decoder.isa revision 2147
12810SN/A// -*- mode:c++ -*-
28856Sandreas.hansson@arm.com
38856Sandreas.hansson@arm.com// Copyright (c) 2003-2005 The Regents of The University of Michigan
48856Sandreas.hansson@arm.com// All rights reserved.
58856Sandreas.hansson@arm.com//
68856Sandreas.hansson@arm.com// Redistribution and use in source and binary forms, with or without
78856Sandreas.hansson@arm.com// modification, are permitted provided that the following conditions are
88856Sandreas.hansson@arm.com// met: redistributions of source code must retain the above copyright
98856Sandreas.hansson@arm.com// notice, this list of conditions and the following disclaimer;
108856Sandreas.hansson@arm.com// redistributions in binary form must reproduce the above copyright
118856Sandreas.hansson@arm.com// notice, this list of conditions and the following disclaimer in the
128856Sandreas.hansson@arm.com// documentation and/or other materials provided with the distribution;
138856Sandreas.hansson@arm.com// neither the name of the copyright holders nor the names of its
142810SN/A// contributors may be used to endorse or promote products derived from
152810SN/A// this software without specific prior written permission.
162810SN/A//
172810SN/A// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
182810SN/A// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
192810SN/A// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
202810SN/A// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
212810SN/A// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
222810SN/A// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
232810SN/A// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
242810SN/A// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
252810SN/A// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
262810SN/A// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
272810SN/A// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
282810SN/A
292810SN/Adecode OPCODE default Unknown::unknown() {
302810SN/A
312810SN/A    format LoadAddress {
322810SN/A        0x08: lda({{ Ra = Rb + disp; }});
332810SN/A        0x09: ldah({{ Ra = Rb + (disp << 16); }});
342810SN/A    }
352810SN/A
362810SN/A    format LoadOrNop {
372810SN/A        0x0a: ldbu({{ Ra.uq = Mem.ub; }});
382810SN/A        0x0c: ldwu({{ Ra.uq = Mem.uw; }});
392810SN/A        0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }});
402810SN/A        0x23: ldt({{ Fa = Mem.df; }});
412810SN/A        0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED);
422810SN/A        0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED);
432810SN/A        0x20: MiscPrefetch::copy_load({{ EA = Ra; }},
442810SN/A                                      {{ fault = xc->copySrcTranslate(EA); }},
452810SN/A                                      inst_flags = [IsMemRef, IsLoad, IsCopy]);
462810SN/A    }
472810SN/A
483348SN/A    format LoadOrPrefetch {
493348SN/A        0x28: ldl({{ Ra.sl = Mem.sl; }});
508232Snate@binkert.org        0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT);
519152Satgutier@umich.edu        // IsFloating flag on lds gets the prefetch to disassemble
525338Sstever@gmail.com        // using f31 instead of r31... funcitonally it's unnecessary
535338Sstever@gmail.com        0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }},
548786Sgblack@eecs.umich.edu                  pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating);
552810SN/A    }
562810SN/A
572810SN/A    format Store {
588856Sandreas.hansson@arm.com        0x0e: stb({{ Mem.ub = Ra<7:0>; }});
598856Sandreas.hansson@arm.com        0x0d: stw({{ Mem.uw = Ra<15:0>; }});
608856Sandreas.hansson@arm.com        0x2c: stl({{ Mem.ul = Ra<31:0>; }});
618922Swilliam.wang@arm.com        0x2d: stq({{ Mem.uq = Ra.uq; }});
628914Sandreas.hansson@arm.com        0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }});
638856Sandreas.hansson@arm.com        0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }});
648856Sandreas.hansson@arm.com        0x27: stt({{ Mem.df = Fa; }});
654475SN/A        0x24: MiscPrefetch::copy_store({{ EA = Rb; }},
665034SN/A                                       {{ fault = xc->copy(EA); }},
675034SN/A                                       inst_flags = [IsMemRef, IsStore, IsCopy]);
685314SN/A    }
695314SN/A
704628SN/A    format StoreCond {
715034SN/A        0x2e: stl_c({{ Mem.ul = Ra<31:0>; }},
725034SN/A                    {{
735034SN/A                        uint64_t tmp = write_result;
746122SSteve.Reinhardt@amd.com                        // see stq_c
758134SAli.Saidi@ARM.com                        Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
764626SN/A                    }}, mem_flags = LOCKED);
774626SN/A        0x2f: stq_c({{ Mem.uq = Ra; }},
785034SN/A                    {{
796122SSteve.Reinhardt@amd.com                        uint64_t tmp = write_result;
808883SAli.Saidi@ARM.com                        // If the write operation returns 0 or 1, then
818833Sdam.sunwoo@arm.com                        // this was a conventional store conditional,
824458SN/A                        // and the value indicates the success/failure
832810SN/A                        // of the operation.  If another value is
842810SN/A                        // returned, then this was a Turbolaser
853013SN/A                        // mailbox access, and we don't update the
868856Sandreas.hansson@arm.com                        // result register at all.
872810SN/A                        Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
883013SN/A                    }}, mem_flags = LOCKED);
898856Sandreas.hansson@arm.com    }
902810SN/A
912810SN/A    format IntegerOperate {
922810SN/A
932810SN/A        0x10: decode INTFUNC {	// integer arithmetic operations
948856Sandreas.hansson@arm.com
952810SN/A            0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
963013SN/A            0x40: addlv({{
978856Sandreas.hansson@arm.com                uint32_t tmp  = Ra.sl + Rb_or_imm.sl;
983013SN/A                // signed overflow occurs when operands have same sign
998856Sandreas.hansson@arm.com                // and sign of result does not match.
1008856Sandreas.hansson@arm.com                if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
1012897SN/A                    fault = new IntegerOverflowFault;
1024666SN/A                Rc.sl = tmp;
1038922Swilliam.wang@arm.com            }});
1042897SN/A            0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
1052810SN/A            0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
1062810SN/A
1072844SN/A            0x20: addq({{ Rc = Ra + Rb_or_imm; }});
1082810SN/A            0x60: addqv({{
1092858SN/A                uint64_t tmp = Ra + Rb_or_imm;
1102858SN/A                // signed overflow occurs when operands have same sign
1118856Sandreas.hansson@arm.com                // and sign of result does not match.
1128922Swilliam.wang@arm.com                if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
1138711Sandreas.hansson@arm.com                    fault = new IntegerOverflowFault;
1142858SN/A                Rc = tmp;
1152858SN/A            }});
1168922Swilliam.wang@arm.com            0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
1178922Swilliam.wang@arm.com            0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
1188922Swilliam.wang@arm.com
1198922Swilliam.wang@arm.com            0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
1208922Swilliam.wang@arm.com            0x49: sublv({{
1218922Swilliam.wang@arm.com                uint32_t tmp  = Ra.sl - Rb_or_imm.sl;
1228922Swilliam.wang@arm.com                // signed overflow detection is same as for add,
1238922Swilliam.wang@arm.com                // except we need to look at the *complemented*
1248922Swilliam.wang@arm.com                // sign bit of the subtrahend (Rb), i.e., if the initial
1258922Swilliam.wang@arm.com                // signs are the *same* then no overflow can occur
1268922Swilliam.wang@arm.com                if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
1278922Swilliam.wang@arm.com                    fault = new IntegerOverflowFault;
1288922Swilliam.wang@arm.com                Rc.sl = tmp;
1298922Swilliam.wang@arm.com            }});
1308922Swilliam.wang@arm.com            0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
1318922Swilliam.wang@arm.com            0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
1328922Swilliam.wang@arm.com
1338922Swilliam.wang@arm.com            0x29: subq({{ Rc = Ra - Rb_or_imm; }});
1348922Swilliam.wang@arm.com            0x69: subqv({{
1354628SN/A                uint64_t tmp  = Ra - Rb_or_imm;
1362858SN/A                // signed overflow detection is same as for add,
1372810SN/A                // except we need to look at the *complemented*
1382810SN/A                // sign bit of the subtrahend (Rb), i.e., if the initial
1392810SN/A                // signs are the *same* then no overflow can occur
1402810SN/A                if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
1412810SN/A                    fault = new IntegerOverflowFault;
1424022SN/A                Rc = tmp;
1434022SN/A            }});
1444022SN/A            0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
1452810SN/A            0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
1462810SN/A
1478833Sdam.sunwoo@arm.com            0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
1482810SN/A            0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
1492810SN/A            0x4d: cmplt({{ Rc = (Ra.sq <  Rb_or_imm.sq); }});
1502810SN/A            0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
1512810SN/A            0x1d: cmpult({{ Rc = (Ra.uq <  Rb_or_imm.uq); }});
1528833Sdam.sunwoo@arm.com
1538833Sdam.sunwoo@arm.com            0x0f: cmpbge({{
1548833Sdam.sunwoo@arm.com                int hi = 7;
1552810SN/A                int lo = 0;
1562810SN/A                uint64_t tmp = 0;
1574871SN/A                for (int i = 0; i < 8; ++i) {
1584871SN/A                    tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
1594871SN/A                    hi += 8;
1604871SN/A                    lo += 8;
1614871SN/A                }
1624871SN/A                Rc = tmp;
1634871SN/A            }});
1644871SN/A        }
1654871SN/A
1664871SN/A        0x11: decode INTFUNC {	// integer logical operations
1672810SN/A
1682810SN/A            0x00: and({{ Rc = Ra & Rb_or_imm; }});
1692810SN/A            0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
1708833Sdam.sunwoo@arm.com            0x20: bis({{ Rc = Ra | Rb_or_imm; }});
1712810SN/A            0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
1724871SN/A            0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
1738833Sdam.sunwoo@arm.com            0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
1748833Sdam.sunwoo@arm.com
1758833Sdam.sunwoo@arm.com            // conditional moves
1762810SN/A            0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
1772810SN/A            0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
1782810SN/A            0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
1792810SN/A            0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
1808833Sdam.sunwoo@arm.com            0x44: cmovlt({{ Rc = (Ra.sq <  0) ? Rb_or_imm : Rc; }});
1812810SN/A            0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
1824871SN/A            0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
1838833Sdam.sunwoo@arm.com            0x66: cmovgt({{ Rc = (Ra.sq >  0) ? Rb_or_imm : Rc; }});
1848833Sdam.sunwoo@arm.com
1858833Sdam.sunwoo@arm.com            // For AMASK, RA must be R31.
1862810SN/A            0x61: decode RA {
1872810SN/A                31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
1884022SN/A            }
1894022SN/A
1904022SN/A            // For IMPLVER, RA must be R31 and the B operand
1912810SN/A            // must be the immediate value 1.
1922810SN/A            0x6c: decode RA {
1938833Sdam.sunwoo@arm.com                31: decode IMM {
1942810SN/A                    1: decode INTIMM {
1952810SN/A                        // return EV5 for FULL_SYSTEM and EV6 otherwise
1962810SN/A                        1: implver({{
1972810SN/A#if FULL_SYSTEM
1988833Sdam.sunwoo@arm.com                             Rc = 1;
1998833Sdam.sunwoo@arm.com#else
2008833Sdam.sunwoo@arm.com                             Rc = 2;
2012810SN/A#endif
2022810SN/A                        }});
2032810SN/A                    }
2042810SN/A                }
2052810SN/A            }
2068833Sdam.sunwoo@arm.com
2072810SN/A#if FULL_SYSTEM
2084871SN/A            // The mysterious 11.25...
2098833Sdam.sunwoo@arm.com            0x25: WarnUnimpl::eleven25();
2108833Sdam.sunwoo@arm.com#endif
2118833Sdam.sunwoo@arm.com        }
2122810SN/A
2132810SN/A        0x12: decode INTFUNC {
2142810SN/A            0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
2152810SN/A            0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
2168833Sdam.sunwoo@arm.com            0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
2172810SN/A
2184871SN/A            0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
2198833Sdam.sunwoo@arm.com            0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
2208833Sdam.sunwoo@arm.com            0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
2218833Sdam.sunwoo@arm.com            0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
2222810SN/A
2232810SN/A            0x52: mskwh({{
2244022SN/A                int bv = Rb_or_imm<2:0>;
2254022SN/A                Rc =  bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
2264022SN/A            }});
2272810SN/A            0x62: msklh({{
2282810SN/A                int bv = Rb_or_imm<2:0>;
2298833Sdam.sunwoo@arm.com                Rc =  bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
2302810SN/A            }});
2312810SN/A            0x72: mskqh({{
2322810SN/A                int bv = Rb_or_imm<2:0>;
2332810SN/A                Rc =  bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
2348833Sdam.sunwoo@arm.com            }});
2358833Sdam.sunwoo@arm.com
2368833Sdam.sunwoo@arm.com            0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
2372810SN/A            0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
2382810SN/A            0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
2392810SN/A            0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
2402810SN/A
2412810SN/A            0x5a: extwh({{
2428833Sdam.sunwoo@arm.com                Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
2432810SN/A            0x6a: extlh({{
2444871SN/A                Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
2458833Sdam.sunwoo@arm.com            0x7a: extqh({{
2468833Sdam.sunwoo@arm.com                Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
2478833Sdam.sunwoo@arm.com
2482810SN/A            0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
2492810SN/A            0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
2502810SN/A            0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
2512810SN/A            0x3b: insql({{ Rc = Ra       << (Rb_or_imm<2:0> * 8); }});
2528833Sdam.sunwoo@arm.com
2532810SN/A            0x57: inswh({{
2544871SN/A                int bv = Rb_or_imm<2:0>;
2558833Sdam.sunwoo@arm.com                Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
2568833Sdam.sunwoo@arm.com            }});
2578833Sdam.sunwoo@arm.com            0x67: inslh({{
2582810SN/A                int bv = Rb_or_imm<2:0>;
2592810SN/A                Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
2604022SN/A            }});
2614022SN/A            0x77: insqh({{
2624022SN/A                int bv = Rb_or_imm<2:0>;
2632810SN/A                Rc = bv ? (Ra.uq       >> (64 - 8 * bv)) : 0;
2642810SN/A            }});
2652810SN/A
2662810SN/A            0x30: zap({{
2672810SN/A                uint64_t zapmask = 0;
2682810SN/A                for (int i = 0; i < 8; ++i) {
2698833Sdam.sunwoo@arm.com                    if (Rb_or_imm<i:>)
2702810SN/A                        zapmask |= (mask(8) << (i * 8));
2718833Sdam.sunwoo@arm.com                }
2728833Sdam.sunwoo@arm.com                Rc = Ra & ~zapmask;
2738833Sdam.sunwoo@arm.com            }});
2742810SN/A            0x31: zapnot({{
2752810SN/A                uint64_t zapmask = 0;
2762810SN/A                for (int i = 0; i < 8; ++i) {
2772810SN/A                    if (!Rb_or_imm<i:>)
2782810SN/A                        zapmask |= (mask(8) << (i * 8));
2798833Sdam.sunwoo@arm.com                }
2802810SN/A                Rc = Ra & ~zapmask;
2812810SN/A            }});
2828833Sdam.sunwoo@arm.com        }
2838833Sdam.sunwoo@arm.com
2848833Sdam.sunwoo@arm.com        0x13: decode INTFUNC {	// integer multiplies
2852810SN/A            0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
2862810SN/A            0x20: mulq({{ Rc    = Ra    * Rb_or_imm;    }}, IntMultOp);
2872810SN/A            0x30: umulh({{
2882810SN/A                uint64_t hi, lo;
2898833Sdam.sunwoo@arm.com                mul128(Ra, Rb_or_imm, hi, lo);
2902810SN/A                Rc = hi;
2912810SN/A            }}, IntMultOp);
2928833Sdam.sunwoo@arm.com            0x40: mullv({{
2938833Sdam.sunwoo@arm.com                // 32-bit multiply with trap on overflow
2948833Sdam.sunwoo@arm.com                int64_t Rax = Ra.sl;	// sign extended version of Ra.sl
2952810SN/A                int64_t Rbx = Rb_or_imm.sl;
2962810SN/A                int64_t tmp = Rax * Rbx;
2974022SN/A                // To avoid overflow, all the upper 32 bits must match
2984022SN/A                // the sign bit of the lower 32.  We code this as
2994022SN/A                // checking the upper 33 bits for all 0s or all 1s.
3002810SN/A                uint64_t sign_bits = tmp<63:31>;
3012810SN/A                if (sign_bits != 0 && sign_bits != mask(33))
3022810SN/A                    fault = new IntegerOverflowFault;
3032810SN/A                Rc.sl = tmp<31:0>;
3042810SN/A            }}, IntMultOp);
3052810SN/A            0x60: mulqv({{
3068833Sdam.sunwoo@arm.com                // 64-bit multiply with trap on overflow
3072810SN/A                uint64_t hi, lo;
3088833Sdam.sunwoo@arm.com                mul128(Ra, Rb_or_imm, hi, lo);
3098833Sdam.sunwoo@arm.com                // all the upper 64 bits must match the sign bit of
3108833Sdam.sunwoo@arm.com                // the lower 64
3112810SN/A                if (!((hi == 0 && lo<63:> == 0) ||
3122810SN/A                      (hi == mask(64) && lo<63:> == 1)))
3132810SN/A                    fault = new IntegerOverflowFault;
3142810SN/A                Rc = lo;
3152810SN/A            }}, IntMultOp);
3168833Sdam.sunwoo@arm.com        }
3172810SN/A
3182810SN/A        0x1c: decode INTFUNC {
3198833Sdam.sunwoo@arm.com            0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
3208833Sdam.sunwoo@arm.com            0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
3218833Sdam.sunwoo@arm.com            0x32: ctlz({{
3222810SN/A                             uint64_t count = 0;
3232810SN/A                             uint64_t temp = Rb;
3242810SN/A                             if (temp<63:32>) temp >>= 32; else count += 32;
3252810SN/A                             if (temp<31:16>) temp >>= 16; else count += 16;
3268833Sdam.sunwoo@arm.com                             if (temp<15:8>) temp >>= 8; else count += 8;
3272810SN/A                             if (temp<7:4>) temp >>= 4; else count += 4;
3282810SN/A                             if (temp<3:2>) temp >>= 2; else count += 2;
3298833Sdam.sunwoo@arm.com                             if (temp<1:1>) temp >>= 1; else count += 1;
3308833Sdam.sunwoo@arm.com                             if ((temp<0:0>) != 0x1) count += 1;
3318833Sdam.sunwoo@arm.com                             Rc = count;
3322810SN/A                           }}, IntAluOp);
3332810SN/A
3344022SN/A            0x33: cttz({{
3354022SN/A                             uint64_t count = 0;
3364022SN/A                             uint64_t temp = Rb;
3372810SN/A                             if (!(temp<31:0>)) { temp >>= 32; count += 32; }
3382810SN/A                             if (!(temp<15:0>)) { temp >>= 16; count += 16; }
3392810SN/A                             if (!(temp<7:0>)) { temp >>= 8; count += 8; }
3402810SN/A                             if (!(temp<3:0>)) { temp >>= 4; count += 4; }
3412810SN/A                             if (!(temp<1:0>)) { temp >>= 2; count += 2; }
3422810SN/A                             if (!(temp<0:0> & ULL(0x1))) count += 1;
3432810SN/A                             Rc = count;
3442810SN/A                           }}, IntAluOp);
3458833Sdam.sunwoo@arm.com
3468833Sdam.sunwoo@arm.com            format FailUnimpl {
3478833Sdam.sunwoo@arm.com                0x30: ctpop();
3488833Sdam.sunwoo@arm.com                0x31: perr();
3492810SN/A                0x34: unpkbw();
3502810SN/A                0x35: unpkbl();
3512810SN/A                0x36: pkwb();
3522810SN/A                0x37: pklb();
3532810SN/A                0x38: minsb8();
3548833Sdam.sunwoo@arm.com                0x39: minsw4();
3552810SN/A                0x3a: minub8();
3562810SN/A                0x3b: minuw4();
3578833Sdam.sunwoo@arm.com                0x3c: maxub8();
3588833Sdam.sunwoo@arm.com                0x3d: maxuw4();
3598833Sdam.sunwoo@arm.com                0x3e: maxsb8();
3602810SN/A                0x3f: maxsw4();
3612810SN/A            }
3622810SN/A
3632810SN/A            format BasicOperateWithNopCheck {
3648833Sdam.sunwoo@arm.com                0x70: decode RB {
3652810SN/A                    31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
3662810SN/A                }
3678833Sdam.sunwoo@arm.com                0x78: decode RB {
3688833Sdam.sunwoo@arm.com                    31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
3698833Sdam.sunwoo@arm.com                              FloatCvtOp);
3702810SN/A                }
3712810SN/A            }
3722810SN/A        }
3732810SN/A    }
3742810SN/A
3752810SN/A    // Conditional branches.
3762810SN/A    format CondBranch {
3772810SN/A        0x39: beq({{ cond = (Ra == 0); }});
3782810SN/A        0x3d: bne({{ cond = (Ra != 0); }});
3792810SN/A        0x3e: bge({{ cond = (Ra.sq >= 0); }});
3802810SN/A        0x3f: bgt({{ cond = (Ra.sq >  0); }});
3812810SN/A        0x3b: ble({{ cond = (Ra.sq <= 0); }});
3822810SN/A        0x3a: blt({{ cond = (Ra.sq < 0); }});
3832810SN/A        0x38: blbc({{ cond = ((Ra & 1) == 0); }});
3842810SN/A        0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
3852810SN/A
3862810SN/A        0x31: fbeq({{ cond = (Fa == 0); }});
3872810SN/A        0x35: fbne({{ cond = (Fa != 0); }});
3882810SN/A        0x36: fbge({{ cond = (Fa >= 0); }});
3892810SN/A        0x37: fbgt({{ cond = (Fa >  0); }});
3902810SN/A        0x33: fble({{ cond = (Fa <= 0); }});
3912810SN/A        0x32: fblt({{ cond = (Fa < 0); }});
3922810SN/A    }
3932810SN/A
3942810SN/A    // unconditional branches
3952810SN/A    format UncondBranch {
3962810SN/A        0x30: br();
3972810SN/A        0x34: bsr(IsCall);
3982810SN/A    }
3992810SN/A
4002810SN/A    // indirect branches
4012810SN/A    0x1a: decode JMPFUNC {
4022810SN/A        format Jump {
4032810SN/A            0: jmp();
4042810SN/A            1: jsr(IsCall);
4052810SN/A            2: ret(IsReturn);
4062826SN/A            3: jsr_coroutine(IsCall, IsReturn);
4074626SN/A        }
4088833Sdam.sunwoo@arm.com    }
4094626SN/A
4104626SN/A    // Square root and integer-to-FP moves
4118833Sdam.sunwoo@arm.com    0x14: decode FP_SHORTFUNC {
4124626SN/A        // Integer to FP register moves must have RB == 31
4138833Sdam.sunwoo@arm.com        0x4: decode RB {
4148833Sdam.sunwoo@arm.com            31: decode FP_FULLFUNC {
4158833Sdam.sunwoo@arm.com                format BasicOperateWithNopCheck {
4164626SN/A                    0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
4174626SN/A                    0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
4184626SN/A                    0x014: FailUnimpl::itoff();	// VAX-format conversion
4194626SN/A                }
4204626SN/A            }
4214626SN/A        }
4224626SN/A
4234626SN/A        // Square root instructions must have FA == 31
4248833Sdam.sunwoo@arm.com        0xb: decode FA {
4254626SN/A            31: decode FP_TYPEFUNC {
4264626SN/A                format FloatingPointOperate {
4274626SN/A#if SS_COMPATIBLE_FP
4284626SN/A                    0x0b: sqrts({{
4298833Sdam.sunwoo@arm.com                        if (Fb < 0.0)
4308833Sdam.sunwoo@arm.com                            fault = new ArithmeticFault;
4318833Sdam.sunwoo@arm.com                        Fc = sqrt(Fb);
4324626SN/A                    }}, FloatSqrtOp);
4334626SN/A#else
4344626SN/A                    0x0b: sqrts({{
4354626SN/A                        if (Fb.sf < 0.0)
4364626SN/A                            fault = new ArithmeticFault;
4378833Sdam.sunwoo@arm.com                        Fc.sf = sqrt(Fb.sf);
4384626SN/A                    }}, FloatSqrtOp);
4394871SN/A#endif
4408833Sdam.sunwoo@arm.com                    0x2b: sqrtt({{
4418833Sdam.sunwoo@arm.com                        if (Fb < 0.0)
4428833Sdam.sunwoo@arm.com                            fault = new ArithmeticFault;
4434626SN/A                        Fc = sqrt(Fb);
4444626SN/A                    }}, FloatSqrtOp);
4454626SN/A                }
4464626SN/A            }
4478833Sdam.sunwoo@arm.com        }
4484626SN/A
4494871SN/A        // VAX-format sqrtf and sqrtg are not implemented
4508833Sdam.sunwoo@arm.com        0xa: FailUnimpl::sqrtfg();
4518833Sdam.sunwoo@arm.com    }
4528833Sdam.sunwoo@arm.com
4534626SN/A    // IEEE floating point
4544626SN/A    0x16: decode FP_SHORTFUNC_TOP2 {
4554626SN/A        // The top two bits of the short function code break this
4564626SN/A        // space into four groups: binary ops, compares, reserved, and
4574626SN/A        // conversions.  See Table 4-12 of AHB.  There are different
4584626SN/A        // special cases in these different groups, so we decode on
4594626SN/A        // these top two bits first just to select a decode strategy.
4608833Sdam.sunwoo@arm.com        // Most of these instructions may have various trapping and
4614626SN/A        // rounding mode flags set; these are decoded in the
4624626SN/A        // FloatingPointDecode template used by the
4634626SN/A        // FloatingPointOperate format.
4644626SN/A
4658833Sdam.sunwoo@arm.com        // add/sub/mul/div: just decode on the short function code
4668833Sdam.sunwoo@arm.com        // and source type.  All valid trapping and rounding modes apply.
4678833Sdam.sunwoo@arm.com        0: decode FP_TRAPMODE {
4684626SN/A            // check for valid trapping modes here
4694626SN/A            0,1,5,7: decode FP_TYPEFUNC {
4704626SN/A                   format FloatingPointOperate {
4714626SN/A#if SS_COMPATIBLE_FP
4724626SN/A                       0x00: adds({{ Fc = Fa + Fb; }});
4738833Sdam.sunwoo@arm.com                       0x01: subs({{ Fc = Fa - Fb; }});
4744626SN/A                       0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
4754871SN/A                       0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
4768833Sdam.sunwoo@arm.com#else
4778833Sdam.sunwoo@arm.com                       0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
4788833Sdam.sunwoo@arm.com                       0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
4794626SN/A                       0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
4804626SN/A                       0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
4814626SN/A#endif
4824626SN/A
4838833Sdam.sunwoo@arm.com                       0x20: addt({{ Fc = Fa + Fb; }});
4844626SN/A                       0x21: subt({{ Fc = Fa - Fb; }});
4854871SN/A                       0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
4868833Sdam.sunwoo@arm.com                       0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
4878833Sdam.sunwoo@arm.com                   }
4888833Sdam.sunwoo@arm.com             }
4894626SN/A        }
4904626SN/A
4914626SN/A        // Floating-point compare instructions must have the default
4924626SN/A        // rounding mode, and may use the default trapping mode or
4934626SN/A        // /SU.  Both trapping modes are treated the same by M5; the
4944626SN/A        // only difference on the real hardware (as far a I can tell)
4954626SN/A        // is that without /SU you'd get an imprecise trap if you
4968833Sdam.sunwoo@arm.com        // tried to compare a NaN with something else (instead of an
4974626SN/A        // "unordered" result).
4984626SN/A        1: decode FP_FULLFUNC {
4994626SN/A            format BasicOperateWithNopCheck {
5004626SN/A                0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
5018833Sdam.sunwoo@arm.com                                     FloatCmpOp);
5028833Sdam.sunwoo@arm.com                0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
5038833Sdam.sunwoo@arm.com                                     FloatCmpOp);
5044626SN/A                0x0a6, 0x5a6: cmptlt({{ Fc = (Fa <  Fb) ? 2.0 : 0.0; }},
5054626SN/A                                     FloatCmpOp);
5064626SN/A                0x0a4, 0x5a4: cmptun({{ // unordered
5074626SN/A                    Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
5084626SN/A                }}, FloatCmpOp);
5098833Sdam.sunwoo@arm.com            }
5104626SN/A        }
5114871SN/A
5128833Sdam.sunwoo@arm.com        // The FP-to-integer and integer-to-FP conversion insts
5138833Sdam.sunwoo@arm.com        // require that FA be 31.
5148833Sdam.sunwoo@arm.com        3: decode FA {
5154626SN/A            31: decode FP_TYPEFUNC {
5164626SN/A                format FloatingPointOperate {
5174626SN/A                    0x2f: decode FP_ROUNDMODE {
5184626SN/A                        format FPFixedRounding {
5198833Sdam.sunwoo@arm.com                            // "chopped" i.e. round toward zero
5204626SN/A                            0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
5214871SN/A                                     Chopped);
5224871SN/A                            // round to minus infinity
5238833Sdam.sunwoo@arm.com                            1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
5248833Sdam.sunwoo@arm.com                                     MinusInfinity);
5258833Sdam.sunwoo@arm.com                        }
5264626SN/A                      default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
5274626SN/A                    }
5284626SN/A
5294626SN/A                    // The cvtts opcode is overloaded to be cvtst if the trap
5304626SN/A                    // mode is 2 or 6 (which are not valid otherwise)
5314626SN/A                    0x2c: decode FP_FULLFUNC {
5324626SN/A                        format BasicOperateWithNopCheck {
5338833Sdam.sunwoo@arm.com                            // trap on denorm version "cvtst/s" is
5344626SN/A                            // simulated same as cvtst
5354626SN/A                            0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
5364626SN/A                        }
5374626SN/A                      default: cvtts({{ Fc.sf = Fb; }});
5388833Sdam.sunwoo@arm.com                    }
5398833Sdam.sunwoo@arm.com
5408833Sdam.sunwoo@arm.com                    // The trapping mode for integer-to-FP conversions
5414626SN/A                    // must be /SUI or nothing; /U and /SU are not
5424626SN/A                    // allowed.  The full set of rounding modes are
5434626SN/A                    // supported though.
5444626SN/A                    0x3c: decode FP_TRAPMODE {
5454626SN/A                        0,7: cvtqs({{ Fc.sf = Fb.sq; }});
5468833Sdam.sunwoo@arm.com                    }
5474626SN/A                    0x3e: decode FP_TRAPMODE {
5484871SN/A                        0,7: cvtqt({{ Fc    = Fb.sq; }});
5494871SN/A                    }
5508833Sdam.sunwoo@arm.com                }
5518833Sdam.sunwoo@arm.com            }
5528833Sdam.sunwoo@arm.com        }
5534626SN/A    }
5544626SN/A
5554626SN/A    // misc FP operate
5564626SN/A    0x17: decode FP_FULLFUNC {
5574626SN/A        format BasicOperateWithNopCheck {
5584626SN/A            0x010: cvtlq({{
5594626SN/A                Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
5608833Sdam.sunwoo@arm.com            }});
5614626SN/A            0x030: cvtql({{
5624626SN/A                Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
5634626SN/A            }});
5644626SN/A
5658833Sdam.sunwoo@arm.com            // We treat the precise & imprecise trapping versions of
5668833Sdam.sunwoo@arm.com            // cvtql identically.
5678833Sdam.sunwoo@arm.com            0x130, 0x530: cvtqlv({{
5684626SN/A                // To avoid overflow, all the upper 32 bits must match
5694626SN/A                // the sign bit of the lower 32.  We code this as
5704626SN/A                // checking the upper 33 bits for all 0s or all 1s.
5714626SN/A                uint64_t sign_bits = Fb.uq<63:31>;
5724626SN/A                if (sign_bits != 0 && sign_bits != mask(33))
5738833Sdam.sunwoo@arm.com                    fault = new IntegerOverflowFault;
5744626SN/A                Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
5754871SN/A            }});
5764871SN/A
5774871SN/A            0x020: cpys({{  // copy sign
5788833Sdam.sunwoo@arm.com                Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
5798833Sdam.sunwoo@arm.com            }});
5808833Sdam.sunwoo@arm.com            0x021: cpysn({{ // copy sign negated
5814626SN/A                Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
5824626SN/A            }});
5834626SN/A            0x022: cpyse({{ // copy sign and exponent
5844626SN/A                Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
5854626SN/A            }});
5864626SN/A
5874626SN/A            0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
5884626SN/A            0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
5894626SN/A            0x02c: fcmovlt({{ Fc = (Fa <  0) ? Fb : Fc; }});
5904626SN/A            0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
5914626SN/A            0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
5924626SN/A            0x02f: fcmovgt({{ Fc = (Fa >  0) ? Fb : Fc; }});
5934626SN/A
5944626SN/A            0x024: mt_fpcr({{ FPCR = Fa.uq; }});
5954626SN/A            0x025: mf_fpcr({{ Fa.uq = FPCR; }});
5964626SN/A        }
5974626SN/A    }
5984626SN/A
5994626SN/A    // miscellaneous mem-format ops
6004626SN/A    0x18: decode MEMFUNC {
6014626SN/A        format WarnUnimpl {
6024626SN/A            0x8000: fetch();
6034626SN/A            0xa000: fetch_m();
6044626SN/A            0xe800: ecb();
6054626SN/A        }
6064626SN/A
6074626SN/A        format MiscPrefetch {
6084626SN/A            0xf800: wh64({{ EA = Rb & ~ULL(63); }},
6094626SN/A                         {{ xc->writeHint(EA, 64, memAccessFlags); }},
6104626SN/A                         mem_flags = NO_FAULT,
6114626SN/A                         inst_flags = [IsMemRef, IsDataPrefetch,
6124626SN/A                                       IsStore, MemWriteOp]);
6134626SN/A        }
6144626SN/A
6154626SN/A        format BasicOperate {
6164626SN/A            0xc000: rpcc({{
6174626SN/A#if FULL_SYSTEM
6184626SN/A        /* Rb is a fake dependency so here is a fun way to get
6194626SN/A         * the parser to understand that.
6204626SN/A         */
6214626SN/A                Ra = xc->readIpr(AlphaISA::IPR_CC, fault) + (Rb & 0);
6224626SN/A
6234626SN/A#else
6244626SN/A                Ra = curTick;
6254626SN/A#endif
6268833Sdam.sunwoo@arm.com            }});
6278833Sdam.sunwoo@arm.com
6288833Sdam.sunwoo@arm.com            // All of the barrier instructions below do nothing in
6298833Sdam.sunwoo@arm.com            // their execute() methods (hence the empty code blocks).
6304626SN/A            // All of their functionality is hard-coded in the
6314626SN/A            // pipeline based on the flags IsSerializing,
6324626SN/A            // IsMemBarrier, and IsWriteBarrier.  In the current
6334626SN/A            // detailed CPU model, the execute() function only gets
6344626SN/A            // called at fetch, so there's no way to generate pipeline
6358833Sdam.sunwoo@arm.com            // behavior at any other stage.  Once we go to an
6364626SN/A            // exec-in-exec CPU model we should be able to get rid of
6374626SN/A            // these flags and implement this behavior via the
6388833Sdam.sunwoo@arm.com            // execute() methods.
6398833Sdam.sunwoo@arm.com
6408833Sdam.sunwoo@arm.com            // trapb is just a barrier on integer traps, where excb is
6414626SN/A            // a barrier on integer and FP traps.  "EXCB is thus a
6424626SN/A            // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
6434626SN/A            // them the same though.
6444626SN/A            0x0000: trapb({{ }}, IsSerializing, No_OpClass);
6458833Sdam.sunwoo@arm.com            0x0400: excb({{ }}, IsSerializing, No_OpClass);
6464626SN/A            0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
6474626SN/A            0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
6488833Sdam.sunwoo@arm.com        }
6498833Sdam.sunwoo@arm.com
6508833Sdam.sunwoo@arm.com#if FULL_SYSTEM
6514626SN/A        format BasicOperate {
6524626SN/A            0xe000: rc({{
6534626SN/A                Ra = xc->readIntrFlag();
6544626SN/A                xc->setIntrFlag(0);
6554626SN/A            }}, IsNonSpeculative);
6564626SN/A            0xf000: rs({{
6574626SN/A                Ra = xc->readIntrFlag();
6584626SN/A                xc->setIntrFlag(1);
6594626SN/A            }}, IsNonSpeculative);
6604626SN/A        }
6614626SN/A#else
6624626SN/A        format FailUnimpl {
6634626SN/A            0xe000: rc();
6648833Sdam.sunwoo@arm.com            0xf000: rs();
6658833Sdam.sunwoo@arm.com        }
6668833Sdam.sunwoo@arm.com#endif
6678833Sdam.sunwoo@arm.com    }
6684626SN/A
6694626SN/A#if FULL_SYSTEM
6704626SN/A    0x00: CallPal::call_pal({{
6714626SN/A        if (!palValid ||
6724626SN/A            (palPriv
6738833Sdam.sunwoo@arm.com             && xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
6744626SN/A            // invalid pal function code, or attempt to do privileged
6754626SN/A            // PAL call in non-kernel mode
6768833Sdam.sunwoo@arm.com            fault = new UnimplementedOpcodeFault;
6778833Sdam.sunwoo@arm.com        }
6788833Sdam.sunwoo@arm.com        else {
6794626SN/A            // check to see if simulator wants to do something special
6804626SN/A            // on this PAL call (including maybe suppress it)
6814626SN/A            bool dopal = xc->simPalCheck(palFunc);
6824626SN/A
6838833Sdam.sunwoo@arm.com            if (dopal) {
6844626SN/A                AlphaISA::swap_palshadow(&xc->xcBase()->regs, true);
6854626SN/A                xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC);
6868833Sdam.sunwoo@arm.com                NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
6878833Sdam.sunwoo@arm.com            }
6888833Sdam.sunwoo@arm.com        }
6894626SN/A    }}, IsNonSpeculative);
6904626SN/A#else
6914626SN/A    0x00: decode PALFUNC {
6924626SN/A        format EmulatedCallPal {
6934626SN/A            0x00: halt ({{
6944626SN/A                SimExit(curTick, "halt instruction encountered");
6954626SN/A            }}, IsNonSpeculative);
6964626SN/A            0x83: callsys({{
6974626SN/A                xc->syscall();
6984626SN/A            }}, IsNonSpeculative);
6994626SN/A            // Read uniq reg into ABI return value register (r0)
7004626SN/A            0x9e: rduniq({{ R0 = Runiq; }});
7014626SN/A            // Write uniq reg with value from ABI arg register (r16)
7028833Sdam.sunwoo@arm.com            0x9f: wruniq({{ Runiq = R16; }});
7038833Sdam.sunwoo@arm.com        }
7048833Sdam.sunwoo@arm.com    }
7058833Sdam.sunwoo@arm.com#endif
7064626SN/A
7074626SN/A#if FULL_SYSTEM
7084626SN/A    format HwLoad {
7094626SN/A        0x1b: decode HW_LDST_QUAD {
7104626SN/A            0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
7118833Sdam.sunwoo@arm.com            1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
7124626SN/A        }
7134626SN/A    }
7148833Sdam.sunwoo@arm.com
7158833Sdam.sunwoo@arm.com    format HwStore {
7168833Sdam.sunwoo@arm.com        0x1f: decode HW_LDST_COND {
7174626SN/A            0: decode HW_LDST_QUAD {
7184626SN/A                0: hw_st({{ EA = (Rb + disp) & ~3; }},
7198833Sdam.sunwoo@arm.com                         {{ Mem.ul = Ra<31:0>; }}, L);
7204626SN/A                1: hw_st({{ EA = (Rb + disp) & ~7; }},
7214626SN/A                         {{ Mem.uq = Ra.uq; }}, Q);
7228833Sdam.sunwoo@arm.com            }
7234626SN/A
7248833Sdam.sunwoo@arm.com            1: FailUnimpl::hw_st_cond();
7258833Sdam.sunwoo@arm.com        }
7268833Sdam.sunwoo@arm.com    }
7274626SN/A
7284626SN/A    format HwMoveIPR {
7294626SN/A        0x19: hw_mfpr({{
7308833Sdam.sunwoo@arm.com            // this instruction is only valid in PAL mode
7314626SN/A            if (!xc->inPalMode()) {
7324626SN/A                fault = new UnimplementedOpcodeFault;
7338833Sdam.sunwoo@arm.com            }
7344626SN/A            else {
7358833Sdam.sunwoo@arm.com                Ra = xc->readIpr(ipr_index, fault);
7368833Sdam.sunwoo@arm.com            }
7378833Sdam.sunwoo@arm.com        }});
7384626SN/A        0x1d: hw_mtpr({{
7394626SN/A            // this instruction is only valid in PAL mode
7404626SN/A            if (!xc->inPalMode()) {
7414626SN/A                fault = new UnimplementedOpcodeFault;
7424626SN/A            }
7434626SN/A            else {
7442810SN/A                xc->setIpr(ipr_index, Ra);
7453503SN/A                if (traceData) { traceData->setData(Ra); }
7463503SN/A            }
7473503SN/A        }});
7483503SN/A    }
7494626SN/A
7504626SN/A    format BasicOperate {
7513503SN/A        0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing);
7524626SN/A
7533503SN/A        // M5 special opcodes use the reserved 0x01 opcode space
7543503SN/A        0x01: decode M5FUNC {
7553503SN/A            0x00: arm({{
7569152Satgutier@umich.edu                AlphaPseudo::arm(xc->xcBase());
7574626SN/A            }}, IsNonSpeculative);
7583503SN/A            0x01: quiesce({{
7593503SN/A                AlphaPseudo::quiesce(xc->xcBase());
7603503SN/A            }}, IsNonSpeculative);
7613503SN/A            0x10: ivlb({{
7623503SN/A                AlphaPseudo::ivlb(xc->xcBase());
763            }}, No_OpClass, IsNonSpeculative);
764            0x11: ivle({{
765                AlphaPseudo::ivle(xc->xcBase());
766            }}, No_OpClass, IsNonSpeculative);
767            0x20: m5exit_old({{
768                AlphaPseudo::m5exit_old(xc->xcBase());
769            }}, No_OpClass, IsNonSpeculative);
770            0x21: m5exit({{
771                AlphaPseudo::m5exit(xc->xcBase(), R16);
772            }}, No_OpClass, IsNonSpeculative);
773            0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }});
774            0x40: resetstats({{
775                AlphaPseudo::resetstats(xc->xcBase(), R16, R17);
776            }}, IsNonSpeculative);
777            0x41: dumpstats({{
778                AlphaPseudo::dumpstats(xc->xcBase(), R16, R17);
779            }}, IsNonSpeculative);
780            0x42: dumpresetstats({{
781                AlphaPseudo::dumpresetstats(xc->xcBase(), R16, R17);
782            }}, IsNonSpeculative);
783            0x43: m5checkpoint({{
784                AlphaPseudo::m5checkpoint(xc->xcBase(), R16, R17);
785            }}, IsNonSpeculative);
786            0x50: m5readfile({{
787                R0 = AlphaPseudo::readfile(xc->xcBase(), R16, R17, R18);
788            }}, IsNonSpeculative);
789            0x51: m5break({{
790                AlphaPseudo::debugbreak(xc->xcBase());
791            }}, IsNonSpeculative);
792            0x52: m5switchcpu({{
793                AlphaPseudo::switchcpu(xc->xcBase());
794            }}, IsNonSpeculative);
795            0x53: m5addsymbol({{
796                AlphaPseudo::addsymbol(xc->xcBase(), R16, R17);
797            }}, IsNonSpeculative);
798
799        }
800    }
801#endif
802}
803