decoder.isa revision 2706
12068SN/A// -*- mode:c++ -*- 22068SN/A 32188SN/A// Copyright (c) 2003-2006 The Regents of The University of Michigan 42068SN/A// All rights reserved. 52068SN/A// 62068SN/A// Redistribution and use in source and binary forms, with or without 72068SN/A// modification, are permitted provided that the following conditions are 82068SN/A// met: redistributions of source code must retain the above copyright 92068SN/A// notice, this list of conditions and the following disclaimer; 102068SN/A// redistributions in binary form must reproduce the above copyright 112068SN/A// notice, this list of conditions and the following disclaimer in the 122068SN/A// documentation and/or other materials provided with the distribution; 132068SN/A// neither the name of the copyright holders nor the names of its 142068SN/A// contributors may be used to endorse or promote products derived from 152068SN/A// this software without specific prior written permission. 162068SN/A// 172068SN/A// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 182068SN/A// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 192068SN/A// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 202068SN/A// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 212068SN/A// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 222068SN/A// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 232068SN/A// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 242068SN/A// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 252068SN/A// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 262068SN/A// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 272068SN/A// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 282665Ssaidi@eecs.umich.edu// 292665Ssaidi@eecs.umich.edu// Authors: Steve Reinhardt 302068SN/A 312649Ssaidi@eecs.umich.edu//////////////////////////////////////////////////////////////////// 322649Ssaidi@eecs.umich.edu// 332649Ssaidi@eecs.umich.edu// The actual decoder specification 342649Ssaidi@eecs.umich.edu// 352649Ssaidi@eecs.umich.edu 362068SN/Adecode OPCODE default Unknown::unknown() { 372068SN/A 382068SN/A format LoadAddress { 392068SN/A 0x08: lda({{ Ra = Rb + disp; }}); 402068SN/A 0x09: ldah({{ Ra = Rb + (disp << 16); }}); 412068SN/A } 422068SN/A 432068SN/A format LoadOrNop { 442075SN/A 0x0a: ldbu({{ Ra.uq = Mem.ub; }}); 452075SN/A 0x0c: ldwu({{ Ra.uq = Mem.uw; }}); 462075SN/A 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }}); 472075SN/A 0x23: ldt({{ Fa = Mem.df; }}); 482075SN/A 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED); 492075SN/A 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED); 502069SN/A 0x20: MiscPrefetch::copy_load({{ EA = Ra; }}, 512069SN/A {{ fault = xc->copySrcTranslate(EA); }}, 522075SN/A inst_flags = [IsMemRef, IsLoad, IsCopy]); 532068SN/A } 542068SN/A 552068SN/A format LoadOrPrefetch { 562075SN/A 0x28: ldl({{ Ra.sl = Mem.sl; }}); 572075SN/A 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT); 582068SN/A // IsFloating flag on lds gets the prefetch to disassemble 592068SN/A // using f31 instead of r31... funcitonally it's unnecessary 602075SN/A 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }}, 612075SN/A pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating); 622068SN/A } 632068SN/A 642068SN/A format Store { 652075SN/A 0x0e: stb({{ Mem.ub = Ra<7:0>; }}); 662075SN/A 0x0d: stw({{ Mem.uw = Ra<15:0>; }}); 672075SN/A 0x2c: stl({{ Mem.ul = Ra<31:0>; }}); 682075SN/A 0x2d: stq({{ Mem.uq = Ra.uq; }}); 692075SN/A 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }}); 702075SN/A 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }}); 712075SN/A 0x27: stt({{ Mem.df = Fa; }}); 722069SN/A 0x24: MiscPrefetch::copy_store({{ EA = Rb; }}, 732069SN/A {{ fault = xc->copy(EA); }}, 742075SN/A inst_flags = [IsMemRef, IsStore, IsCopy]); 752068SN/A } 762068SN/A 772068SN/A format StoreCond { 782075SN/A 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }}, 792068SN/A {{ 802069SN/A uint64_t tmp = write_result; 812068SN/A // see stq_c 822068SN/A Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 832336SN/A }}, mem_flags = LOCKED, inst_flags = IsStoreConditional); 842075SN/A 0x2f: stq_c({{ Mem.uq = Ra; }}, 852068SN/A {{ 862069SN/A uint64_t tmp = write_result; 872068SN/A // If the write operation returns 0 or 1, then 882068SN/A // this was a conventional store conditional, 892068SN/A // and the value indicates the success/failure 902068SN/A // of the operation. If another value is 912068SN/A // returned, then this was a Turbolaser 922068SN/A // mailbox access, and we don't update the 932068SN/A // result register at all. 942068SN/A Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 952336SN/A }}, mem_flags = LOCKED, inst_flags = IsStoreConditional); 962068SN/A } 972068SN/A 982068SN/A format IntegerOperate { 992068SN/A 1002068SN/A 0x10: decode INTFUNC { // integer arithmetic operations 1012068SN/A 1022068SN/A 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); 1032068SN/A 0x40: addlv({{ 1042068SN/A uint32_t tmp = Ra.sl + Rb_or_imm.sl; 1052068SN/A // signed overflow occurs when operands have same sign 1062068SN/A // and sign of result does not match. 1072068SN/A if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 1082147SN/A fault = new IntegerOverflowFault; 1092068SN/A Rc.sl = tmp; 1102068SN/A }}); 1112068SN/A 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); 1122068SN/A 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); 1132068SN/A 1142068SN/A 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); 1152068SN/A 0x60: addqv({{ 1162068SN/A uint64_t tmp = Ra + Rb_or_imm; 1172068SN/A // signed overflow occurs when operands have same sign 1182068SN/A // and sign of result does not match. 1192068SN/A if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 1202147SN/A fault = new IntegerOverflowFault; 1212068SN/A Rc = tmp; 1222068SN/A }}); 1232068SN/A 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); 1242068SN/A 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); 1252068SN/A 1262068SN/A 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); 1272068SN/A 0x49: sublv({{ 1282068SN/A uint32_t tmp = Ra.sl - Rb_or_imm.sl; 1292068SN/A // signed overflow detection is same as for add, 1302068SN/A // except we need to look at the *complemented* 1312068SN/A // sign bit of the subtrahend (Rb), i.e., if the initial 1322068SN/A // signs are the *same* then no overflow can occur 1332068SN/A if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 1342147SN/A fault = new IntegerOverflowFault; 1352068SN/A Rc.sl = tmp; 1362068SN/A }}); 1372068SN/A 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); 1382068SN/A 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); 1392068SN/A 1402068SN/A 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); 1412068SN/A 0x69: subqv({{ 1422068SN/A uint64_t tmp = Ra - Rb_or_imm; 1432068SN/A // signed overflow detection is same as for add, 1442068SN/A // except we need to look at the *complemented* 1452068SN/A // sign bit of the subtrahend (Rb), i.e., if the initial 1462068SN/A // signs are the *same* then no overflow can occur 1472068SN/A if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 1482147SN/A fault = new IntegerOverflowFault; 1492068SN/A Rc = tmp; 1502068SN/A }}); 1512068SN/A 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); 1522068SN/A 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); 1532068SN/A 1542068SN/A 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); 1552068SN/A 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); 1562068SN/A 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); 1572068SN/A 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); 1582068SN/A 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); 1592068SN/A 1602068SN/A 0x0f: cmpbge({{ 1612068SN/A int hi = 7; 1622068SN/A int lo = 0; 1632068SN/A uint64_t tmp = 0; 1642068SN/A for (int i = 0; i < 8; ++i) { 1652068SN/A tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; 1662068SN/A hi += 8; 1672068SN/A lo += 8; 1682068SN/A } 1692068SN/A Rc = tmp; 1702068SN/A }}); 1712068SN/A } 1722068SN/A 1732068SN/A 0x11: decode INTFUNC { // integer logical operations 1742068SN/A 1752068SN/A 0x00: and({{ Rc = Ra & Rb_or_imm; }}); 1762068SN/A 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); 1772068SN/A 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); 1782068SN/A 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); 1792068SN/A 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); 1802068SN/A 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); 1812068SN/A 1822068SN/A // conditional moves 1832068SN/A 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); 1842068SN/A 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); 1852068SN/A 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); 1862068SN/A 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); 1872068SN/A 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); 1882068SN/A 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); 1892068SN/A 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); 1902068SN/A 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); 1912068SN/A 1922068SN/A // For AMASK, RA must be R31. 1932068SN/A 0x61: decode RA { 1942068SN/A 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); 1952068SN/A } 1962068SN/A 1972068SN/A // For IMPLVER, RA must be R31 and the B operand 1982068SN/A // must be the immediate value 1. 1992068SN/A 0x6c: decode RA { 2002068SN/A 31: decode IMM { 2012068SN/A 1: decode INTIMM { 2022068SN/A // return EV5 for FULL_SYSTEM and EV6 otherwise 2032068SN/A 1: implver({{ 2042068SN/A#if FULL_SYSTEM 2052068SN/A Rc = 1; 2062068SN/A#else 2072068SN/A Rc = 2; 2082068SN/A#endif 2092068SN/A }}); 2102068SN/A } 2112068SN/A } 2122068SN/A } 2132068SN/A 2142068SN/A#if FULL_SYSTEM 2152068SN/A // The mysterious 11.25... 2162068SN/A 0x25: WarnUnimpl::eleven25(); 2172068SN/A#endif 2182068SN/A } 2192068SN/A 2202068SN/A 0x12: decode INTFUNC { 2212068SN/A 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); 2222068SN/A 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); 2232068SN/A 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); 2242068SN/A 2252068SN/A 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); 2262068SN/A 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); 2272068SN/A 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); 2282068SN/A 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); 2292068SN/A 2302068SN/A 0x52: mskwh({{ 2312068SN/A int bv = Rb_or_imm<2:0>; 2322068SN/A Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; 2332068SN/A }}); 2342068SN/A 0x62: msklh({{ 2352068SN/A int bv = Rb_or_imm<2:0>; 2362068SN/A Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; 2372068SN/A }}); 2382068SN/A 0x72: mskqh({{ 2392068SN/A int bv = Rb_or_imm<2:0>; 2402068SN/A Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; 2412068SN/A }}); 2422068SN/A 2432068SN/A 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); 2442068SN/A 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); 2452068SN/A 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); 2462068SN/A 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); 2472068SN/A 2482068SN/A 0x5a: extwh({{ 2492068SN/A Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); 2502068SN/A 0x6a: extlh({{ 2512068SN/A Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); 2522068SN/A 0x7a: extqh({{ 2532068SN/A Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); 2542068SN/A 2552068SN/A 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); 2562068SN/A 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); 2572068SN/A 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); 2582068SN/A 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); 2592068SN/A 2602068SN/A 0x57: inswh({{ 2612068SN/A int bv = Rb_or_imm<2:0>; 2622068SN/A Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; 2632068SN/A }}); 2642068SN/A 0x67: inslh({{ 2652068SN/A int bv = Rb_or_imm<2:0>; 2662068SN/A Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; 2672068SN/A }}); 2682068SN/A 0x77: insqh({{ 2692068SN/A int bv = Rb_or_imm<2:0>; 2702068SN/A Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; 2712068SN/A }}); 2722068SN/A 2732068SN/A 0x30: zap({{ 2742068SN/A uint64_t zapmask = 0; 2752068SN/A for (int i = 0; i < 8; ++i) { 2762068SN/A if (Rb_or_imm<i:>) 2772068SN/A zapmask |= (mask(8) << (i * 8)); 2782068SN/A } 2792068SN/A Rc = Ra & ~zapmask; 2802068SN/A }}); 2812068SN/A 0x31: zapnot({{ 2822068SN/A uint64_t zapmask = 0; 2832068SN/A for (int i = 0; i < 8; ++i) { 2842068SN/A if (!Rb_or_imm<i:>) 2852068SN/A zapmask |= (mask(8) << (i * 8)); 2862068SN/A } 2872068SN/A Rc = Ra & ~zapmask; 2882068SN/A }}); 2892068SN/A } 2902068SN/A 2912068SN/A 0x13: decode INTFUNC { // integer multiplies 2922068SN/A 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); 2932068SN/A 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); 2942068SN/A 0x30: umulh({{ 2952068SN/A uint64_t hi, lo; 2962068SN/A mul128(Ra, Rb_or_imm, hi, lo); 2972068SN/A Rc = hi; 2982068SN/A }}, IntMultOp); 2992068SN/A 0x40: mullv({{ 3002068SN/A // 32-bit multiply with trap on overflow 3012068SN/A int64_t Rax = Ra.sl; // sign extended version of Ra.sl 3022068SN/A int64_t Rbx = Rb_or_imm.sl; 3032068SN/A int64_t tmp = Rax * Rbx; 3042068SN/A // To avoid overflow, all the upper 32 bits must match 3052068SN/A // the sign bit of the lower 32. We code this as 3062068SN/A // checking the upper 33 bits for all 0s or all 1s. 3072068SN/A uint64_t sign_bits = tmp<63:31>; 3082068SN/A if (sign_bits != 0 && sign_bits != mask(33)) 3092147SN/A fault = new IntegerOverflowFault; 3102068SN/A Rc.sl = tmp<31:0>; 3112068SN/A }}, IntMultOp); 3122068SN/A 0x60: mulqv({{ 3132068SN/A // 64-bit multiply with trap on overflow 3142068SN/A uint64_t hi, lo; 3152068SN/A mul128(Ra, Rb_or_imm, hi, lo); 3162068SN/A // all the upper 64 bits must match the sign bit of 3172068SN/A // the lower 64 3182068SN/A if (!((hi == 0 && lo<63:> == 0) || 3192068SN/A (hi == mask(64) && lo<63:> == 1))) 3202147SN/A fault = new IntegerOverflowFault; 3212068SN/A Rc = lo; 3222068SN/A }}, IntMultOp); 3232068SN/A } 3242068SN/A 3252068SN/A 0x1c: decode INTFUNC { 3262068SN/A 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } 3272068SN/A 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } 3282068SN/A 0x32: ctlz({{ 3292068SN/A uint64_t count = 0; 3302068SN/A uint64_t temp = Rb; 3312068SN/A if (temp<63:32>) temp >>= 32; else count += 32; 3322068SN/A if (temp<31:16>) temp >>= 16; else count += 16; 3332068SN/A if (temp<15:8>) temp >>= 8; else count += 8; 3342068SN/A if (temp<7:4>) temp >>= 4; else count += 4; 3352068SN/A if (temp<3:2>) temp >>= 2; else count += 2; 3362068SN/A if (temp<1:1>) temp >>= 1; else count += 1; 3372068SN/A if ((temp<0:0>) != 0x1) count += 1; 3382068SN/A Rc = count; 3392068SN/A }}, IntAluOp); 3402068SN/A 3412068SN/A 0x33: cttz({{ 3422068SN/A uint64_t count = 0; 3432068SN/A uint64_t temp = Rb; 3442068SN/A if (!(temp<31:0>)) { temp >>= 32; count += 32; } 3452068SN/A if (!(temp<15:0>)) { temp >>= 16; count += 16; } 3462068SN/A if (!(temp<7:0>)) { temp >>= 8; count += 8; } 3472068SN/A if (!(temp<3:0>)) { temp >>= 4; count += 4; } 3482068SN/A if (!(temp<1:0>)) { temp >>= 2; count += 2; } 3492068SN/A if (!(temp<0:0> & ULL(0x1))) count += 1; 3502068SN/A Rc = count; 3512068SN/A }}, IntAluOp); 3522068SN/A 3532068SN/A format FailUnimpl { 3542068SN/A 0x30: ctpop(); 3552068SN/A 0x31: perr(); 3562068SN/A 0x34: unpkbw(); 3572068SN/A 0x35: unpkbl(); 3582068SN/A 0x36: pkwb(); 3592068SN/A 0x37: pklb(); 3602068SN/A 0x38: minsb8(); 3612068SN/A 0x39: minsw4(); 3622068SN/A 0x3a: minub8(); 3632068SN/A 0x3b: minuw4(); 3642068SN/A 0x3c: maxub8(); 3652068SN/A 0x3d: maxuw4(); 3662068SN/A 0x3e: maxsb8(); 3672068SN/A 0x3f: maxsw4(); 3682068SN/A } 3692068SN/A 3702068SN/A format BasicOperateWithNopCheck { 3712068SN/A 0x70: decode RB { 3722068SN/A 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); 3732068SN/A } 3742068SN/A 0x78: decode RB { 3752068SN/A 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, 3762068SN/A FloatCvtOp); 3772068SN/A } 3782068SN/A } 3792068SN/A } 3802068SN/A } 3812068SN/A 3822068SN/A // Conditional branches. 3832068SN/A format CondBranch { 3842068SN/A 0x39: beq({{ cond = (Ra == 0); }}); 3852068SN/A 0x3d: bne({{ cond = (Ra != 0); }}); 3862068SN/A 0x3e: bge({{ cond = (Ra.sq >= 0); }}); 3872068SN/A 0x3f: bgt({{ cond = (Ra.sq > 0); }}); 3882068SN/A 0x3b: ble({{ cond = (Ra.sq <= 0); }}); 3892068SN/A 0x3a: blt({{ cond = (Ra.sq < 0); }}); 3902068SN/A 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); 3912068SN/A 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); 3922068SN/A 3932068SN/A 0x31: fbeq({{ cond = (Fa == 0); }}); 3942068SN/A 0x35: fbne({{ cond = (Fa != 0); }}); 3952068SN/A 0x36: fbge({{ cond = (Fa >= 0); }}); 3962068SN/A 0x37: fbgt({{ cond = (Fa > 0); }}); 3972068SN/A 0x33: fble({{ cond = (Fa <= 0); }}); 3982068SN/A 0x32: fblt({{ cond = (Fa < 0); }}); 3992068SN/A } 4002068SN/A 4012068SN/A // unconditional branches 4022068SN/A format UncondBranch { 4032068SN/A 0x30: br(); 4042068SN/A 0x34: bsr(IsCall); 4052068SN/A } 4062068SN/A 4072068SN/A // indirect branches 4082068SN/A 0x1a: decode JMPFUNC { 4092068SN/A format Jump { 4102068SN/A 0: jmp(); 4112068SN/A 1: jsr(IsCall); 4122068SN/A 2: ret(IsReturn); 4132068SN/A 3: jsr_coroutine(IsCall, IsReturn); 4142068SN/A } 4152068SN/A } 4162068SN/A 4172068SN/A // Square root and integer-to-FP moves 4182068SN/A 0x14: decode FP_SHORTFUNC { 4192068SN/A // Integer to FP register moves must have RB == 31 4202068SN/A 0x4: decode RB { 4212068SN/A 31: decode FP_FULLFUNC { 4222068SN/A format BasicOperateWithNopCheck { 4232068SN/A 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); 4242068SN/A 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); 4252068SN/A 0x014: FailUnimpl::itoff(); // VAX-format conversion 4262068SN/A } 4272068SN/A } 4282068SN/A } 4292068SN/A 4302068SN/A // Square root instructions must have FA == 31 4312068SN/A 0xb: decode FA { 4322068SN/A 31: decode FP_TYPEFUNC { 4332068SN/A format FloatingPointOperate { 4342068SN/A#if SS_COMPATIBLE_FP 4352068SN/A 0x0b: sqrts({{ 4362068SN/A if (Fb < 0.0) 4372147SN/A fault = new ArithmeticFault; 4382068SN/A Fc = sqrt(Fb); 4392068SN/A }}, FloatSqrtOp); 4402068SN/A#else 4412068SN/A 0x0b: sqrts({{ 4422068SN/A if (Fb.sf < 0.0) 4432147SN/A fault = new ArithmeticFault; 4442068SN/A Fc.sf = sqrt(Fb.sf); 4452068SN/A }}, FloatSqrtOp); 4462068SN/A#endif 4472068SN/A 0x2b: sqrtt({{ 4482068SN/A if (Fb < 0.0) 4492147SN/A fault = new ArithmeticFault; 4502068SN/A Fc = sqrt(Fb); 4512068SN/A }}, FloatSqrtOp); 4522068SN/A } 4532068SN/A } 4542068SN/A } 4552068SN/A 4562068SN/A // VAX-format sqrtf and sqrtg are not implemented 4572068SN/A 0xa: FailUnimpl::sqrtfg(); 4582068SN/A } 4592068SN/A 4602068SN/A // IEEE floating point 4612068SN/A 0x16: decode FP_SHORTFUNC_TOP2 { 4622068SN/A // The top two bits of the short function code break this 4632068SN/A // space into four groups: binary ops, compares, reserved, and 4642068SN/A // conversions. See Table 4-12 of AHB. There are different 4652068SN/A // special cases in these different groups, so we decode on 4662068SN/A // these top two bits first just to select a decode strategy. 4672068SN/A // Most of these instructions may have various trapping and 4682068SN/A // rounding mode flags set; these are decoded in the 4692068SN/A // FloatingPointDecode template used by the 4702068SN/A // FloatingPointOperate format. 4712068SN/A 4722068SN/A // add/sub/mul/div: just decode on the short function code 4732068SN/A // and source type. All valid trapping and rounding modes apply. 4742068SN/A 0: decode FP_TRAPMODE { 4752068SN/A // check for valid trapping modes here 4762068SN/A 0,1,5,7: decode FP_TYPEFUNC { 4772068SN/A format FloatingPointOperate { 4782068SN/A#if SS_COMPATIBLE_FP 4792068SN/A 0x00: adds({{ Fc = Fa + Fb; }}); 4802068SN/A 0x01: subs({{ Fc = Fa - Fb; }}); 4812068SN/A 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); 4822068SN/A 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); 4832068SN/A#else 4842068SN/A 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); 4852068SN/A 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); 4862068SN/A 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); 4872068SN/A 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); 4882068SN/A#endif 4892068SN/A 4902068SN/A 0x20: addt({{ Fc = Fa + Fb; }}); 4912068SN/A 0x21: subt({{ Fc = Fa - Fb; }}); 4922068SN/A 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); 4932068SN/A 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); 4942068SN/A } 4952068SN/A } 4962068SN/A } 4972068SN/A 4982068SN/A // Floating-point compare instructions must have the default 4992068SN/A // rounding mode, and may use the default trapping mode or 5002068SN/A // /SU. Both trapping modes are treated the same by M5; the 5012068SN/A // only difference on the real hardware (as far a I can tell) 5022068SN/A // is that without /SU you'd get an imprecise trap if you 5032068SN/A // tried to compare a NaN with something else (instead of an 5042068SN/A // "unordered" result). 5052068SN/A 1: decode FP_FULLFUNC { 5062068SN/A format BasicOperateWithNopCheck { 5072068SN/A 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, 5082068SN/A FloatCmpOp); 5092068SN/A 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, 5102068SN/A FloatCmpOp); 5112068SN/A 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, 5122068SN/A FloatCmpOp); 5132068SN/A 0x0a4, 0x5a4: cmptun({{ // unordered 5142068SN/A Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; 5152068SN/A }}, FloatCmpOp); 5162068SN/A } 5172068SN/A } 5182068SN/A 5192068SN/A // The FP-to-integer and integer-to-FP conversion insts 5202068SN/A // require that FA be 31. 5212068SN/A 3: decode FA { 5222068SN/A 31: decode FP_TYPEFUNC { 5232068SN/A format FloatingPointOperate { 5242068SN/A 0x2f: decode FP_ROUNDMODE { 5252068SN/A format FPFixedRounding { 5262068SN/A // "chopped" i.e. round toward zero 5272068SN/A 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, 5282068SN/A Chopped); 5292068SN/A // round to minus infinity 5302068SN/A 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, 5312068SN/A MinusInfinity); 5322068SN/A } 5332068SN/A default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); 5342068SN/A } 5352068SN/A 5362068SN/A // The cvtts opcode is overloaded to be cvtst if the trap 5372068SN/A // mode is 2 or 6 (which are not valid otherwise) 5382068SN/A 0x2c: decode FP_FULLFUNC { 5392068SN/A format BasicOperateWithNopCheck { 5402068SN/A // trap on denorm version "cvtst/s" is 5412068SN/A // simulated same as cvtst 5422068SN/A 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); 5432068SN/A } 5442068SN/A default: cvtts({{ Fc.sf = Fb; }}); 5452068SN/A } 5462068SN/A 5472068SN/A // The trapping mode for integer-to-FP conversions 5482068SN/A // must be /SUI or nothing; /U and /SU are not 5492068SN/A // allowed. The full set of rounding modes are 5502068SN/A // supported though. 5512068SN/A 0x3c: decode FP_TRAPMODE { 5522068SN/A 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); 5532068SN/A } 5542068SN/A 0x3e: decode FP_TRAPMODE { 5552068SN/A 0,7: cvtqt({{ Fc = Fb.sq; }}); 5562068SN/A } 5572068SN/A } 5582068SN/A } 5592068SN/A } 5602068SN/A } 5612068SN/A 5622068SN/A // misc FP operate 5632068SN/A 0x17: decode FP_FULLFUNC { 5642068SN/A format BasicOperateWithNopCheck { 5652068SN/A 0x010: cvtlq({{ 5662068SN/A Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; 5672068SN/A }}); 5682068SN/A 0x030: cvtql({{ 5692068SN/A Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 5702068SN/A }}); 5712068SN/A 5722068SN/A // We treat the precise & imprecise trapping versions of 5732068SN/A // cvtql identically. 5742068SN/A 0x130, 0x530: cvtqlv({{ 5752068SN/A // To avoid overflow, all the upper 32 bits must match 5762068SN/A // the sign bit of the lower 32. We code this as 5772068SN/A // checking the upper 33 bits for all 0s or all 1s. 5782068SN/A uint64_t sign_bits = Fb.uq<63:31>; 5792068SN/A if (sign_bits != 0 && sign_bits != mask(33)) 5802147SN/A fault = new IntegerOverflowFault; 5812068SN/A Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 5822068SN/A }}); 5832068SN/A 5842068SN/A 0x020: cpys({{ // copy sign 5852068SN/A Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; 5862068SN/A }}); 5872068SN/A 0x021: cpysn({{ // copy sign negated 5882068SN/A Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; 5892068SN/A }}); 5902068SN/A 0x022: cpyse({{ // copy sign and exponent 5912068SN/A Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; 5922068SN/A }}); 5932068SN/A 5942068SN/A 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); 5952068SN/A 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); 5962068SN/A 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); 5972068SN/A 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); 5982068SN/A 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); 5992068SN/A 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); 6002068SN/A 6012336SN/A 0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsIprAccess); 6022336SN/A 0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsIprAccess); 6032068SN/A } 6042068SN/A } 6052068SN/A 6062068SN/A // miscellaneous mem-format ops 6072068SN/A 0x18: decode MEMFUNC { 6082068SN/A format WarnUnimpl { 6092068SN/A 0x8000: fetch(); 6102068SN/A 0xa000: fetch_m(); 6112068SN/A 0xe800: ecb(); 6122068SN/A } 6132068SN/A 6142068SN/A format MiscPrefetch { 6152068SN/A 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, 6162068SN/A {{ xc->writeHint(EA, 64, memAccessFlags); }}, 6172075SN/A mem_flags = NO_FAULT, 6182075SN/A inst_flags = [IsMemRef, IsDataPrefetch, 6192075SN/A IsStore, MemWriteOp]); 6202068SN/A } 6212068SN/A 6222068SN/A format BasicOperate { 6232068SN/A 0xc000: rpcc({{ 6242068SN/A#if FULL_SYSTEM 6252068SN/A /* Rb is a fake dependency so here is a fun way to get 6262068SN/A * the parser to understand that. 6272068SN/A */ 6282159SN/A Ra = xc->readMiscRegWithEffect(AlphaISA::IPR_CC, fault) + (Rb & 0); 6292068SN/A 6302068SN/A#else 6312068SN/A Ra = curTick; 6322068SN/A#endif 6332312SN/A }}, IsUnverifiable); 6342068SN/A 6352068SN/A // All of the barrier instructions below do nothing in 6362068SN/A // their execute() methods (hence the empty code blocks). 6372068SN/A // All of their functionality is hard-coded in the 6382068SN/A // pipeline based on the flags IsSerializing, 6392068SN/A // IsMemBarrier, and IsWriteBarrier. In the current 6402068SN/A // detailed CPU model, the execute() function only gets 6412068SN/A // called at fetch, so there's no way to generate pipeline 6422068SN/A // behavior at any other stage. Once we go to an 6432068SN/A // exec-in-exec CPU model we should be able to get rid of 6442068SN/A // these flags and implement this behavior via the 6452068SN/A // execute() methods. 6462068SN/A 6472068SN/A // trapb is just a barrier on integer traps, where excb is 6482068SN/A // a barrier on integer and FP traps. "EXCB is thus a 6492068SN/A // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat 6502068SN/A // them the same though. 6512292SN/A 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 6522292SN/A 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 6532068SN/A 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); 6542068SN/A 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); 6552068SN/A } 6562068SN/A 6572068SN/A#if FULL_SYSTEM 6582068SN/A format BasicOperate { 6592068SN/A 0xe000: rc({{ 6602068SN/A Ra = xc->readIntrFlag(); 6612068SN/A xc->setIntrFlag(0); 6622068SN/A }}, IsNonSpeculative); 6632068SN/A 0xf000: rs({{ 6642068SN/A Ra = xc->readIntrFlag(); 6652068SN/A xc->setIntrFlag(1); 6662068SN/A }}, IsNonSpeculative); 6672068SN/A } 6682068SN/A#else 6692068SN/A format FailUnimpl { 6702068SN/A 0xe000: rc(); 6712068SN/A 0xf000: rs(); 6722068SN/A } 6732068SN/A#endif 6742068SN/A } 6752068SN/A 6762068SN/A#if FULL_SYSTEM 6772068SN/A 0x00: CallPal::call_pal({{ 6782068SN/A if (!palValid || 6792068SN/A (palPriv 6802159SN/A && xc->readMiscRegWithEffect(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) { 6812068SN/A // invalid pal function code, or attempt to do privileged 6822068SN/A // PAL call in non-kernel mode 6832147SN/A fault = new UnimplementedOpcodeFault; 6842068SN/A } 6852068SN/A else { 6862068SN/A // check to see if simulator wants to do something special 6872068SN/A // on this PAL call (including maybe suppress it) 6882068SN/A bool dopal = xc->simPalCheck(palFunc); 6892068SN/A 6902068SN/A if (dopal) { 6912159SN/A xc->setMiscRegWithEffect(AlphaISA::IPR_EXC_ADDR, NPC); 6922159SN/A NPC = xc->readMiscRegWithEffect(AlphaISA::IPR_PAL_BASE, fault) + palOffset; 6932068SN/A } 6942068SN/A } 6952068SN/A }}, IsNonSpeculative); 6962068SN/A#else 6972068SN/A 0x00: decode PALFUNC { 6982068SN/A format EmulatedCallPal { 6992068SN/A 0x00: halt ({{ 7002068SN/A SimExit(curTick, "halt instruction encountered"); 7012068SN/A }}, IsNonSpeculative); 7022068SN/A 0x83: callsys({{ 7032562SN/A xc->syscall(R0); 7042068SN/A }}, IsNonSpeculative); 7052068SN/A // Read uniq reg into ABI return value register (r0) 7062336SN/A 0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess); 7072068SN/A // Write uniq reg with value from ABI arg register (r16) 7082336SN/A 0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess); 7092068SN/A } 7102068SN/A } 7112068SN/A#endif 7122068SN/A 7132068SN/A#if FULL_SYSTEM 7142227SN/A 0x1b: decode PALMODE { 7152227SN/A 0: OpcdecFault::hw_st_quad(); 7162227SN/A 1: decode HW_LDST_QUAD { 7172227SN/A format HwLoad { 7182227SN/A 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); 7192227SN/A 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); 7202227SN/A } 7212068SN/A } 7222069SN/A } 7232068SN/A 7242227SN/A 0x1f: decode PALMODE { 7252227SN/A 0: OpcdecFault::hw_st_cond(); 7262227SN/A format HwStore { 7272227SN/A 1: decode HW_LDST_COND { 7282227SN/A 0: decode HW_LDST_QUAD { 7292227SN/A 0: hw_st({{ EA = (Rb + disp) & ~3; }}, 7302227SN/A {{ Mem.ul = Ra<31:0>; }}, L); 7312227SN/A 1: hw_st({{ EA = (Rb + disp) & ~7; }}, 7322227SN/A {{ Mem.uq = Ra.uq; }}, Q); 7332227SN/A } 7342227SN/A 7352227SN/A 1: FailUnimpl::hw_st_cond(); 7362068SN/A } 7372068SN/A } 7382068SN/A } 7392068SN/A 7402227SN/A 0x19: decode PALMODE { 7412227SN/A 0: OpcdecFault::hw_mfpr(); 7422227SN/A format HwMoveIPR { 7432227SN/A 1: hw_mfpr({{ 7442159SN/A Ra = xc->readMiscRegWithEffect(ipr_index, fault); 7452336SN/A }}, IsIprAccess); 7462227SN/A } 7472227SN/A } 7482227SN/A 7492227SN/A 0x1d: decode PALMODE { 7502227SN/A 0: OpcdecFault::hw_mtpr(); 7512227SN/A format HwMoveIPR { 7522227SN/A 1: hw_mtpr({{ 7532159SN/A xc->setMiscRegWithEffect(ipr_index, Ra); 7542068SN/A if (traceData) { traceData->setData(Ra); } 7552336SN/A }}, IsIprAccess); 7562227SN/A } 7572068SN/A } 7582068SN/A 7592068SN/A format BasicOperate { 7602227SN/A 0x1e: decode PALMODE { 7612227SN/A 0: OpcdecFault::hw_rei(); 7622292SN/A 1:hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore); 7632227SN/A } 7642068SN/A 7652068SN/A // M5 special opcodes use the reserved 0x01 opcode space 7662068SN/A 0x01: decode M5FUNC { 7672068SN/A 0x00: arm({{ 7682680Sktlim@umich.edu AlphaPseudo::arm(xc->tcBase()); 7692068SN/A }}, IsNonSpeculative); 7702068SN/A 0x01: quiesce({{ 7712680Sktlim@umich.edu AlphaPseudo::quiesce(xc->tcBase()); 7722292SN/A }}, IsNonSpeculative, IsQuiesce); 7732188SN/A 0x02: quiesceNs({{ 7742680Sktlim@umich.edu AlphaPseudo::quiesceNs(xc->tcBase(), R16); 7752292SN/A }}, IsNonSpeculative, IsQuiesce); 7762188SN/A 0x03: quiesceCycles({{ 7772680Sktlim@umich.edu AlphaPseudo::quiesceCycles(xc->tcBase(), R16); 7782292SN/A }}, IsNonSpeculative, IsQuiesce); 7792188SN/A 0x04: quiesceTime({{ 7802680Sktlim@umich.edu R0 = AlphaPseudo::quiesceTime(xc->tcBase()); 7812188SN/A }}, IsNonSpeculative); 7822068SN/A 0x10: ivlb({{ 7832680Sktlim@umich.edu AlphaPseudo::ivlb(xc->tcBase()); 7842068SN/A }}, No_OpClass, IsNonSpeculative); 7852068SN/A 0x11: ivle({{ 7862680Sktlim@umich.edu AlphaPseudo::ivle(xc->tcBase()); 7872068SN/A }}, No_OpClass, IsNonSpeculative); 7882068SN/A 0x20: m5exit_old({{ 7892680Sktlim@umich.edu AlphaPseudo::m5exit_old(xc->tcBase()); 7902068SN/A }}, No_OpClass, IsNonSpeculative); 7912068SN/A 0x21: m5exit({{ 7922680Sktlim@umich.edu AlphaPseudo::m5exit(xc->tcBase(), R16); 7932068SN/A }}, No_OpClass, IsNonSpeculative); 7942680Sktlim@umich.edu 0x30: initparam({{ Ra = xc->tcBase()->getCpuPtr()->system->init_param; }}); 7952068SN/A 0x40: resetstats({{ 7962680Sktlim@umich.edu AlphaPseudo::resetstats(xc->tcBase(), R16, R17); 7972068SN/A }}, IsNonSpeculative); 7982068SN/A 0x41: dumpstats({{ 7992680Sktlim@umich.edu AlphaPseudo::dumpstats(xc->tcBase(), R16, R17); 8002068SN/A }}, IsNonSpeculative); 8012068SN/A 0x42: dumpresetstats({{ 8022680Sktlim@umich.edu AlphaPseudo::dumpresetstats(xc->tcBase(), R16, R17); 8032068SN/A }}, IsNonSpeculative); 8042068SN/A 0x43: m5checkpoint({{ 8052680Sktlim@umich.edu AlphaPseudo::m5checkpoint(xc->tcBase(), R16, R17); 8062068SN/A }}, IsNonSpeculative); 8072068SN/A 0x50: m5readfile({{ 8082680Sktlim@umich.edu R0 = AlphaPseudo::readfile(xc->tcBase(), R16, R17, R18); 8092068SN/A }}, IsNonSpeculative); 8102068SN/A 0x51: m5break({{ 8112680Sktlim@umich.edu AlphaPseudo::debugbreak(xc->tcBase()); 8122068SN/A }}, IsNonSpeculative); 8132068SN/A 0x52: m5switchcpu({{ 8142680Sktlim@umich.edu AlphaPseudo::switchcpu(xc->tcBase()); 8152068SN/A }}, IsNonSpeculative); 8162068SN/A 0x53: m5addsymbol({{ 8172680Sktlim@umich.edu AlphaPseudo::addsymbol(xc->tcBase(), R16, R17); 8182068SN/A }}, IsNonSpeculative); 8192188SN/A 0x54: m5panic({{ 8202284SN/A panic("M5 panic instruction called at pc=%#x.", xc->readPC()); 8212188SN/A }}, IsNonSpeculative); 8222068SN/A 8232068SN/A } 8242068SN/A } 8252068SN/A#endif 8262068SN/A} 827