111986Sandreas.sandberg@arm.comFunctions
211986Sandreas.sandberg@arm.com#########
311986Sandreas.sandberg@arm.com
411986Sandreas.sandberg@arm.comBefore proceeding with this section, make sure that you are already familiar
511986Sandreas.sandberg@arm.comwith the basics of binding functions and classes, as explained in :doc:`/basics`
611986Sandreas.sandberg@arm.comand :doc:`/classes`. The following guide is applicable to both free and member
711986Sandreas.sandberg@arm.comfunctions, i.e. *methods* in Python.
811986Sandreas.sandberg@arm.com
912037Sandreas.sandberg@arm.com.. _return_value_policies:
1012037Sandreas.sandberg@arm.com
1111986Sandreas.sandberg@arm.comReturn value policies
1211986Sandreas.sandberg@arm.com=====================
1311986Sandreas.sandberg@arm.com
1411986Sandreas.sandberg@arm.comPython and C++ use fundamentally different ways of managing the memory and
1511986Sandreas.sandberg@arm.comlifetime of objects managed by them. This can lead to issues when creating
1611986Sandreas.sandberg@arm.combindings for functions that return a non-trivial type. Just by looking at the
1711986Sandreas.sandberg@arm.comtype information, it is not clear whether Python should take charge of the
1811986Sandreas.sandberg@arm.comreturned value and eventually free its resources, or if this is handled on the
1912037Sandreas.sandberg@arm.comC++ side. For this reason, pybind11 provides a several *return value policy*
2011986Sandreas.sandberg@arm.comannotations that can be passed to the :func:`module::def` and
2111986Sandreas.sandberg@arm.com:func:`class_::def` functions. The default policy is
2211986Sandreas.sandberg@arm.com:enum:`return_value_policy::automatic`.
2311986Sandreas.sandberg@arm.com
2411986Sandreas.sandberg@arm.comReturn value policies are tricky, and it's very important to get them right.
2511986Sandreas.sandberg@arm.comJust to illustrate what can go wrong, consider the following simple example:
2611986Sandreas.sandberg@arm.com
2711986Sandreas.sandberg@arm.com.. code-block:: cpp
2811986Sandreas.sandberg@arm.com
2912037Sandreas.sandberg@arm.com    /* Function declaration */
3011986Sandreas.sandberg@arm.com    Data *get_data() { return _data; /* (pointer to a static data structure) */ }
3111986Sandreas.sandberg@arm.com    ...
3211986Sandreas.sandberg@arm.com
3312037Sandreas.sandberg@arm.com    /* Binding code */
3411986Sandreas.sandberg@arm.com    m.def("get_data", &get_data); // <-- KABOOM, will cause crash when called from Python
3511986Sandreas.sandberg@arm.com
3611986Sandreas.sandberg@arm.comWhat's going on here? When ``get_data()`` is called from Python, the return
3711986Sandreas.sandberg@arm.comvalue (a native C++ type) must be wrapped to turn it into a usable Python type.
3811986Sandreas.sandberg@arm.comIn this case, the default return value policy (:enum:`return_value_policy::automatic`)
3911986Sandreas.sandberg@arm.comcauses pybind11 to assume ownership of the static ``_data`` instance.
4011986Sandreas.sandberg@arm.com
4111986Sandreas.sandberg@arm.comWhen Python's garbage collector eventually deletes the Python
4211986Sandreas.sandberg@arm.comwrapper, pybind11 will also attempt to delete the C++ instance (via ``operator
4311986Sandreas.sandberg@arm.comdelete()``) due to the implied ownership. At this point, the entire application
4411986Sandreas.sandberg@arm.comwill come crashing down, though errors could also be more subtle and involve
4511986Sandreas.sandberg@arm.comsilent data corruption.
4611986Sandreas.sandberg@arm.com
4711986Sandreas.sandberg@arm.comIn the above example, the policy :enum:`return_value_policy::reference` should have
4811986Sandreas.sandberg@arm.combeen specified so that the global data instance is only *referenced* without any
4912037Sandreas.sandberg@arm.comimplied transfer of ownership, i.e.:
5011986Sandreas.sandberg@arm.com
5111986Sandreas.sandberg@arm.com.. code-block:: cpp
5211986Sandreas.sandberg@arm.com
5311986Sandreas.sandberg@arm.com    m.def("get_data", &get_data, return_value_policy::reference);
5411986Sandreas.sandberg@arm.com
5511986Sandreas.sandberg@arm.comOn the other hand, this is not the right policy for many other situations,
5611986Sandreas.sandberg@arm.comwhere ignoring ownership could lead to resource leaks.
5711986Sandreas.sandberg@arm.comAs a developer using pybind11, it's important to be familiar with the different
5811986Sandreas.sandberg@arm.comreturn value policies, including which situation calls for which one of them.
5911986Sandreas.sandberg@arm.comThe following table provides an overview of available policies:
6011986Sandreas.sandberg@arm.com
6111986Sandreas.sandberg@arm.com.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
6211986Sandreas.sandberg@arm.com
6311986Sandreas.sandberg@arm.com+--------------------------------------------------+----------------------------------------------------------------------------+
6411986Sandreas.sandberg@arm.com| Return value policy                              | Description                                                                |
6511986Sandreas.sandberg@arm.com+==================================================+============================================================================+
6611986Sandreas.sandberg@arm.com| :enum:`return_value_policy::take_ownership`      | Reference an existing object (i.e. do not create a new copy) and take      |
6711986Sandreas.sandberg@arm.com|                                                  | ownership. Python will call the destructor and delete operator when the    |
6811986Sandreas.sandberg@arm.com|                                                  | object's reference count reaches zero. Undefined behavior ensues when the  |
6911986Sandreas.sandberg@arm.com|                                                  | C++ side does the same, or when the data was not dynamically allocated.    |
7011986Sandreas.sandberg@arm.com+--------------------------------------------------+----------------------------------------------------------------------------+
7111986Sandreas.sandberg@arm.com| :enum:`return_value_policy::copy`                | Create a new copy of the returned object, which will be owned by Python.   |
7211986Sandreas.sandberg@arm.com|                                                  | This policy is comparably safe because the lifetimes of the two instances  |
7311986Sandreas.sandberg@arm.com|                                                  | are decoupled.                                                             |
7411986Sandreas.sandberg@arm.com+--------------------------------------------------+----------------------------------------------------------------------------+
7511986Sandreas.sandberg@arm.com| :enum:`return_value_policy::move`                | Use ``std::move`` to move the return value contents into a new instance    |
7611986Sandreas.sandberg@arm.com|                                                  | that will be owned by Python. This policy is comparably safe because the   |
7711986Sandreas.sandberg@arm.com|                                                  | lifetimes of the two instances (move source and destination) are decoupled.|
7811986Sandreas.sandberg@arm.com+--------------------------------------------------+----------------------------------------------------------------------------+
7911986Sandreas.sandberg@arm.com| :enum:`return_value_policy::reference`           | Reference an existing object, but do not take ownership. The C++ side is   |
8011986Sandreas.sandberg@arm.com|                                                  | responsible for managing the object's lifetime and deallocating it when    |
8111986Sandreas.sandberg@arm.com|                                                  | it is no longer used. Warning: undefined behavior will ensue when the C++  |
8211986Sandreas.sandberg@arm.com|                                                  | side deletes an object that is still referenced and used by Python.        |
8311986Sandreas.sandberg@arm.com+--------------------------------------------------+----------------------------------------------------------------------------+
8411986Sandreas.sandberg@arm.com| :enum:`return_value_policy::reference_internal`  | Indicates that the lifetime of the return value is tied to the lifetime    |
8511986Sandreas.sandberg@arm.com|                                                  | of a parent object, namely the implicit ``this``, or ``self`` argument of  |
8611986Sandreas.sandberg@arm.com|                                                  | the called method or property. Internally, this policy works just like     |
8711986Sandreas.sandberg@arm.com|                                                  | :enum:`return_value_policy::reference` but additionally applies a          |
8811986Sandreas.sandberg@arm.com|                                                  | ``keep_alive<0, 1>`` *call policy* (described in the next section) that    |
8911986Sandreas.sandberg@arm.com|                                                  | prevents the parent object from being garbage collected as long as the     |
9011986Sandreas.sandberg@arm.com|                                                  | return value is referenced by Python. This is the default policy for       |
9111986Sandreas.sandberg@arm.com|                                                  | property getters created via ``def_property``, ``def_readwrite``, etc.     |
9211986Sandreas.sandberg@arm.com+--------------------------------------------------+----------------------------------------------------------------------------+
9312037Sandreas.sandberg@arm.com| :enum:`return_value_policy::automatic`           | **Default policy.** This policy falls back to the policy                   |
9411986Sandreas.sandberg@arm.com|                                                  | :enum:`return_value_policy::take_ownership` when the return value is a     |
9512037Sandreas.sandberg@arm.com|                                                  | pointer. Otherwise, it uses :enum:`return_value_policy::move` or           |
9612037Sandreas.sandberg@arm.com|                                                  | :enum:`return_value_policy::copy` for rvalue and lvalue references,        |
9712037Sandreas.sandberg@arm.com|                                                  | respectively. See above for a description of what all of these different   |
9812037Sandreas.sandberg@arm.com|                                                  | policies do.                                                               |
9911986Sandreas.sandberg@arm.com+--------------------------------------------------+----------------------------------------------------------------------------+
10011986Sandreas.sandberg@arm.com| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the   |
10111986Sandreas.sandberg@arm.com|                                                  | return value is a pointer. This is the default conversion policy for       |
10211986Sandreas.sandberg@arm.com|                                                  | function arguments when calling Python functions manually from C++ code    |
10311986Sandreas.sandberg@arm.com|                                                  | (i.e. via handle::operator()). You probably won't need to use this.        |
10411986Sandreas.sandberg@arm.com+--------------------------------------------------+----------------------------------------------------------------------------+
10511986Sandreas.sandberg@arm.com
10611986Sandreas.sandberg@arm.comReturn value policies can also be applied to properties:
10711986Sandreas.sandberg@arm.com
10811986Sandreas.sandberg@arm.com.. code-block:: cpp
10911986Sandreas.sandberg@arm.com
11011986Sandreas.sandberg@arm.com    class_<MyClass>(m, "MyClass")
11111986Sandreas.sandberg@arm.com        .def_property("data", &MyClass::getData, &MyClass::setData,
11211986Sandreas.sandberg@arm.com                      py::return_value_policy::copy);
11311986Sandreas.sandberg@arm.com
11411986Sandreas.sandberg@arm.comTechnically, the code above applies the policy to both the getter and the
11511986Sandreas.sandberg@arm.comsetter function, however, the setter doesn't really care about *return*
11611986Sandreas.sandberg@arm.comvalue policies which makes this a convenient terse syntax. Alternatively,
11711986Sandreas.sandberg@arm.comtargeted arguments can be passed through the :class:`cpp_function` constructor:
11811986Sandreas.sandberg@arm.com
11911986Sandreas.sandberg@arm.com.. code-block:: cpp
12011986Sandreas.sandberg@arm.com
12111986Sandreas.sandberg@arm.com    class_<MyClass>(m, "MyClass")
12211986Sandreas.sandberg@arm.com        .def_property("data"
12311986Sandreas.sandberg@arm.com            py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
12411986Sandreas.sandberg@arm.com            py::cpp_function(&MyClass::setData)
12511986Sandreas.sandberg@arm.com        );
12611986Sandreas.sandberg@arm.com
12711986Sandreas.sandberg@arm.com.. warning::
12811986Sandreas.sandberg@arm.com
12914299Sbbruce@ucdavis.edu    Code with invalid return value policies might access uninitialized memory or
13011986Sandreas.sandberg@arm.com    free data structures multiple times, which can lead to hard-to-debug
13111986Sandreas.sandberg@arm.com    non-determinism and segmentation faults, hence it is worth spending the
13211986Sandreas.sandberg@arm.com    time to understand all the different options in the table above.
13311986Sandreas.sandberg@arm.com
13411986Sandreas.sandberg@arm.com.. note::
13511986Sandreas.sandberg@arm.com
13611986Sandreas.sandberg@arm.com    One important aspect of the above policies is that they only apply to
13711986Sandreas.sandberg@arm.com    instances which pybind11 has *not* seen before, in which case the policy
13811986Sandreas.sandberg@arm.com    clarifies essential questions about the return value's lifetime and
13911986Sandreas.sandberg@arm.com    ownership.  When pybind11 knows the instance already (as identified by its
14011986Sandreas.sandberg@arm.com    type and address in memory), it will return the existing Python object
14111986Sandreas.sandberg@arm.com    wrapper rather than creating a new copy.
14211986Sandreas.sandberg@arm.com
14311986Sandreas.sandberg@arm.com.. note::
14411986Sandreas.sandberg@arm.com
14511986Sandreas.sandberg@arm.com    The next section on :ref:`call_policies` discusses *call policies* that can be
14611986Sandreas.sandberg@arm.com    specified *in addition* to a return value policy from the list above. Call
14711986Sandreas.sandberg@arm.com    policies indicate reference relationships that can involve both return values
14811986Sandreas.sandberg@arm.com    and parameters of functions.
14911986Sandreas.sandberg@arm.com
15011986Sandreas.sandberg@arm.com.. note::
15111986Sandreas.sandberg@arm.com
15211986Sandreas.sandberg@arm.com   As an alternative to elaborate call policies and lifetime management logic,
15311986Sandreas.sandberg@arm.com   consider using smart pointers (see the section on :ref:`smart_pointers` for
15411986Sandreas.sandberg@arm.com   details). Smart pointers can tell whether an object is still referenced from
15511986Sandreas.sandberg@arm.com   C++ or Python, which generally eliminates the kinds of inconsistencies that
15611986Sandreas.sandberg@arm.com   can lead to crashes or undefined behavior. For functions returning smart
15711986Sandreas.sandberg@arm.com   pointers, it is not necessary to specify a return value policy.
15811986Sandreas.sandberg@arm.com
15911986Sandreas.sandberg@arm.com.. _call_policies:
16011986Sandreas.sandberg@arm.com
16111986Sandreas.sandberg@arm.comAdditional call policies
16211986Sandreas.sandberg@arm.com========================
16311986Sandreas.sandberg@arm.com
16412037Sandreas.sandberg@arm.comIn addition to the above return value policies, further *call policies* can be
16512391Sjason@lowepower.comspecified to indicate dependencies between parameters or ensure a certain state
16612391Sjason@lowepower.comfor the function call.
16712037Sandreas.sandberg@arm.com
16812391Sjason@lowepower.comKeep alive
16912391Sjason@lowepower.com----------
17012391Sjason@lowepower.com
17112391Sjason@lowepower.comIn general, this policy is required when the C++ object is any kind of container
17212391Sjason@lowepower.comand another object is being added to the container. ``keep_alive<Nurse, Patient>``
17312391Sjason@lowepower.comindicates that the argument with index ``Patient`` should be kept alive at least
17412391Sjason@lowepower.comuntil the argument with index ``Nurse`` is freed by the garbage collector. Argument
17511986Sandreas.sandberg@arm.comindices start at one, while zero refers to the return value. For methods, index
17611986Sandreas.sandberg@arm.com``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
17711986Sandreas.sandberg@arm.comindex ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
17811986Sandreas.sandberg@arm.comwith value ``None`` is detected at runtime, the call policy does nothing.
17911986Sandreas.sandberg@arm.com
18012391Sjason@lowepower.comWhen the nurse is not a pybind11-registered type, the implementation internally
18112391Sjason@lowepower.comrelies on the ability to create a *weak reference* to the nurse object. When
18212391Sjason@lowepower.comthe nurse object is not a pybind11-registered type and does not support weak
18312391Sjason@lowepower.comreferences, an exception will be thrown.
18411986Sandreas.sandberg@arm.com
18511986Sandreas.sandberg@arm.comConsider the following example: here, the binding code for a list append
18611986Sandreas.sandberg@arm.comoperation ties the lifetime of the newly added element to the underlying
18711986Sandreas.sandberg@arm.comcontainer:
18811986Sandreas.sandberg@arm.com
18911986Sandreas.sandberg@arm.com.. code-block:: cpp
19011986Sandreas.sandberg@arm.com
19111986Sandreas.sandberg@arm.com    py::class_<List>(m, "List")
19211986Sandreas.sandberg@arm.com        .def("append", &List::append, py::keep_alive<1, 2>());
19311986Sandreas.sandberg@arm.com
19412391Sjason@lowepower.comFor consistency, the argument indexing is identical for constructors. Index
19512391Sjason@lowepower.com``1`` still refers to the implicit ``this`` pointer, i.e. the object which is
19612391Sjason@lowepower.combeing constructed. Index ``0`` refers to the return type which is presumed to
19712391Sjason@lowepower.combe ``void`` when a constructor is viewed like a function. The following example
19812391Sjason@lowepower.comties the lifetime of the constructor element to the constructed object:
19912391Sjason@lowepower.com
20012391Sjason@lowepower.com.. code-block:: cpp
20112391Sjason@lowepower.com
20212391Sjason@lowepower.com    py::class_<Nurse>(m, "Nurse")
20312391Sjason@lowepower.com        .def(py::init<Patient &>(), py::keep_alive<1, 2>());
20412391Sjason@lowepower.com
20511986Sandreas.sandberg@arm.com.. note::
20611986Sandreas.sandberg@arm.com
20711986Sandreas.sandberg@arm.com    ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
20811986Sandreas.sandberg@arm.com    Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
20911986Sandreas.sandberg@arm.com    0) policies from Boost.Python.
21011986Sandreas.sandberg@arm.com
21112391Sjason@lowepower.comCall guard
21212391Sjason@lowepower.com----------
21312391Sjason@lowepower.com
21412391Sjason@lowepower.comThe ``call_guard<T>`` policy allows any scope guard type ``T`` to be placed
21512391Sjason@lowepower.comaround the function call. For example, this definition:
21612391Sjason@lowepower.com
21712391Sjason@lowepower.com.. code-block:: cpp
21812391Sjason@lowepower.com
21912391Sjason@lowepower.com    m.def("foo", foo, py::call_guard<T>());
22012391Sjason@lowepower.com
22112391Sjason@lowepower.comis equivalent to the following pseudocode:
22212391Sjason@lowepower.com
22312391Sjason@lowepower.com.. code-block:: cpp
22412391Sjason@lowepower.com
22512391Sjason@lowepower.com    m.def("foo", [](args...) {
22612391Sjason@lowepower.com        T scope_guard;
22712391Sjason@lowepower.com        return foo(args...); // forwarded arguments
22812391Sjason@lowepower.com    });
22912391Sjason@lowepower.com
23012391Sjason@lowepower.comThe only requirement is that ``T`` is default-constructible, but otherwise any
23112391Sjason@lowepower.comscope guard will work. This is very useful in combination with `gil_scoped_release`.
23212391Sjason@lowepower.comSee :ref:`gil`.
23312391Sjason@lowepower.com
23412391Sjason@lowepower.comMultiple guards can also be specified as ``py::call_guard<T1, T2, T3...>``. The
23512391Sjason@lowepower.comconstructor order is left to right and destruction happens in reverse.
23612391Sjason@lowepower.com
23711986Sandreas.sandberg@arm.com.. seealso::
23811986Sandreas.sandberg@arm.com
23912391Sjason@lowepower.com    The file :file:`tests/test_call_policies.cpp` contains a complete example
24012391Sjason@lowepower.com    that demonstrates using `keep_alive` and `call_guard` in more detail.
24111986Sandreas.sandberg@arm.com
24211986Sandreas.sandberg@arm.com.. _python_objects_as_args:
24311986Sandreas.sandberg@arm.com
24411986Sandreas.sandberg@arm.comPython objects as arguments
24511986Sandreas.sandberg@arm.com===========================
24611986Sandreas.sandberg@arm.com
24711986Sandreas.sandberg@arm.compybind11 exposes all major Python types using thin C++ wrapper classes. These
24811986Sandreas.sandberg@arm.comwrapper classes can also be used as parameters of functions in bindings, which
24911986Sandreas.sandberg@arm.commakes it possible to directly work with native Python types on the C++ side.
25011986Sandreas.sandberg@arm.comFor instance, the following statement iterates over a Python ``dict``:
25111986Sandreas.sandberg@arm.com
25211986Sandreas.sandberg@arm.com.. code-block:: cpp
25311986Sandreas.sandberg@arm.com
25411986Sandreas.sandberg@arm.com    void print_dict(py::dict dict) {
25511986Sandreas.sandberg@arm.com        /* Easily interact with Python types */
25611986Sandreas.sandberg@arm.com        for (auto item : dict)
25712037Sandreas.sandberg@arm.com            std::cout << "key=" << std::string(py::str(item.first)) << ", "
25812037Sandreas.sandberg@arm.com                      << "value=" << std::string(py::str(item.second)) << std::endl;
25911986Sandreas.sandberg@arm.com    }
26011986Sandreas.sandberg@arm.com
26111986Sandreas.sandberg@arm.comIt can be exported:
26211986Sandreas.sandberg@arm.com
26311986Sandreas.sandberg@arm.com.. code-block:: cpp
26411986Sandreas.sandberg@arm.com
26511986Sandreas.sandberg@arm.com    m.def("print_dict", &print_dict);
26611986Sandreas.sandberg@arm.com
26711986Sandreas.sandberg@arm.comAnd used in Python as usual:
26811986Sandreas.sandberg@arm.com
26911986Sandreas.sandberg@arm.com.. code-block:: pycon
27011986Sandreas.sandberg@arm.com
27111986Sandreas.sandberg@arm.com    >>> print_dict({'foo': 123, 'bar': 'hello'})
27211986Sandreas.sandberg@arm.com    key=foo, value=123
27311986Sandreas.sandberg@arm.com    key=bar, value=hello
27411986Sandreas.sandberg@arm.com
27511986Sandreas.sandberg@arm.comFor more information on using Python objects in C++, see :doc:`/advanced/pycpp/index`.
27611986Sandreas.sandberg@arm.com
27711986Sandreas.sandberg@arm.comAccepting \*args and \*\*kwargs
27811986Sandreas.sandberg@arm.com===============================
27911986Sandreas.sandberg@arm.com
28011986Sandreas.sandberg@arm.comPython provides a useful mechanism to define functions that accept arbitrary
28111986Sandreas.sandberg@arm.comnumbers of arguments and keyword arguments:
28211986Sandreas.sandberg@arm.com
28311986Sandreas.sandberg@arm.com.. code-block:: python
28411986Sandreas.sandberg@arm.com
28511986Sandreas.sandberg@arm.com   def generic(*args, **kwargs):
28611986Sandreas.sandberg@arm.com       ...  # do something with args and kwargs
28711986Sandreas.sandberg@arm.com
28811986Sandreas.sandberg@arm.comSuch functions can also be created using pybind11:
28911986Sandreas.sandberg@arm.com
29011986Sandreas.sandberg@arm.com.. code-block:: cpp
29111986Sandreas.sandberg@arm.com
29211986Sandreas.sandberg@arm.com   void generic(py::args args, py::kwargs kwargs) {
29311986Sandreas.sandberg@arm.com       /// .. do something with args
29411986Sandreas.sandberg@arm.com       if (kwargs)
29511986Sandreas.sandberg@arm.com           /// .. do something with kwargs
29611986Sandreas.sandberg@arm.com   }
29711986Sandreas.sandberg@arm.com
29811986Sandreas.sandberg@arm.com   /// Binding code
29911986Sandreas.sandberg@arm.com   m.def("generic", &generic);
30011986Sandreas.sandberg@arm.com
30111986Sandreas.sandberg@arm.comThe class ``py::args`` derives from ``py::tuple`` and ``py::kwargs`` derives
30212037Sandreas.sandberg@arm.comfrom ``py::dict``.
30311986Sandreas.sandberg@arm.com
30412037Sandreas.sandberg@arm.comYou may also use just one or the other, and may combine these with other
30512037Sandreas.sandberg@arm.comarguments as long as the ``py::args`` and ``py::kwargs`` arguments are the last
30612037Sandreas.sandberg@arm.comarguments accepted by the function.
30711986Sandreas.sandberg@arm.com
30812037Sandreas.sandberg@arm.comPlease refer to the other examples for details on how to iterate over these,
30912037Sandreas.sandberg@arm.comand on how to cast their entries into C++ objects. A demonstration is also
31012037Sandreas.sandberg@arm.comavailable in ``tests/test_kwargs_and_defaults.cpp``.
31112037Sandreas.sandberg@arm.com
31212037Sandreas.sandberg@arm.com.. note::
31312037Sandreas.sandberg@arm.com
31412037Sandreas.sandberg@arm.com    When combining \*args or \*\*kwargs with :ref:`keyword_args` you should
31512037Sandreas.sandberg@arm.com    *not* include ``py::arg`` tags for the ``py::args`` and ``py::kwargs``
31612037Sandreas.sandberg@arm.com    arguments.
31711986Sandreas.sandberg@arm.com
31811986Sandreas.sandberg@arm.comDefault arguments revisited
31911986Sandreas.sandberg@arm.com===========================
32011986Sandreas.sandberg@arm.com
32111986Sandreas.sandberg@arm.comThe section on :ref:`default_args` previously discussed basic usage of default
32211986Sandreas.sandberg@arm.comarguments using pybind11. One noteworthy aspect of their implementation is that
32311986Sandreas.sandberg@arm.comdefault arguments are converted to Python objects right at declaration time.
32411986Sandreas.sandberg@arm.comConsider the following example:
32511986Sandreas.sandberg@arm.com
32611986Sandreas.sandberg@arm.com.. code-block:: cpp
32711986Sandreas.sandberg@arm.com
32811986Sandreas.sandberg@arm.com    py::class_<MyClass>("MyClass")
32911986Sandreas.sandberg@arm.com        .def("myFunction", py::arg("arg") = SomeType(123));
33011986Sandreas.sandberg@arm.com
33111986Sandreas.sandberg@arm.comIn this case, pybind11 must already be set up to deal with values of the type
33211986Sandreas.sandberg@arm.com``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
33311986Sandreas.sandberg@arm.comexception will be thrown.
33411986Sandreas.sandberg@arm.com
33511986Sandreas.sandberg@arm.comAnother aspect worth highlighting is that the "preview" of the default argument
33611986Sandreas.sandberg@arm.comin the function signature is generated using the object's ``__repr__`` method.
33711986Sandreas.sandberg@arm.comIf not available, the signature may not be very helpful, e.g.:
33811986Sandreas.sandberg@arm.com
33911986Sandreas.sandberg@arm.com.. code-block:: pycon
34011986Sandreas.sandberg@arm.com
34111986Sandreas.sandberg@arm.com    FUNCTIONS
34211986Sandreas.sandberg@arm.com    ...
34311986Sandreas.sandberg@arm.com    |  myFunction(...)
34411986Sandreas.sandberg@arm.com    |      Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
34511986Sandreas.sandberg@arm.com    ...
34611986Sandreas.sandberg@arm.com
34711986Sandreas.sandberg@arm.comThe first way of addressing this is by defining ``SomeType.__repr__``.
34811986Sandreas.sandberg@arm.comAlternatively, it is possible to specify the human-readable preview of the
34911986Sandreas.sandberg@arm.comdefault argument manually using the ``arg_v`` notation:
35011986Sandreas.sandberg@arm.com
35111986Sandreas.sandberg@arm.com.. code-block:: cpp
35211986Sandreas.sandberg@arm.com
35311986Sandreas.sandberg@arm.com    py::class_<MyClass>("MyClass")
35411986Sandreas.sandberg@arm.com        .def("myFunction", py::arg_v("arg", SomeType(123), "SomeType(123)"));
35511986Sandreas.sandberg@arm.com
35611986Sandreas.sandberg@arm.comSometimes it may be necessary to pass a null pointer value as a default
35711986Sandreas.sandberg@arm.comargument. In this case, remember to cast it to the underlying type in question,
35811986Sandreas.sandberg@arm.comlike so:
35911986Sandreas.sandberg@arm.com
36011986Sandreas.sandberg@arm.com.. code-block:: cpp
36111986Sandreas.sandberg@arm.com
36211986Sandreas.sandberg@arm.com    py::class_<MyClass>("MyClass")
36311986Sandreas.sandberg@arm.com        .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
36412037Sandreas.sandberg@arm.com
36512037Sandreas.sandberg@arm.com.. _nonconverting_arguments:
36612037Sandreas.sandberg@arm.com
36712037Sandreas.sandberg@arm.comNon-converting arguments
36812037Sandreas.sandberg@arm.com========================
36912037Sandreas.sandberg@arm.com
37012037Sandreas.sandberg@arm.comCertain argument types may support conversion from one type to another.  Some
37112037Sandreas.sandberg@arm.comexamples of conversions are:
37212037Sandreas.sandberg@arm.com
37312037Sandreas.sandberg@arm.com* :ref:`implicit_conversions` declared using ``py::implicitly_convertible<A,B>()``
37412037Sandreas.sandberg@arm.com* Calling a method accepting a double with an integer argument
37512037Sandreas.sandberg@arm.com* Calling a ``std::complex<float>`` argument with a non-complex python type
37612037Sandreas.sandberg@arm.com  (for example, with a float).  (Requires the optional ``pybind11/complex.h``
37712037Sandreas.sandberg@arm.com  header).
37812037Sandreas.sandberg@arm.com* Calling a function taking an Eigen matrix reference with a numpy array of the
37912037Sandreas.sandberg@arm.com  wrong type or of an incompatible data layout.  (Requires the optional
38012037Sandreas.sandberg@arm.com  ``pybind11/eigen.h`` header).
38112037Sandreas.sandberg@arm.com
38212037Sandreas.sandberg@arm.comThis behaviour is sometimes undesirable: the binding code may prefer to raise
38312037Sandreas.sandberg@arm.coman error rather than convert the argument.  This behaviour can be obtained
38412037Sandreas.sandberg@arm.comthrough ``py::arg`` by calling the ``.noconvert()`` method of the ``py::arg``
38512037Sandreas.sandberg@arm.comobject, such as:
38612037Sandreas.sandberg@arm.com
38712037Sandreas.sandberg@arm.com.. code-block:: cpp
38812037Sandreas.sandberg@arm.com
38912037Sandreas.sandberg@arm.com    m.def("floats_only", [](double f) { return 0.5 * f; }, py::arg("f").noconvert());
39012037Sandreas.sandberg@arm.com    m.def("floats_preferred", [](double f) { return 0.5 * f; }, py::arg("f"));
39112037Sandreas.sandberg@arm.com
39212037Sandreas.sandberg@arm.comAttempting the call the second function (the one without ``.noconvert()``) with
39312037Sandreas.sandberg@arm.coman integer will succeed, but attempting to call the ``.noconvert()`` version
39412037Sandreas.sandberg@arm.comwill fail with a ``TypeError``:
39512037Sandreas.sandberg@arm.com
39612037Sandreas.sandberg@arm.com.. code-block:: pycon
39712037Sandreas.sandberg@arm.com
39812037Sandreas.sandberg@arm.com    >>> floats_preferred(4)
39912037Sandreas.sandberg@arm.com    2.0
40012037Sandreas.sandberg@arm.com    >>> floats_only(4)
40112037Sandreas.sandberg@arm.com    Traceback (most recent call last):
40212037Sandreas.sandberg@arm.com      File "<stdin>", line 1, in <module>
40312037Sandreas.sandberg@arm.com    TypeError: floats_only(): incompatible function arguments. The following argument types are supported:
40412037Sandreas.sandberg@arm.com        1. (f: float) -> float
40512037Sandreas.sandberg@arm.com
40612037Sandreas.sandberg@arm.com    Invoked with: 4
40712037Sandreas.sandberg@arm.com
40812037Sandreas.sandberg@arm.comYou may, of course, combine this with the :var:`_a` shorthand notation (see
40912037Sandreas.sandberg@arm.com:ref:`keyword_args`) and/or :ref:`default_args`.  It is also permitted to omit
41012037Sandreas.sandberg@arm.comthe argument name by using the ``py::arg()`` constructor without an argument
41112037Sandreas.sandberg@arm.comname, i.e. by specifying ``py::arg().noconvert()``.
41212037Sandreas.sandberg@arm.com
41312037Sandreas.sandberg@arm.com.. note::
41412037Sandreas.sandberg@arm.com
41512037Sandreas.sandberg@arm.com    When specifying ``py::arg`` options it is necessary to provide the same
41612037Sandreas.sandberg@arm.com    number of options as the bound function has arguments.  Thus if you want to
41712037Sandreas.sandberg@arm.com    enable no-convert behaviour for just one of several arguments, you will
41812037Sandreas.sandberg@arm.com    need to specify a ``py::arg()`` annotation for each argument with the
41912037Sandreas.sandberg@arm.com    no-convert argument modified to ``py::arg().noconvert()``.
42012037Sandreas.sandberg@arm.com
42112391Sjason@lowepower.com.. _none_arguments:
42212391Sjason@lowepower.com
42312391Sjason@lowepower.comAllow/Prohibiting None arguments
42412391Sjason@lowepower.com================================
42512391Sjason@lowepower.com
42612391Sjason@lowepower.comWhen a C++ type registered with :class:`py::class_` is passed as an argument to
42712391Sjason@lowepower.coma function taking the instance as pointer or shared holder (e.g. ``shared_ptr``
42812391Sjason@lowepower.comor a custom, copyable holder as described in :ref:`smart_pointers`), pybind
42912391Sjason@lowepower.comallows ``None`` to be passed from Python which results in calling the C++
43012391Sjason@lowepower.comfunction with ``nullptr`` (or an empty holder) for the argument.
43112391Sjason@lowepower.com
43212391Sjason@lowepower.comTo explicitly enable or disable this behaviour, using the
43312391Sjason@lowepower.com``.none`` method of the :class:`py::arg` object:
43412391Sjason@lowepower.com
43512391Sjason@lowepower.com.. code-block:: cpp
43612391Sjason@lowepower.com
43712391Sjason@lowepower.com    py::class_<Dog>(m, "Dog").def(py::init<>());
43812391Sjason@lowepower.com    py::class_<Cat>(m, "Cat").def(py::init<>());
43912391Sjason@lowepower.com    m.def("bark", [](Dog *dog) -> std::string {
44012391Sjason@lowepower.com        if (dog) return "woof!"; /* Called with a Dog instance */
44114299Sbbruce@ucdavis.edu        else return "(no dog)"; /* Called with None, dog == nullptr */
44212391Sjason@lowepower.com    }, py::arg("dog").none(true));
44312391Sjason@lowepower.com    m.def("meow", [](Cat *cat) -> std::string {
44412391Sjason@lowepower.com        // Can't be called with None argument
44512391Sjason@lowepower.com        return "meow";
44612391Sjason@lowepower.com    }, py::arg("cat").none(false));
44712391Sjason@lowepower.com
44812391Sjason@lowepower.comWith the above, the Python call ``bark(None)`` will return the string ``"(no
44912391Sjason@lowepower.comdog)"``, while attempting to call ``meow(None)`` will raise a ``TypeError``:
45012391Sjason@lowepower.com
45112391Sjason@lowepower.com.. code-block:: pycon
45212391Sjason@lowepower.com
45312391Sjason@lowepower.com    >>> from animals import Dog, Cat, bark, meow
45412391Sjason@lowepower.com    >>> bark(Dog())
45512391Sjason@lowepower.com    'woof!'
45612391Sjason@lowepower.com    >>> meow(Cat())
45712391Sjason@lowepower.com    'meow'
45812391Sjason@lowepower.com    >>> bark(None)
45912391Sjason@lowepower.com    '(no dog)'
46012391Sjason@lowepower.com    >>> meow(None)
46112391Sjason@lowepower.com    Traceback (most recent call last):
46212391Sjason@lowepower.com      File "<stdin>", line 1, in <module>
46312391Sjason@lowepower.com    TypeError: meow(): incompatible function arguments. The following argument types are supported:
46412391Sjason@lowepower.com        1. (cat: animals.Cat) -> str
46512391Sjason@lowepower.com
46612391Sjason@lowepower.com    Invoked with: None
46712391Sjason@lowepower.com
46812391Sjason@lowepower.comThe default behaviour when the tag is unspecified is to allow ``None``.
46912391Sjason@lowepower.com
47014299Sbbruce@ucdavis.edu.. note::
47114299Sbbruce@ucdavis.edu
47214299Sbbruce@ucdavis.edu    Even when ``.none(true)`` is specified for an argument, ``None`` will be converted to a
47314299Sbbruce@ucdavis.edu    ``nullptr`` *only* for custom and :ref:`opaque <opaque>` types. Pointers to built-in types
47414299Sbbruce@ucdavis.edu    (``double *``, ``int *``, ...) and STL types (``std::vector<T> *``, ...; if ``pybind11/stl.h``
47514299Sbbruce@ucdavis.edu    is included) are copied when converted to C++ (see :doc:`/advanced/cast/overview`) and will
47614299Sbbruce@ucdavis.edu    not allow ``None`` as argument.  To pass optional argument of these copied types consider
47714299Sbbruce@ucdavis.edu    using ``std::optional<T>``
47814299Sbbruce@ucdavis.edu
47912037Sandreas.sandberg@arm.comOverload resolution order
48012037Sandreas.sandberg@arm.com=========================
48112037Sandreas.sandberg@arm.com
48212037Sandreas.sandberg@arm.comWhen a function or method with multiple overloads is called from Python,
48312037Sandreas.sandberg@arm.compybind11 determines which overload to call in two passes.  The first pass
48412037Sandreas.sandberg@arm.comattempts to call each overload without allowing argument conversion (as if
48514299Sbbruce@ucdavis.eduevery argument had been specified as ``py::arg().noconvert()`` as described
48612037Sandreas.sandberg@arm.comabove).
48712037Sandreas.sandberg@arm.com
48812037Sandreas.sandberg@arm.comIf no overload succeeds in the no-conversion first pass, a second pass is
48912037Sandreas.sandberg@arm.comattempted in which argument conversion is allowed (except where prohibited via
49012037Sandreas.sandberg@arm.coman explicit ``py::arg().noconvert()`` attribute in the function definition).
49112037Sandreas.sandberg@arm.com
49212037Sandreas.sandberg@arm.comIf the second pass also fails a ``TypeError`` is raised.
49312037Sandreas.sandberg@arm.com
49412037Sandreas.sandberg@arm.comWithin each pass, overloads are tried in the order they were registered with
49512037Sandreas.sandberg@arm.compybind11.
49612037Sandreas.sandberg@arm.com
49712037Sandreas.sandberg@arm.comWhat this means in practice is that pybind11 will prefer any overload that does
49812037Sandreas.sandberg@arm.comnot require conversion of arguments to an overload that does, but otherwise prefers
49912037Sandreas.sandberg@arm.comearlier-defined overloads to later-defined ones.
50012037Sandreas.sandberg@arm.com
50112037Sandreas.sandberg@arm.com.. note::
50212037Sandreas.sandberg@arm.com
50312037Sandreas.sandberg@arm.com    pybind11 does *not* further prioritize based on the number/pattern of
50412037Sandreas.sandberg@arm.com    overloaded arguments.  That is, pybind11 does not prioritize a function
50512037Sandreas.sandberg@arm.com    requiring one conversion over one requiring three, but only prioritizes
50612037Sandreas.sandberg@arm.com    overloads requiring no conversion at all to overloads that require
50712037Sandreas.sandberg@arm.com    conversion of at least one argument.
508