 3202068SN/A // the lower 64 3212068SN/A if (!((hi == 0 && lo<63:> == 0) || 3222068SN/A (hi == mask(64) && lo<63:> == 1))) 3232147SN/A fault = new IntegerOverflowFault; 3242068SN/A Rc = lo; 3252068SN/A }}, IntMultOp); 3262068SN/A } 3272068SN/A 3282068SN/A 0x1c: decode INTFUNC { 3292068SN/A 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } 3302068SN/A 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } 3316804Ssroy@cse.usf.edu 3326804Ssroy@cse.usf.edu 0x30: ctpop({{ 3336804Ssroy@cse.usf.edu uint64_t count = 0; 3346804Ssroy@cse.usf.edu for (int i = 0; Rb<63:i>; ++i) { 3356804Ssroy@cse.usf.edu if (Rb<i:i> == 0x1) 3366804Ssroy@cse.usf.edu ++count; 3376804Ssroy@cse.usf.edu } 3386804Ssroy@cse.usf.edu Rc = count; 3396804Ssroy@cse.usf.edu }}, IntAluOp); 3406804Ssroy@cse.usf.edu 3416804Ssroy@cse.usf.edu 0x31: perr({{ 3426804Ssroy@cse.usf.edu uint64_t temp = 0; 3436804Ssroy@cse.usf.edu int hi = 7; 3446804Ssroy@cse.usf.edu int lo = 0; 3456804Ssroy@cse.usf.edu for (int i = 0; i < 8; ++i) { 3466804Ssroy@cse.usf.edu uint8_t ra_ub = Ra.uq<hi:lo>; 3476804Ssroy@cse.usf.edu uint8_t rb_ub = Rb.uq<hi:lo>; 3486804Ssroy@cse.usf.edu temp += (ra_ub >= rb_ub) ? 3496804Ssroy@cse.usf.edu (ra_ub - rb_ub) : (rb_ub - ra_ub); 3506804Ssroy@cse.usf.edu hi += 8; 3516804Ssroy@cse.usf.edu lo += 8; 3526804Ssroy@cse.usf.edu } 3536804Ssroy@cse.usf.edu Rc = temp; 3546804Ssroy@cse.usf.edu }}); 3556804Ssroy@cse.usf.edu 3562068SN/A 0x32: ctlz({{ 3572068SN/A uint64_t count = 0; 3582068SN/A uint64_t temp = Rb; 3592068SN/A if (temp<63:32>) temp >>= 32; else count += 32; 3602068SN/A if (temp<31:16>) temp >>= 16; else count += 16; 3612068SN/A if (temp<15:8>) temp >>= 8; else count += 8; 3622068SN/A if (temp<7:4>) temp >>= 4; else count += 4; 3632068SN/A if (temp<3:2>) temp >>= 2; else count += 2; 3642068SN/A if (temp<1:1>) temp >>= 1; else count += 1; 3652068SN/A if ((temp<0:0>) != 0x1) count += 1; 3662068SN/A Rc = count; 3672068SN/A }}, IntAluOp); 3682068SN/A 3692068SN/A 0x33: cttz({{ 3702068SN/A uint64_t count = 0; 3712068SN/A uint64_t temp = Rb; 3722068SN/A if (!(temp<31:0>)) { temp >>= 32; count += 32; } 3732068SN/A if (!(temp<15:0>)) { temp >>= 16; count += 16; } 3742068SN/A if (!(temp<7:0>)) { temp >>= 8; count += 8; } 3752068SN/A if (!(temp<3:0>)) { temp >>= 4; count += 4; } 3762068SN/A if (!(temp<1:0>)) { temp >>= 2; count += 2; } 3776804Ssroy@cse.usf.edu if (!(temp<0:0> & ULL(0x1))) { 3786804Ssroy@cse.usf.edu temp >>= 1; count += 1; 3796804Ssroy@cse.usf.edu } 3802068SN/A if (!(temp<0:0> & ULL(0x1))) count += 1; 3812068SN/A Rc = count; 3822068SN/A }}, IntAluOp); 3832068SN/A 3846804Ssroy@cse.usf.edu 3856804Ssroy@cse.usf.edu 0x34: unpkbw({{ 3866804Ssroy@cse.usf.edu Rc = (Rb.uq<7:0> 3876804Ssroy@cse.usf.edu | (Rb.uq<15:8> << 16) 3886804Ssroy@cse.usf.edu | (Rb.uq<23:16> << 32) 3896804Ssroy@cse.usf.edu | (Rb.uq<31:24> << 48)); 3906804Ssroy@cse.usf.edu }}, IntAluOp); 3916804Ssroy@cse.usf.edu 3926804Ssroy@cse.usf.edu 0x35: unpkbl({{ 3936804Ssroy@cse.usf.edu Rc = (Rb.uq<7:0> | (Rb.uq<15:8> << 32)); 3946804Ssroy@cse.usf.edu }}, IntAluOp); 3956804Ssroy@cse.usf.edu 3966804Ssroy@cse.usf.edu 0x36: pkwb({{ 3976804Ssroy@cse.usf.edu Rc = (Rb.uq<7:0> 3986804Ssroy@cse.usf.edu | (Rb.uq<23:16> << 8) 3996804Ssroy@cse.usf.edu | (Rb.uq<39:32> << 16) 4006804Ssroy@cse.usf.edu | (Rb.uq<55:48> << 24)); 4016804Ssroy@cse.usf.edu }}, IntAluOp); 4026804Ssroy@cse.usf.edu 4036804Ssroy@cse.usf.edu 0x37: pklb({{ 4046804Ssroy@cse.usf.edu Rc = (Rb.uq<7:0> | (Rb.uq<39:32> << 8)); 4056804Ssroy@cse.usf.edu }}, IntAluOp); 4066804Ssroy@cse.usf.edu 4076804Ssroy@cse.usf.edu 0x38: minsb8({{ 4086804Ssroy@cse.usf.edu uint64_t temp = 0; 4096804Ssroy@cse.usf.edu int hi = 63; 4106804Ssroy@cse.usf.edu int lo = 56; 4116804Ssroy@cse.usf.edu for (int i = 7; i >= 0; --i) { 4126804Ssroy@cse.usf.edu int8_t ra_sb = Ra.uq<hi:lo>; 4136804Ssroy@cse.usf.edu int8_t rb_sb = Rb.uq<hi:lo>; 4146804Ssroy@cse.usf.edu temp = ((temp << 8) 4156804Ssroy@cse.usf.edu | ((ra_sb < rb_sb) ? Ra.uq<hi:lo> 4166804Ssroy@cse.usf.edu : Rb.uq<hi:lo>)); 4176804Ssroy@cse.usf.edu hi -= 8; 4186804Ssroy@cse.usf.edu lo -= 8; 4196804Ssroy@cse.usf.edu } 4206804Ssroy@cse.usf.edu Rc = temp; 4216804Ssroy@cse.usf.edu }}); 4226804Ssroy@cse.usf.edu 4236804Ssroy@cse.usf.edu 0x39: minsw4({{ 4246804Ssroy@cse.usf.edu uint64_t temp = 0; 4256804Ssroy@cse.usf.edu int hi = 63; 4266804Ssroy@cse.usf.edu int lo = 48; 4276804Ssroy@cse.usf.edu for (int i = 3; i >= 0; --i) { 4286804Ssroy@cse.usf.edu int16_t ra_sw = Ra.uq<hi:lo>; 4296804Ssroy@cse.usf.edu int16_t rb_sw = Rb.uq<hi:lo>; 4306804Ssroy@cse.usf.edu temp = ((temp << 16) 4316804Ssroy@cse.usf.edu | ((ra_sw < rb_sw) ? Ra.uq<hi:lo> 4326804Ssroy@cse.usf.edu : Rb.uq<hi:lo>)); 4336804Ssroy@cse.usf.edu hi -= 16; 4346804Ssroy@cse.usf.edu lo -= 16; 4356804Ssroy@cse.usf.edu } 4366804Ssroy@cse.usf.edu Rc = temp; 4376804Ssroy@cse.usf.edu }}); 4386804Ssroy@cse.usf.edu 4396804Ssroy@cse.usf.edu 0x3a: minub8({{ 4406804Ssroy@cse.usf.edu uint64_t temp = 0; 4416804Ssroy@cse.usf.edu int hi = 63; 4426804Ssroy@cse.usf.edu int lo = 56; 4436804Ssroy@cse.usf.edu for (int i = 7; i >= 0; --i) { 4446804Ssroy@cse.usf.edu uint8_t ra_ub = Ra.uq<hi:lo>; 4456804Ssroy@cse.usf.edu uint8_t rb_ub = Rb.uq<hi:lo>; 4466804Ssroy@cse.usf.edu temp = ((temp << 8) 4476804Ssroy@cse.usf.edu | ((ra_ub < rb_ub) ? Ra.uq<hi:lo> 4486804Ssroy@cse.usf.edu : Rb.uq<hi:lo>)); 4496804Ssroy@cse.usf.edu hi -= 8; 4506804Ssroy@cse.usf.edu lo -= 8; 4516804Ssroy@cse.usf.edu } 4526804Ssroy@cse.usf.edu Rc = temp; 4536804Ssroy@cse.usf.edu }}); 4546804Ssroy@cse.usf.edu 4556804Ssroy@cse.usf.edu 0x3b: minuw4({{ 4566804Ssroy@cse.usf.edu uint64_t temp = 0; 4576804Ssroy@cse.usf.edu int hi = 63; 4586804Ssroy@cse.usf.edu int lo = 48; 4596804Ssroy@cse.usf.edu for (int i = 3; i >= 0; --i) { 4606804Ssroy@cse.usf.edu uint16_t ra_sw = Ra.uq<hi:lo>; 4616804Ssroy@cse.usf.edu uint16_t rb_sw = Rb.uq<hi:lo>; 4626804Ssroy@cse.usf.edu temp = ((temp << 16) 4636804Ssroy@cse.usf.edu | ((ra_sw < rb_sw) ? Ra.uq<hi:lo> 4646804Ssroy@cse.usf.edu : Rb.uq<hi:lo>)); 4656804Ssroy@cse.usf.edu hi -= 16; 4666804Ssroy@cse.usf.edu lo -= 16; 4676804Ssroy@cse.usf.edu } 4686804Ssroy@cse.usf.edu Rc = temp; 4696804Ssroy@cse.usf.edu }}); 4706804Ssroy@cse.usf.edu 4716804Ssroy@cse.usf.edu 0x3c: maxub8({{ 4726804Ssroy@cse.usf.edu uint64_t temp = 0; 4736804Ssroy@cse.usf.edu int hi = 63; 4746804Ssroy@cse.usf.edu int lo = 56; 4756804Ssroy@cse.usf.edu for (int i = 7; i >= 0; --i) { 4766804Ssroy@cse.usf.edu uint8_t ra_ub = Ra.uq<hi:lo>; 4776804Ssroy@cse.usf.edu uint8_t rb_ub = Rb.uq<hi:lo>; 4786804Ssroy@cse.usf.edu temp = ((temp << 8) 4796804Ssroy@cse.usf.edu | ((ra_ub > rb_ub) ? Ra.uq<hi:lo> 4806804Ssroy@cse.usf.edu : Rb.uq<hi:lo>)); 4816804Ssroy@cse.usf.edu hi -= 8; 4826804Ssroy@cse.usf.edu lo -= 8; 4836804Ssroy@cse.usf.edu } 4846804Ssroy@cse.usf.edu Rc = temp; 4856804Ssroy@cse.usf.edu }}); 4866804Ssroy@cse.usf.edu 4876804Ssroy@cse.usf.edu 0x3d: maxuw4({{ 4886804Ssroy@cse.usf.edu uint64_t temp = 0; 4896804Ssroy@cse.usf.edu int hi = 63; 4906804Ssroy@cse.usf.edu int lo = 48; 4916804Ssroy@cse.usf.edu for (int i = 3; i >= 0; --i) { 4926804Ssroy@cse.usf.edu uint16_t ra_uw = Ra.uq<hi:lo>; 4936804Ssroy@cse.usf.edu uint16_t rb_uw = Rb.uq<hi:lo>; 4946804Ssroy@cse.usf.edu temp = ((temp << 16) 4956804Ssroy@cse.usf.edu | ((ra_uw > rb_uw) ? Ra.uq<hi:lo> 4966804Ssroy@cse.usf.edu : Rb.uq<hi:lo>)); 4976804Ssroy@cse.usf.edu hi -= 16; 4986804Ssroy@cse.usf.edu lo -= 16; 4996804Ssroy@cse.usf.edu } 5006804Ssroy@cse.usf.edu Rc = temp; 5016804Ssroy@cse.usf.edu }}); 5026804Ssroy@cse.usf.edu 5036804Ssroy@cse.usf.edu 0x3e: maxsb8({{ 5046804Ssroy@cse.usf.edu uint64_t temp = 0; 5056804Ssroy@cse.usf.edu int hi = 63; 5066804Ssroy@cse.usf.edu int lo = 56; 5076804Ssroy@cse.usf.edu for (int i = 7; i >= 0; --i) { 5086804Ssroy@cse.usf.edu int8_t ra_sb = Ra.uq<hi:lo>; 5096804Ssroy@cse.usf.edu int8_t rb_sb = Rb.uq<hi:lo>; 5106804Ssroy@cse.usf.edu temp = ((temp << 8) 5116804Ssroy@cse.usf.edu | ((ra_sb > rb_sb) ? Ra.uq<hi:lo> 5126804Ssroy@cse.usf.edu : Rb.uq<hi:lo>)); 5136804Ssroy@cse.usf.edu hi -= 8; 5146804Ssroy@cse.usf.edu lo -= 8; 5156804Ssroy@cse.usf.edu } 5166804Ssroy@cse.usf.edu Rc = temp; 5176804Ssroy@cse.usf.edu }}); 5186804Ssroy@cse.usf.edu 5196804Ssroy@cse.usf.edu 0x3f: maxsw4({{ 5206804Ssroy@cse.usf.edu uint64_t temp = 0; 5216804Ssroy@cse.usf.edu int hi = 63; 5226804Ssroy@cse.usf.edu int lo = 48; 5236804Ssroy@cse.usf.edu for (int i = 3; i >= 0; --i) { 5246804Ssroy@cse.usf.edu int16_t ra_sw = Ra.uq<hi:lo>; 5256804Ssroy@cse.usf.edu int16_t rb_sw = Rb.uq<hi:lo>; 5266804Ssroy@cse.usf.edu temp = ((temp << 16) 5276804Ssroy@cse.usf.edu | ((ra_sw > rb_sw) ? Ra.uq<hi:lo> 5286804Ssroy@cse.usf.edu : Rb.uq<hi:lo>)); 5296804Ssroy@cse.usf.edu hi -= 16; 5306804Ssroy@cse.usf.edu lo -= 16; 5316804Ssroy@cse.usf.edu } 5326804Ssroy@cse.usf.edu Rc = temp; 5336804Ssroy@cse.usf.edu }}); 5342068SN/A 5352068SN/A format BasicOperateWithNopCheck { 5362068SN/A 0x70: decode RB { 5372068SN/A 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); 5382068SN/A } 5392068SN/A 0x78: decode RB { 5402068SN/A 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, 5412068SN/A FloatCvtOp); 5422068SN/A } 5432068SN/A } 5442068SN/A } 5452068SN/A } 5462068SN/A 5472068SN/A // Conditional branches. 5482068SN/A format CondBranch { 5492068SN/A 0x39: beq({{ cond = (Ra == 0); }}); 5502068SN/A 0x3d: bne({{ cond = (Ra != 0); }}); 5512068SN/A 0x3e: bge({{ cond = (Ra.sq >= 0); }}); 5522068SN/A 0x3f: bgt({{ cond = (Ra.sq > 0); }}); 5532068SN/A 0x3b: ble({{ cond = (Ra.sq <= 0); }}); 5542068SN/A 0x3a: blt({{ cond = (Ra.sq < 0); }}); 5552068SN/A 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); 5562068SN/A 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); 5572068SN/A 5582068SN/A 0x31: fbeq({{ cond = (Fa == 0); }}); 5592068SN/A 0x35: fbne({{ cond = (Fa != 0); }}); 5602068SN/A 0x36: fbge({{ cond = (Fa >= 0); }}); 5612068SN/A 0x37: fbgt({{ cond = (Fa > 0); }}); 5622068SN/A 0x33: fble({{ cond = (Fa <= 0); }}); 5632068SN/A 0x32: fblt({{ cond = (Fa < 0); }}); 5642068SN/A } 5652068SN/A 5662068SN/A // unconditional branches 5672068SN/A format UncondBranch { 5682068SN/A 0x30: br(); 5692068SN/A 0x34: bsr(IsCall); 5702068SN/A } 5712068SN/A 5722068SN/A // indirect branches 5732068SN/A 0x1a: decode JMPFUNC { 5742068SN/A format Jump { 5752068SN/A 0: jmp(); 5762068SN/A 1: jsr(IsCall); 5772068SN/A 2: ret(IsReturn); 5782068SN/A 3: jsr_coroutine(IsCall, IsReturn); 5792068SN/A } 5802068SN/A } 5812068SN/A 5822068SN/A // Square root and integer-to-FP moves 5832068SN/A 0x14: decode FP_SHORTFUNC { 5842068SN/A // Integer to FP register moves must have RB == 31 5852068SN/A 0x4: decode RB { 5862068SN/A 31: decode FP_FULLFUNC { 5872068SN/A format BasicOperateWithNopCheck { 5882068SN/A 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); 5892068SN/A 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); 5907799Sgblack@eecs.umich.edu 0x014: FailUnimpl::itoff(); // VAX-format conversion 5912068SN/A } 5922068SN/A } 5932068SN/A } 5942068SN/A 5952068SN/A // Square root instructions must have FA == 31 5962068SN/A 0xb: decode FA { 5972068SN/A 31: decode FP_TYPEFUNC { 5982068SN/A format FloatingPointOperate { 5992068SN/A#if SS_COMPATIBLE_FP 6002068SN/A 0x0b: sqrts({{ 6012068SN/A if (Fb < 0.0) 6022147SN/A fault = new ArithmeticFault; 6032068SN/A Fc = sqrt(Fb); 6042068SN/A }}, FloatSqrtOp); 6052068SN/A#else 6062068SN/A 0x0b: sqrts({{ 6072068SN/A if (Fb.sf < 0.0) 6082147SN/A fault = new ArithmeticFault; 6092068SN/A Fc.sf = sqrt(Fb.sf); 6102068SN/A }}, FloatSqrtOp); 6112068SN/A#endif 6122068SN/A 0x2b: sqrtt({{ 6132068SN/A if (Fb < 0.0) 6142147SN/A fault = new ArithmeticFault; 6152068SN/A Fc = sqrt(Fb); 6162068SN/A }}, FloatSqrtOp); 6172068SN/A } 6182068SN/A } 6192068SN/A } 6202068SN/A 6212068SN/A // VAX-format sqrtf and sqrtg are not implemented 6222068SN/A 0xa: FailUnimpl::sqrtfg(); 6232068SN/A } 6242068SN/A 6252068SN/A // IEEE floating point 6262068SN/A 0x16: decode FP_SHORTFUNC_TOP2 { 6272068SN/A // The top two bits of the short function code break this 6282068SN/A // space into four groups: binary ops, compares, reserved, and 6292068SN/A // conversions. See Table 4-12 of AHB. There are different 6302068SN/A // special cases in these different groups, so we decode on 6312068SN/A // these top two bits first just to select a decode strategy. 6322068SN/A // Most of these instructions may have various trapping and 6332068SN/A // rounding mode flags set; these are decoded in the 6342068SN/A // FloatingPointDecode template used by the 6352068SN/A // FloatingPointOperate format. 6362068SN/A 6372068SN/A // add/sub/mul/div: just decode on the short function code 6382068SN/A // and source type. All valid trapping and rounding modes apply. 6392068SN/A 0: decode FP_TRAPMODE { 6402068SN/A // check for valid trapping modes here 6412068SN/A 0,1,5,7: decode FP_TYPEFUNC { 6422068SN/A format FloatingPointOperate { 6432068SN/A#if SS_COMPATIBLE_FP 6442068SN/A 0x00: adds({{ Fc = Fa + Fb; }}); 6452068SN/A 0x01: subs({{ Fc = Fa - Fb; }}); 6462068SN/A 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); 6472068SN/A 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); 6482068SN/A#else 6492068SN/A 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); 6502068SN/A 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); 6512068SN/A 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); 6522068SN/A 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); 6532068SN/A#endif 6542068SN/A 6552068SN/A 0x20: addt({{ Fc = Fa + Fb; }}); 6562068SN/A 0x21: subt({{ Fc = Fa - Fb; }}); 6572068SN/A 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); 6582068SN/A 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); 6592068SN/A } 6602068SN/A } 6612068SN/A } 6622068SN/A 6632068SN/A // Floating-point compare instructions must have the default 6642068SN/A // rounding mode, and may use the default trapping mode or 6652068SN/A // /SU. Both trapping modes are treated the same by M5; the 6662068SN/A // only difference on the real hardware (as far a I can tell) 6672068SN/A // is that without /SU you'd get an imprecise trap if you 6682068SN/A // tried to compare a NaN with something else (instead of an 6692068SN/A // "unordered" result). 6702068SN/A 1: decode FP_FULLFUNC { 6712068SN/A format BasicOperateWithNopCheck { 6722068SN/A 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, 6732068SN/A FloatCmpOp); 6742068SN/A 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, 6752068SN/A FloatCmpOp); 6762068SN/A 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, 6772068SN/A FloatCmpOp); 6782068SN/A 0x0a4, 0x5a4: cmptun({{ // unordered 6792068SN/A Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; 6802068SN/A }}, FloatCmpOp); 6812068SN/A } 6822068SN/A } 6832068SN/A 6842068SN/A // The FP-to-integer and integer-to-FP conversion insts 6852068SN/A // require that FA be 31. 6862068SN/A 3: decode FA { 6872068SN/A 31: decode FP_TYPEFUNC { 6882068SN/A format FloatingPointOperate { 6892068SN/A 0x2f: decode FP_ROUNDMODE { 6902068SN/A format FPFixedRounding { 6912068SN/A // "chopped" i.e. round toward zero 6922068SN/A 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, 6932068SN/A Chopped); 6942068SN/A // round to minus infinity 6952068SN/A 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, 6962068SN/A MinusInfinity); 6972068SN/A } 6982068SN/A default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); 6992068SN/A } 7002068SN/A 7012068SN/A // The cvtts opcode is overloaded to be cvtst if the trap 7022068SN/A // mode is 2 or 6 (which are not valid otherwise) 7032068SN/A 0x2c: decode FP_FULLFUNC { 7042068SN/A format BasicOperateWithNopCheck { 7052068SN/A // trap on denorm version "cvtst/s" is 7062068SN/A // simulated same as cvtst 7072068SN/A 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); 7082068SN/A } 7092068SN/A default: cvtts({{ Fc.sf = Fb; }}); 7102068SN/A } 7112068SN/A 7122068SN/A // The trapping mode for integer-to-FP conversions 7132068SN/A // must be /SUI or nothing; /U and /SU are not 7142068SN/A // allowed. The full set of rounding modes are 7152068SN/A // supported though. 7162068SN/A 0x3c: decode FP_TRAPMODE { 7172068SN/A 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); 7182068SN/A } 7192068SN/A 0x3e: decode FP_TRAPMODE { 7202068SN/A 0,7: cvtqt({{ Fc = Fb.sq; }}); 7212068SN/A } 7222068SN/A } 7232068SN/A } 7242068SN/A } 7252068SN/A } 7262068SN/A 7272068SN/A // misc FP operate 7282068SN/A 0x17: decode FP_FULLFUNC { 7292068SN/A format BasicOperateWithNopCheck { 7302068SN/A 0x010: cvtlq({{ 7312068SN/A Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; 7322068SN/A }}); 7332068SN/A 0x030: cvtql({{ 7342068SN/A Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 7352068SN/A }}); 7362068SN/A 7372068SN/A // We treat the precise & imprecise trapping versions of 7382068SN/A // cvtql identically. 7392068SN/A 0x130, 0x530: cvtqlv({{ 7402068SN/A // To avoid overflow, all the upper 32 bits must match 7412068SN/A // the sign bit of the lower 32. We code this as 7422068SN/A // checking the upper 33 bits for all 0s or all 1s. 7432068SN/A uint64_t sign_bits = Fb.uq<63:31>; 7442068SN/A if (sign_bits != 0 && sign_bits != mask(33)) 7452147SN/A fault = new IntegerOverflowFault; 7462068SN/A Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 7472068SN/A }}); 7482068SN/A 7492068SN/A 0x020: cpys({{ // copy sign 7502068SN/A Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; 7512068SN/A }}); 7522068SN/A 0x021: cpysn({{ // copy sign negated 7532068SN/A Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; 7542068SN/A }}); 7552068SN/A 0x022: cpyse({{ // copy sign and exponent 7562068SN/A Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; 7572068SN/A }}); 7582068SN/A 7592068SN/A 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); 7602068SN/A 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); 7612068SN/A 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); 7622068SN/A 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); 7632068SN/A 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); 7642068SN/A 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); 7652068SN/A 7662336SN/A 0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsIprAccess); 7672336SN/A 0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsIprAccess); 7682068SN/A } 7692068SN/A } 7702068SN/A 7712068SN/A // miscellaneous mem-format ops 7722068SN/A 0x18: decode MEMFUNC { 7732068SN/A format WarnUnimpl { 7742068SN/A 0x8000: fetch(); 7752068SN/A 0xa000: fetch_m(); 7762068SN/A 0xe800: ecb(); 7772068SN/A } 7782068SN/A 7792068SN/A format MiscPrefetch { 7802068SN/A 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, 7817725SAli.Saidi@ARM.com {{ ; }}, 7827725SAli.Saidi@ARM.com mem_flags = PREFETCH); 7832068SN/A } 7842068SN/A 7852068SN/A format BasicOperate { 7862068SN/A 0xc000: rpcc({{ 7872068SN/A#if FULL_SYSTEM 7882068SN/A /* Rb is a fake dependency so here is a fun way to get 7892068SN/A * the parser to understand that. 7902068SN/A */ 7915568Snate@binkert.org Ra = xc->readMiscReg(IPR_CC) + (Rb & 0); 7922068SN/A 7932068SN/A#else 7947823Ssteve.reinhardt@amd.com Ra = curTick(); 7952068SN/A#endif 7962312SN/A }}, IsUnverifiable); 7972068SN/A 7982068SN/A // All of the barrier instructions below do nothing in 7992068SN/A // their execute() methods (hence the empty code blocks). 8002068SN/A // All of their functionality is hard-coded in the 8012068SN/A // pipeline based on the flags IsSerializing, 8022068SN/A // IsMemBarrier, and IsWriteBarrier. In the current 8032068SN/A // detailed CPU model, the execute() function only gets 8042068SN/A // called at fetch, so there's no way to generate pipeline 8052068SN/A // behavior at any other stage. Once we go to an 8062068SN/A // exec-in-exec CPU model we should be able to get rid of 8072068SN/A // these flags and implement this behavior via the 8082068SN/A // execute() methods. 8092068SN/A 8102068SN/A // trapb is just a barrier on integer traps, where excb is 8112068SN/A // a barrier on integer and FP traps. "EXCB is thus a 8122068SN/A // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat 8132068SN/A // them the same though. 8142292SN/A 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 8152292SN/A 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 8162068SN/A 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); 8172068SN/A 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); 8182068SN/A } 8192068SN/A 8202068SN/A#if FULL_SYSTEM 8212068SN/A format BasicOperate { 8222068SN/A 0xe000: rc({{ 8233454Sgblack@eecs.umich.edu Ra = IntrFlag; 8243454Sgblack@eecs.umich.edu IntrFlag = 0; 8252704Sktlim@umich.edu }}, IsNonSpeculative, IsUnverifiable); 8262068SN/A 0xf000: rs({{ 8273454Sgblack@eecs.umich.edu Ra = IntrFlag; 8283454Sgblack@eecs.umich.edu IntrFlag = 1; 8292704Sktlim@umich.edu }}, IsNonSpeculative, IsUnverifiable); 8302068SN/A } 8312068SN/A#else 8322068SN/A format FailUnimpl { 8332068SN/A 0xe000: rc(); 8342068SN/A 0xf000: rs(); 8352068SN/A } 8362068SN/A#endif 8372068SN/A } 8382068SN/A 8392068SN/A#if FULL_SYSTEM 8402068SN/A 0x00: CallPal::call_pal({{ 8412068SN/A if (!palValid || 8422068SN/A (palPriv 8435568Snate@binkert.org && xc->readMiscReg(IPR_ICM) != mode_kernel)) { 8442068SN/A // invalid pal function code, or attempt to do privileged 8452068SN/A // PAL call in non-kernel mode 8462147SN/A fault = new UnimplementedOpcodeFault; 8477720Sgblack@eecs.umich.edu } else { 8482068SN/A // check to see if simulator wants to do something special 8492068SN/A // on this PAL call (including maybe suppress it) 8505702Ssaidi@eecs.umich.edu bool dopal = xc->simPalCheck(palFunc); 8512068SN/A 8522068SN/A if (dopal) { 8537794Sgblack@eecs.umich.edu xc->setMiscReg(IPR_EXC_ADDR, NPC); 8547794Sgblack@eecs.umich.edu NPC = xc->readMiscReg(IPR_PAL_BASE) + palOffset; 8552068SN/A } 8562068SN/A } 8572068SN/A }}, IsNonSpeculative); 8582068SN/A#else 8592068SN/A 0x00: decode PALFUNC { 8602068SN/A format EmulatedCallPal { 8612068SN/A 0x00: halt ({{ 8623144Shsul@eecs.umich.edu exitSimLoop("halt instruction encountered"); 8632068SN/A }}, IsNonSpeculative); 8642068SN/A 0x83: callsys({{ 8652562SN/A xc->syscall(R0); 8664828Sgblack@eecs.umich.edu }}, IsSerializeAfter, IsNonSpeculative, IsSyscall); 8672068SN/A // Read uniq reg into ABI return value register (r0) 8682336SN/A 0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess); 8692068SN/A // Write uniq reg with value from ABI arg register (r16) 8702336SN/A 0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess); 8712068SN/A } 8722068SN/A } 8732068SN/A#endif 8742068SN/A 8752068SN/A#if FULL_SYSTEM 8762227SN/A 0x1b: decode PALMODE { 8772227SN/A 0: OpcdecFault::hw_st_quad(); 8782227SN/A 1: decode HW_LDST_QUAD { 8792227SN/A format HwLoad { 8804036Sktlim@umich.edu 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, 8814036Sktlim@umich.edu L, IsSerializing, IsSerializeBefore); 8824036Sktlim@umich.edu 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, 8834036Sktlim@umich.edu Q, IsSerializing, IsSerializeBefore); 8842227SN/A } 8852068SN/A } 8862069SN/A } 8872068SN/A 8882227SN/A 0x1f: decode PALMODE { 8892227SN/A 0: OpcdecFault::hw_st_cond(); 8902227SN/A format HwStore { 8912227SN/A 1: decode HW_LDST_COND { 8922227SN/A 0: decode HW_LDST_QUAD { 8932227SN/A 0: hw_st({{ EA = (Rb + disp) & ~3; }}, 8944036Sktlim@umich.edu {{ Mem.ul = Ra<31:0>; }}, L, IsSerializing, IsSerializeBefore); 8952227SN/A 1: hw_st({{ EA = (Rb + disp) & ~7; }}, 8964036Sktlim@umich.edu {{ Mem.uq = Ra.uq; }}, Q, IsSerializing, IsSerializeBefore); 8972227SN/A } 8982227SN/A 8992227SN/A 1: FailUnimpl::hw_st_cond(); 9002068SN/A } 9012068SN/A } 9022068SN/A } 9032068SN/A 9042227SN/A 0x19: decode PALMODE { 9052227SN/A 0: OpcdecFault::hw_mfpr(); 9062227SN/A format HwMoveIPR { 9072227SN/A 1: hw_mfpr({{ 9083469Sgblack@eecs.umich.edu int miscRegIndex = (ipr_index < MaxInternalProcRegs) ? 9093464Sgblack@eecs.umich.edu IprToMiscRegIndex[ipr_index] : -1; 9103464Sgblack@eecs.umich.edu if(miscRegIndex < 0 || !IprIsReadable(miscRegIndex) || 9113466Sgblack@eecs.umich.edu miscRegIndex >= NumInternalProcRegs) 9123457Sgblack@eecs.umich.edu fault = new UnimplementedOpcodeFault; 9133457Sgblack@eecs.umich.edu else 9144172Ssaidi@eecs.umich.edu Ra = xc->readMiscReg(miscRegIndex); 9152336SN/A }}, IsIprAccess); 9162227SN/A } 9172227SN/A } 9182227SN/A 9192227SN/A 0x1d: decode PALMODE { 9202227SN/A 0: OpcdecFault::hw_mtpr(); 9212227SN/A format HwMoveIPR { 9222227SN/A 1: hw_mtpr({{ 9233469Sgblack@eecs.umich.edu int miscRegIndex = (ipr_index < MaxInternalProcRegs) ? 9243464Sgblack@eecs.umich.edu IprToMiscRegIndex[ipr_index] : -1; 9253467Sgblack@eecs.umich.edu if(miscRegIndex < 0 || !IprIsWritable(miscRegIndex) || 9263466Sgblack@eecs.umich.edu miscRegIndex >= NumInternalProcRegs) 9273457Sgblack@eecs.umich.edu fault = new UnimplementedOpcodeFault; 9283457Sgblack@eecs.umich.edu else 9294172Ssaidi@eecs.umich.edu xc->setMiscReg(miscRegIndex, Ra); 9302068SN/A if (traceData) { traceData->setData(Ra); } 9312336SN/A }}, IsIprAccess); 9322227SN/A } 9332068SN/A } 9342068SN/A 9355780Ssteve.reinhardt@amd.com 0x1e: decode PALMODE { 9365780Ssteve.reinhardt@amd.com 0: OpcdecFault::hw_rei(); 9375780Ssteve.reinhardt@amd.com format BasicOperate { 9388457Sksewell@umich.edu 1: hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore); 9395780Ssteve.reinhardt@amd.com } 9405780Ssteve.reinhardt@amd.com } 9415780Ssteve.reinhardt@amd.com 9425780Ssteve.reinhardt@amd.com#endif 9435780Ssteve.reinhardt@amd.com 9442068SN/A format BasicOperate { 9452068SN/A // M5 special opcodes use the reserved 0x01 opcode space 9462068SN/A 0x01: decode M5FUNC { 9475780Ssteve.reinhardt@amd.com#if FULL_SYSTEM 9482068SN/A 0x00: arm({{ 9494090Ssaidi@eecs.umich.edu PseudoInst::arm(xc->tcBase()); 9502068SN/A }}, IsNonSpeculative); 9512068SN/A 0x01: quiesce({{ 9524090Ssaidi@eecs.umich.edu PseudoInst::quiesce(xc->tcBase()); 9532292SN/A }}, IsNonSpeculative, IsQuiesce); 9542188SN/A 0x02: quiesceNs({{ 9554090Ssaidi@eecs.umich.edu PseudoInst::quiesceNs(xc->tcBase(), R16); 9562292SN/A }}, IsNonSpeculative, IsQuiesce); 9572188SN/A 0x03: quiesceCycles({{ 9584090Ssaidi@eecs.umich.edu PseudoInst::quiesceCycles(xc->tcBase(), R16); 9592355SN/A }}, IsNonSpeculative, IsQuiesce, IsUnverifiable); 9602188SN/A 0x04: quiesceTime({{ 9614090Ssaidi@eecs.umich.edu R0 = PseudoInst::quiesceTime(xc->tcBase()); 9622355SN/A }}, IsNonSpeculative, IsUnverifiable); 9635780Ssteve.reinhardt@amd.com#endif 9645741Snate@binkert.org 0x07: rpns({{ 9655741Snate@binkert.org R0 = PseudoInst::rpns(xc->tcBase()); 9665741Snate@binkert.org }}, IsNonSpeculative, IsUnverifiable); 9675808Snate@binkert.org 0x09: wakeCPU({{ 9685808Snate@binkert.org PseudoInst::wakeCPU(xc->tcBase(), R16); 9695808Snate@binkert.org }}, IsNonSpeculative, IsUnverifiable); 9705505Snate@binkert.org 0x10: deprecated_ivlb({{ 9715505Snate@binkert.org warn_once("Obsolete M5 ivlb instruction encountered.\n"); 9723680Sstever@eecs.umich.edu }}); 9735505Snate@binkert.org 0x11: deprecated_ivle({{ 9745505Snate@binkert.org warn_once("Obsolete M5 ivlb instruction encountered.\n"); 9753680Sstever@eecs.umich.edu }}); 9765505Snate@binkert.org 0x20: deprecated_exit ({{ 9775505Snate@binkert.org warn_once("deprecated M5 exit instruction encountered.\n"); 9785505Snate@binkert.org PseudoInst::m5exit(xc->tcBase(), 0); 9792068SN/A }}, No_OpClass, IsNonSpeculative); 9802068SN/A 0x21: m5exit({{ 9814090Ssaidi@eecs.umich.edu PseudoInst::m5exit(xc->tcBase(), R16); 9822068SN/A }}, No_OpClass, IsNonSpeculative); 9835780Ssteve.reinhardt@amd.com#if FULL_SYSTEM 9842358SN/A 0x31: loadsymbol({{ 9854090Ssaidi@eecs.umich.edu PseudoInst::loadsymbol(xc->tcBase()); 9862358SN/A }}, No_OpClass, IsNonSpeculative); 9875505Snate@binkert.org 0x30: initparam({{ 9888555Sgblack@eecs.umich.edu Ra = PseudoInst::initParam(xc->tcBase()); 9895505Snate@binkert.org }}); 9905780Ssteve.reinhardt@amd.com#endif 9912068SN/A 0x40: resetstats({{ 9924090Ssaidi@eecs.umich.edu PseudoInst::resetstats(xc->tcBase(), R16, R17); 9932068SN/A }}, IsNonSpeculative); 9942068SN/A 0x41: dumpstats({{ 9954090Ssaidi@eecs.umich.edu PseudoInst::dumpstats(xc->tcBase(), R16, R17); 9962068SN/A }}, IsNonSpeculative); 9972068SN/A 0x42: dumpresetstats({{ 9984090Ssaidi@eecs.umich.edu PseudoInst::dumpresetstats(xc->tcBase(), R16, R17); 9992068SN/A }}, IsNonSpeculative); 10002068SN/A 0x43: m5checkpoint({{ 10014090Ssaidi@eecs.umich.edu PseudoInst::m5checkpoint(xc->tcBase(), R16, R17); 10022068SN/A }}, IsNonSpeculative); 10035780Ssteve.reinhardt@amd.com#if FULL_SYSTEM 10042068SN/A 0x50: m5readfile({{ 10054090Ssaidi@eecs.umich.edu R0 = PseudoInst::readfile(xc->tcBase(), R16, R17, R18); 10062068SN/A }}, IsNonSpeculative); 10075780Ssteve.reinhardt@amd.com#endif 10082068SN/A 0x51: m5break({{ 10094090Ssaidi@eecs.umich.edu PseudoInst::debugbreak(xc->tcBase()); 10102068SN/A }}, IsNonSpeculative); 10112068SN/A 0x52: m5switchcpu({{ 10124090Ssaidi@eecs.umich.edu PseudoInst::switchcpu(xc->tcBase()); 10132068SN/A }}, IsNonSpeculative); 10145780Ssteve.reinhardt@amd.com#if FULL_SYSTEM 10152068SN/A 0x53: m5addsymbol({{ 10164090Ssaidi@eecs.umich.edu PseudoInst::addsymbol(xc->tcBase(), R16, R17); 10172068SN/A }}, IsNonSpeculative); 10185780Ssteve.reinhardt@amd.com#endif 10192188SN/A 0x54: m5panic({{ 10207794Sgblack@eecs.umich.edu panic("M5 panic instruction called at pc = %#x.", PC); 10212188SN/A }}, IsNonSpeculative); 10225952Ssaidi@eecs.umich.edu#define CPANN(lbl) CPA::cpa()->lbl(xc->tcBase()) 10235952Ssaidi@eecs.umich.edu 0x55: decode RA { 10245952Ssaidi@eecs.umich.edu 0x00: m5a_old({{ 10257794Sgblack@eecs.umich.edu panic("Deprecated M5 annotate instruction executed " 10267794Sgblack@eecs.umich.edu "at pc = %#x\n", PC); 10275952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10285952Ssaidi@eecs.umich.edu 0x01: m5a_bsm({{ 10295952Ssaidi@eecs.umich.edu CPANN(swSmBegin); 10305952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10315952Ssaidi@eecs.umich.edu 0x02: m5a_esm({{ 10325952Ssaidi@eecs.umich.edu CPANN(swSmEnd); 10335952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10345952Ssaidi@eecs.umich.edu 0x03: m5a_begin({{ 10355952Ssaidi@eecs.umich.edu CPANN(swExplictBegin); 10365952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10375952Ssaidi@eecs.umich.edu 0x04: m5a_end({{ 10385952Ssaidi@eecs.umich.edu CPANN(swEnd); 10395952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10405952Ssaidi@eecs.umich.edu 0x06: m5a_q({{ 10415952Ssaidi@eecs.umich.edu CPANN(swQ); 10425952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10435952Ssaidi@eecs.umich.edu 0x07: m5a_dq({{ 10445952Ssaidi@eecs.umich.edu CPANN(swDq); 10455952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10465952Ssaidi@eecs.umich.edu 0x08: m5a_wf({{ 10475952Ssaidi@eecs.umich.edu CPANN(swWf); 10485952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10495952Ssaidi@eecs.umich.edu 0x09: m5a_we({{ 10505952Ssaidi@eecs.umich.edu CPANN(swWe); 10515952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10525952Ssaidi@eecs.umich.edu 0x0C: m5a_sq({{ 10535952Ssaidi@eecs.umich.edu CPANN(swSq); 10545952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10555952Ssaidi@eecs.umich.edu 0x0D: m5a_aq({{ 10565952Ssaidi@eecs.umich.edu CPANN(swAq); 10575952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10585952Ssaidi@eecs.umich.edu 0x0E: m5a_pq({{ 10595952Ssaidi@eecs.umich.edu CPANN(swPq); 10605952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10615952Ssaidi@eecs.umich.edu 0x0F: m5a_l({{ 10625952Ssaidi@eecs.umich.edu CPANN(swLink); 10635952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10645952Ssaidi@eecs.umich.edu 0x10: m5a_identify({{ 10655952Ssaidi@eecs.umich.edu CPANN(swIdentify); 10665952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10675952Ssaidi@eecs.umich.edu 0x11: m5a_getid({{ 10685952Ssaidi@eecs.umich.edu R0 = CPANN(swGetId); 10695952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10705952Ssaidi@eecs.umich.edu 0x13: m5a_scl({{ 10715952Ssaidi@eecs.umich.edu CPANN(swSyscallLink); 10725952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10735952Ssaidi@eecs.umich.edu 0x14: m5a_rq({{ 10745952Ssaidi@eecs.umich.edu CPANN(swRq); 10755952Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10765952Ssaidi@eecs.umich.edu } // M5 Annotate Operations 10775952Ssaidi@eecs.umich.edu#undef CPANN 10785505Snate@binkert.org 0x56: m5reserved2({{ 10795505Snate@binkert.org warn("M5 reserved opcode ignored"); 10805505Snate@binkert.org }}, IsNonSpeculative); 10815505Snate@binkert.org 0x57: m5reserved3({{ 10825505Snate@binkert.org warn("M5 reserved opcode ignored"); 10835505Snate@binkert.org }}, IsNonSpeculative); 10845505Snate@binkert.org 0x58: m5reserved4({{ 10855505Snate@binkert.org warn("M5 reserved opcode ignored"); 10865505Snate@binkert.org }}, IsNonSpeculative); 10875505Snate@binkert.org 0x59: m5reserved5({{ 10885505Snate@binkert.org warn("M5 reserved opcode ignored"); 10893089Ssaidi@eecs.umich.edu }}, IsNonSpeculative); 10902068SN/A } 10912068SN/A } 10922068SN/A} 1093