eigen.h revision 12391:ceeca8b41e4b
1/* 2 pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices 3 4 Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> 5 6 All rights reserved. Use of this source code is governed by a 7 BSD-style license that can be found in the LICENSE file. 8*/ 9 10#pragma once 11 12#include "numpy.h" 13 14#if defined(__INTEL_COMPILER) 15# pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) 16#elif defined(__GNUG__) || defined(__clang__) 17# pragma GCC diagnostic push 18# pragma GCC diagnostic ignored "-Wconversion" 19# pragma GCC diagnostic ignored "-Wdeprecated-declarations" 20# if __GNUC__ >= 7 21# pragma GCC diagnostic ignored "-Wint-in-bool-context" 22# endif 23#endif 24 25#include <Eigen/Core> 26#include <Eigen/SparseCore> 27 28#if defined(_MSC_VER) 29# pragma warning(push) 30# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant 31#endif 32 33// Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit 34// move constructors that break things. We could detect this an explicitly copy, but an extra copy 35// of matrices seems highly undesirable. 36static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7"); 37 38NAMESPACE_BEGIN(PYBIND11_NAMESPACE) 39 40// Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides: 41using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>; 42template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>; 43template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>; 44 45NAMESPACE_BEGIN(detail) 46 47#if EIGEN_VERSION_AT_LEAST(3,3,0) 48using EigenIndex = Eigen::Index; 49#else 50using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE; 51#endif 52 53// Matches Eigen::Map, Eigen::Ref, blocks, etc: 54template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>; 55template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>; 56template <typename T> using is_eigen_dense_plain = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>; 57template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>; 58// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This 59// basically covers anything that can be assigned to a dense matrix but that don't have a typical 60// matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and 61// SelfAdjointView fall into this category. 62template <typename T> using is_eigen_other = all_of< 63 is_template_base_of<Eigen::EigenBase, T>, 64 negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>> 65>; 66 67// Captures numpy/eigen conformability status (returned by EigenProps::conformable()): 68template <bool EigenRowMajor> struct EigenConformable { 69 bool conformable = false; 70 EigenIndex rows = 0, cols = 0; 71 EigenDStride stride{0, 0}; // Only valid if negativestrides is false! 72 bool negativestrides = false; // If true, do not use stride! 73 74 EigenConformable(bool fits = false) : conformable{fits} {} 75 // Matrix type: 76 EigenConformable(EigenIndex r, EigenIndex c, 77 EigenIndex rstride, EigenIndex cstride) : 78 conformable{true}, rows{r}, cols{c} { 79 // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747 80 if (rstride < 0 || cstride < 0) { 81 negativestrides = true; 82 } else { 83 stride = {EigenRowMajor ? rstride : cstride /* outer stride */, 84 EigenRowMajor ? cstride : rstride /* inner stride */ }; 85 } 86 } 87 // Vector type: 88 EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride) 89 : EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {} 90 91 template <typename props> bool stride_compatible() const { 92 // To have compatible strides, we need (on both dimensions) one of fully dynamic strides, 93 // matching strides, or a dimension size of 1 (in which case the stride value is irrelevant) 94 return 95 !negativestrides && 96 (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() || 97 (EigenRowMajor ? cols : rows) == 1) && 98 (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() || 99 (EigenRowMajor ? rows : cols) == 1); 100 } 101 operator bool() const { return conformable; } 102}; 103 104template <typename Type> struct eigen_extract_stride { using type = Type; }; 105template <typename PlainObjectType, int MapOptions, typename StrideType> 106struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; }; 107template <typename PlainObjectType, int Options, typename StrideType> 108struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; }; 109 110// Helper struct for extracting information from an Eigen type 111template <typename Type_> struct EigenProps { 112 using Type = Type_; 113 using Scalar = typename Type::Scalar; 114 using StrideType = typename eigen_extract_stride<Type>::type; 115 static constexpr EigenIndex 116 rows = Type::RowsAtCompileTime, 117 cols = Type::ColsAtCompileTime, 118 size = Type::SizeAtCompileTime; 119 static constexpr bool 120 row_major = Type::IsRowMajor, 121 vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1 122 fixed_rows = rows != Eigen::Dynamic, 123 fixed_cols = cols != Eigen::Dynamic, 124 fixed = size != Eigen::Dynamic, // Fully-fixed size 125 dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size 126 127 template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>; 128 static constexpr EigenIndex inner_stride = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value, 129 outer_stride = if_zero<StrideType::OuterStrideAtCompileTime, 130 vector ? size : row_major ? cols : rows>::value; 131 static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic; 132 static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1; 133 static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1; 134 135 // Takes an input array and determines whether we can make it fit into the Eigen type. If 136 // the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector 137 // (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type). 138 static EigenConformable<row_major> conformable(const array &a) { 139 const auto dims = a.ndim(); 140 if (dims < 1 || dims > 2) 141 return false; 142 143 if (dims == 2) { // Matrix type: require exact match (or dynamic) 144 145 EigenIndex 146 np_rows = a.shape(0), 147 np_cols = a.shape(1), 148 np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)), 149 np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar)); 150 if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols)) 151 return false; 152 153 return {np_rows, np_cols, np_rstride, np_cstride}; 154 } 155 156 // Otherwise we're storing an n-vector. Only one of the strides will be used, but whichever 157 // is used, we want the (single) numpy stride value. 158 const EigenIndex n = a.shape(0), 159 stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)); 160 161 if (vector) { // Eigen type is a compile-time vector 162 if (fixed && size != n) 163 return false; // Vector size mismatch 164 return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride}; 165 } 166 else if (fixed) { 167 // The type has a fixed size, but is not a vector: abort 168 return false; 169 } 170 else if (fixed_cols) { 171 // Since this isn't a vector, cols must be != 1. We allow this only if it exactly 172 // equals the number of elements (rows is Dynamic, and so 1 row is allowed). 173 if (cols != n) return false; 174 return {1, n, stride}; 175 } 176 else { 177 // Otherwise it's either fully dynamic, or column dynamic; both become a column vector 178 if (fixed_rows && rows != n) return false; 179 return {n, 1, stride}; 180 } 181 } 182 183 static PYBIND11_DESCR descriptor() { 184 constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value; 185 constexpr bool show_order = is_eigen_dense_map<Type>::value; 186 constexpr bool show_c_contiguous = show_order && requires_row_major; 187 constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major; 188 189 return type_descr(_("numpy.ndarray[") + npy_format_descriptor<Scalar>::name() + 190 _("[") + _<fixed_rows>(_<(size_t) rows>(), _("m")) + 191 _(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) + 192 _("]") + 193 // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be 194 // satisfied: writeable=True (for a mutable reference), and, depending on the map's stride 195 // options, possibly f_contiguous or c_contiguous. We include them in the descriptor output 196 // to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to 197 // see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you 198 // *gave* a numpy.ndarray of the right type and dimensions. 199 _<show_writeable>(", flags.writeable", "") + 200 _<show_c_contiguous>(", flags.c_contiguous", "") + 201 _<show_f_contiguous>(", flags.f_contiguous", "") + 202 _("]") 203 ); 204 } 205}; 206 207// Casts an Eigen type to numpy array. If given a base, the numpy array references the src data, 208// otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array. 209template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) { 210 constexpr ssize_t elem_size = sizeof(typename props::Scalar); 211 array a; 212 if (props::vector) 213 a = array({ src.size() }, { elem_size * src.innerStride() }, src.data(), base); 214 else 215 a = array({ src.rows(), src.cols() }, { elem_size * src.rowStride(), elem_size * src.colStride() }, 216 src.data(), base); 217 218 if (!writeable) 219 array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_; 220 221 return a.release(); 222} 223 224// Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that 225// reference the Eigen object's data with `base` as the python-registered base class (if omitted, 226// the base will be set to None, and lifetime management is up to the caller). The numpy array is 227// non-writeable if the given type is const. 228template <typename props, typename Type> 229handle eigen_ref_array(Type &src, handle parent = none()) { 230 // none here is to get past array's should-we-copy detection, which currently always 231 // copies when there is no base. Setting the base to None should be harmless. 232 return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value); 233} 234 235// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy 236// array that references the encapsulated data with a python-side reference to the capsule to tie 237// its destruction to that of any dependent python objects. Const-ness is determined by whether or 238// not the Type of the pointer given is const. 239template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>> 240handle eigen_encapsulate(Type *src) { 241 capsule base(src, [](void *o) { delete static_cast<Type *>(o); }); 242 return eigen_ref_array<props>(*src, base); 243} 244 245// Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense 246// types. 247template<typename Type> 248struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> { 249 using Scalar = typename Type::Scalar; 250 using props = EigenProps<Type>; 251 252 bool load(handle src, bool convert) { 253 // If we're in no-convert mode, only load if given an array of the correct type 254 if (!convert && !isinstance<array_t<Scalar>>(src)) 255 return false; 256 257 // Coerce into an array, but don't do type conversion yet; the copy below handles it. 258 auto buf = array::ensure(src); 259 260 if (!buf) 261 return false; 262 263 auto dims = buf.ndim(); 264 if (dims < 1 || dims > 2) 265 return false; 266 267 auto fits = props::conformable(buf); 268 if (!fits) 269 return false; 270 271 // Allocate the new type, then build a numpy reference into it 272 value = Type(fits.rows, fits.cols); 273 auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value)); 274 if (dims == 1) ref = ref.squeeze(); 275 276 int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr()); 277 278 if (result < 0) { // Copy failed! 279 PyErr_Clear(); 280 return false; 281 } 282 283 return true; 284 } 285 286private: 287 288 // Cast implementation 289 template <typename CType> 290 static handle cast_impl(CType *src, return_value_policy policy, handle parent) { 291 switch (policy) { 292 case return_value_policy::take_ownership: 293 case return_value_policy::automatic: 294 return eigen_encapsulate<props>(src); 295 case return_value_policy::move: 296 return eigen_encapsulate<props>(new CType(std::move(*src))); 297 case return_value_policy::copy: 298 return eigen_array_cast<props>(*src); 299 case return_value_policy::reference: 300 case return_value_policy::automatic_reference: 301 return eigen_ref_array<props>(*src); 302 case return_value_policy::reference_internal: 303 return eigen_ref_array<props>(*src, parent); 304 default: 305 throw cast_error("unhandled return_value_policy: should not happen!"); 306 }; 307 } 308 309public: 310 311 // Normal returned non-reference, non-const value: 312 static handle cast(Type &&src, return_value_policy /* policy */, handle parent) { 313 return cast_impl(&src, return_value_policy::move, parent); 314 } 315 // If you return a non-reference const, we mark the numpy array readonly: 316 static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) { 317 return cast_impl(&src, return_value_policy::move, parent); 318 } 319 // lvalue reference return; default (automatic) becomes copy 320 static handle cast(Type &src, return_value_policy policy, handle parent) { 321 if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) 322 policy = return_value_policy::copy; 323 return cast_impl(&src, policy, parent); 324 } 325 // const lvalue reference return; default (automatic) becomes copy 326 static handle cast(const Type &src, return_value_policy policy, handle parent) { 327 if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) 328 policy = return_value_policy::copy; 329 return cast(&src, policy, parent); 330 } 331 // non-const pointer return 332 static handle cast(Type *src, return_value_policy policy, handle parent) { 333 return cast_impl(src, policy, parent); 334 } 335 // const pointer return 336 static handle cast(const Type *src, return_value_policy policy, handle parent) { 337 return cast_impl(src, policy, parent); 338 } 339 340 static PYBIND11_DESCR name() { return props::descriptor(); } 341 342 operator Type*() { return &value; } 343 operator Type&() { return value; } 344 operator Type&&() && { return std::move(value); } 345 template <typename T> using cast_op_type = movable_cast_op_type<T>; 346 347private: 348 Type value; 349}; 350 351// Eigen Ref/Map classes have slightly different policy requirements, meaning we don't want to force 352// `move` when a Ref/Map rvalue is returned; we treat Ref<> sort of like a pointer (we care about 353// the underlying data, not the outer shell). 354template <typename Return> 355struct return_value_policy_override<Return, enable_if_t<is_eigen_dense_map<Return>::value>> { 356 static return_value_policy policy(return_value_policy p) { return p; } 357}; 358 359// Base class for casting reference/map/block/etc. objects back to python. 360template <typename MapType> struct eigen_map_caster { 361private: 362 using props = EigenProps<MapType>; 363 364public: 365 366 // Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has 367 // to stay around), but we'll allow it under the assumption that you know what you're doing (and 368 // have an appropriate keep_alive in place). We return a numpy array pointing directly at the 369 // ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note 370 // that this means you need to ensure you don't destroy the object in some other way (e.g. with 371 // an appropriate keep_alive, or with a reference to a statically allocated matrix). 372 static handle cast(const MapType &src, return_value_policy policy, handle parent) { 373 switch (policy) { 374 case return_value_policy::copy: 375 return eigen_array_cast<props>(src); 376 case return_value_policy::reference_internal: 377 return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value); 378 case return_value_policy::reference: 379 case return_value_policy::automatic: 380 case return_value_policy::automatic_reference: 381 return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value); 382 default: 383 // move, take_ownership don't make any sense for a ref/map: 384 pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type"); 385 } 386 } 387 388 static PYBIND11_DESCR name() { return props::descriptor(); } 389 390 // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return 391 // types but not bound arguments). We still provide them (with an explicitly delete) so that 392 // you end up here if you try anyway. 393 bool load(handle, bool) = delete; 394 operator MapType() = delete; 395 template <typename> using cast_op_type = MapType; 396}; 397 398// We can return any map-like object (but can only load Refs, specialized next): 399template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> 400 : eigen_map_caster<Type> {}; 401 402// Loader for Ref<...> arguments. See the documentation for info on how to make this work without 403// copying (it requires some extra effort in many cases). 404template <typename PlainObjectType, typename StrideType> 405struct type_caster< 406 Eigen::Ref<PlainObjectType, 0, StrideType>, 407 enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value> 408> : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> { 409private: 410 using Type = Eigen::Ref<PlainObjectType, 0, StrideType>; 411 using props = EigenProps<Type>; 412 using Scalar = typename props::Scalar; 413 using MapType = Eigen::Map<PlainObjectType, 0, StrideType>; 414 using Array = array_t<Scalar, array::forcecast | 415 ((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style : 416 (props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>; 417 static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value; 418 // Delay construction (these have no default constructor) 419 std::unique_ptr<MapType> map; 420 std::unique_ptr<Type> ref; 421 // Our array. When possible, this is just a numpy array pointing to the source data, but 422 // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible 423 // layout, or is an array of a type that needs to be converted). Using a numpy temporary 424 // (rather than an Eigen temporary) saves an extra copy when we need both type conversion and 425 // storage order conversion. (Note that we refuse to use this temporary copy when loading an 426 // argument for a Ref<M> with M non-const, i.e. a read-write reference). 427 Array copy_or_ref; 428public: 429 bool load(handle src, bool convert) { 430 // First check whether what we have is already an array of the right type. If not, we can't 431 // avoid a copy (because the copy is also going to do type conversion). 432 bool need_copy = !isinstance<Array>(src); 433 434 EigenConformable<props::row_major> fits; 435 if (!need_copy) { 436 // We don't need a converting copy, but we also need to check whether the strides are 437 // compatible with the Ref's stride requirements 438 Array aref = reinterpret_borrow<Array>(src); 439 440 if (aref && (!need_writeable || aref.writeable())) { 441 fits = props::conformable(aref); 442 if (!fits) return false; // Incompatible dimensions 443 if (!fits.template stride_compatible<props>()) 444 need_copy = true; 445 else 446 copy_or_ref = std::move(aref); 447 } 448 else { 449 need_copy = true; 450 } 451 } 452 453 if (need_copy) { 454 // We need to copy: If we need a mutable reference, or we're not supposed to convert 455 // (either because we're in the no-convert overload pass, or because we're explicitly 456 // instructed not to copy (via `py::arg().noconvert()`) we have to fail loading. 457 if (!convert || need_writeable) return false; 458 459 Array copy = Array::ensure(src); 460 if (!copy) return false; 461 fits = props::conformable(copy); 462 if (!fits || !fits.template stride_compatible<props>()) 463 return false; 464 copy_or_ref = std::move(copy); 465 loader_life_support::add_patient(copy_or_ref); 466 } 467 468 ref.reset(); 469 map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner()))); 470 ref.reset(new Type(*map)); 471 472 return true; 473 } 474 475 operator Type*() { return ref.get(); } 476 operator Type&() { return *ref; } 477 template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>; 478 479private: 480 template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0> 481 Scalar *data(Array &a) { return a.mutable_data(); } 482 483 template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0> 484 const Scalar *data(Array &a) { return a.data(); } 485 486 // Attempt to figure out a constructor of `Stride` that will work. 487 // If both strides are fixed, use a default constructor: 488 template <typename S> using stride_ctor_default = bool_constant< 489 S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic && 490 std::is_default_constructible<S>::value>; 491 // Otherwise, if there is a two-index constructor, assume it is (outer,inner) like 492 // Eigen::Stride, and use it: 493 template <typename S> using stride_ctor_dual = bool_constant< 494 !stride_ctor_default<S>::value && std::is_constructible<S, EigenIndex, EigenIndex>::value>; 495 // Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use 496 // it (passing whichever stride is dynamic). 497 template <typename S> using stride_ctor_outer = bool_constant< 498 !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value && 499 S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic && 500 std::is_constructible<S, EigenIndex>::value>; 501 template <typename S> using stride_ctor_inner = bool_constant< 502 !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value && 503 S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic && 504 std::is_constructible<S, EigenIndex>::value>; 505 506 template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0> 507 static S make_stride(EigenIndex, EigenIndex) { return S(); } 508 template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0> 509 static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); } 510 template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0> 511 static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); } 512 template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0> 513 static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); } 514 515}; 516 517// type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not 518// EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout). 519// load() is not supported, but we can cast them into the python domain by first copying to a 520// regular Eigen::Matrix, then casting that. 521template <typename Type> 522struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> { 523protected: 524 using Matrix = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>; 525 using props = EigenProps<Matrix>; 526public: 527 static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { 528 handle h = eigen_encapsulate<props>(new Matrix(src)); 529 return h; 530 } 531 static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); } 532 533 static PYBIND11_DESCR name() { return props::descriptor(); } 534 535 // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return 536 // types but not bound arguments). We still provide them (with an explicitly delete) so that 537 // you end up here if you try anyway. 538 bool load(handle, bool) = delete; 539 operator Type() = delete; 540 template <typename> using cast_op_type = Type; 541}; 542 543template<typename Type> 544struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> { 545 typedef typename Type::Scalar Scalar; 546 typedef remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())> StorageIndex; 547 typedef typename Type::Index Index; 548 static constexpr bool rowMajor = Type::IsRowMajor; 549 550 bool load(handle src, bool) { 551 if (!src) 552 return false; 553 554 auto obj = reinterpret_borrow<object>(src); 555 object sparse_module = module::import("scipy.sparse"); 556 object matrix_type = sparse_module.attr( 557 rowMajor ? "csr_matrix" : "csc_matrix"); 558 559 if (!obj.get_type().is(matrix_type)) { 560 try { 561 obj = matrix_type(obj); 562 } catch (const error_already_set &) { 563 return false; 564 } 565 } 566 567 auto values = array_t<Scalar>((object) obj.attr("data")); 568 auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices")); 569 auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr")); 570 auto shape = pybind11::tuple((pybind11::object) obj.attr("shape")); 571 auto nnz = obj.attr("nnz").cast<Index>(); 572 573 if (!values || !innerIndices || !outerIndices) 574 return false; 575 576 value = Eigen::MappedSparseMatrix<Scalar, Type::Flags, StorageIndex>( 577 shape[0].cast<Index>(), shape[1].cast<Index>(), nnz, 578 outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data()); 579 580 return true; 581 } 582 583 static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { 584 const_cast<Type&>(src).makeCompressed(); 585 586 object matrix_type = module::import("scipy.sparse").attr( 587 rowMajor ? "csr_matrix" : "csc_matrix"); 588 589 array data(src.nonZeros(), src.valuePtr()); 590 array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr()); 591 array innerIndices(src.nonZeros(), src.innerIndexPtr()); 592 593 return matrix_type( 594 std::make_tuple(data, innerIndices, outerIndices), 595 std::make_pair(src.rows(), src.cols()) 596 ).release(); 597 } 598 599 PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[") 600 + npy_format_descriptor<Scalar>::name() + _("]")); 601}; 602 603NAMESPACE_END(detail) 604NAMESPACE_END(PYBIND11_NAMESPACE) 605 606#if defined(__GNUG__) || defined(__clang__) 607# pragma GCC diagnostic pop 608#elif defined(_MSC_VER) 609# pragma warning(pop) 610#endif 611