ply.html revision 4479
12632Sstever@eecs.umich.edu<html>
22632Sstever@eecs.umich.edu<head>
32632Sstever@eecs.umich.edu<title>PLY (Python Lex-Yacc)</title>
42632Sstever@eecs.umich.edu</head>
52632Sstever@eecs.umich.edu<body bgcolor="#ffffff">
62632Sstever@eecs.umich.edu
72632Sstever@eecs.umich.edu<h1>PLY (Python Lex-Yacc)</h1>
84479Sbinkertn@umich.edu 
92632Sstever@eecs.umich.edu<b>
102632Sstever@eecs.umich.eduDavid M. Beazley <br>
114479Sbinkertn@umich.edudave@dabeaz.com<br>
122632Sstever@eecs.umich.edu</b>
132632Sstever@eecs.umich.edu
142632Sstever@eecs.umich.edu<p>
154479Sbinkertn@umich.edu<b>PLY Version: 2.3</b>
162632Sstever@eecs.umich.edu<p>
174479Sbinkertn@umich.edu
184479Sbinkertn@umich.edu<!-- INDEX -->
194479Sbinkertn@umich.edu<div class="sectiontoc">
204479Sbinkertn@umich.edu<ul>
214479Sbinkertn@umich.edu<li><a href="#ply_nn1">Introduction</a>
224479Sbinkertn@umich.edu<li><a href="#ply_nn2">PLY Overview</a>
234479Sbinkertn@umich.edu<li><a href="#ply_nn3">Lex</a>
244479Sbinkertn@umich.edu<ul>
254479Sbinkertn@umich.edu<li><a href="#ply_nn4">Lex Example</a>
264479Sbinkertn@umich.edu<li><a href="#ply_nn5">The tokens list</a>
274479Sbinkertn@umich.edu<li><a href="#ply_nn6">Specification of tokens</a>
284479Sbinkertn@umich.edu<li><a href="#ply_nn7">Token values</a>
294479Sbinkertn@umich.edu<li><a href="#ply_nn8">Discarded tokens</a>
304479Sbinkertn@umich.edu<li><a href="#ply_nn9">Line numbers and positional information</a>
314479Sbinkertn@umich.edu<li><a href="#ply_nn10">Ignored characters</a>
324479Sbinkertn@umich.edu<li><a href="#ply_nn11">Literal characters</a>
334479Sbinkertn@umich.edu<li><a href="#ply_nn12">Error handling</a>
344479Sbinkertn@umich.edu<li><a href="#ply_nn13">Building and using the lexer</a>
354479Sbinkertn@umich.edu<li><a href="#ply_nn14">The @TOKEN decorator</a>
364479Sbinkertn@umich.edu<li><a href="#ply_nn15">Optimized mode</a>
374479Sbinkertn@umich.edu<li><a href="#ply_nn16">Debugging</a>
384479Sbinkertn@umich.edu<li><a href="#ply_nn17">Alternative specification of lexers</a>
394479Sbinkertn@umich.edu<li><a href="#ply_nn18">Maintaining state</a>
404479Sbinkertn@umich.edu<li><a href="#ply_nn19">Duplicating lexers</a>
414479Sbinkertn@umich.edu<li><a href="#ply_nn20">Internal lexer state</a>
424479Sbinkertn@umich.edu<li><a href="#ply_nn21">Conditional lexing and start conditions</a>
434479Sbinkertn@umich.edu<li><a href="#ply_nn21">Miscellaneous Issues</a>
444479Sbinkertn@umich.edu</ul>
454479Sbinkertn@umich.edu<li><a href="#ply_nn22">Parsing basics</a>
464479Sbinkertn@umich.edu<li><a href="#ply_nn23">Yacc reference</a>
474479Sbinkertn@umich.edu<ul>
484479Sbinkertn@umich.edu<li><a href="#ply_nn24">An example</a>
494479Sbinkertn@umich.edu<li><a href="#ply_nn25">Combining Grammar Rule Functions</a>
504479Sbinkertn@umich.edu<li><a href="#ply_nn26">Character Literals</a>
514479Sbinkertn@umich.edu<li><a href="#ply_nn26">Empty Productions</a>
524479Sbinkertn@umich.edu<li><a href="#ply_nn28">Changing the starting symbol</a>
534479Sbinkertn@umich.edu<li><a href="#ply_nn27">Dealing With Ambiguous Grammars</a>
544479Sbinkertn@umich.edu<li><a href="#ply_nn28">The parser.out file</a>
554479Sbinkertn@umich.edu<li><a href="#ply_nn29">Syntax Error Handling</a>
564479Sbinkertn@umich.edu<ul>
574479Sbinkertn@umich.edu<li><a href="#ply_nn30">Recovery and resynchronization with error rules</a>
584479Sbinkertn@umich.edu<li><a href="#ply_nn31">Panic mode recovery</a>
594479Sbinkertn@umich.edu<li><a href="#ply_nn32">General comments on error handling</a>
604479Sbinkertn@umich.edu</ul>
614479Sbinkertn@umich.edu<li><a href="#ply_nn33">Line Number and Position Tracking</a>
624479Sbinkertn@umich.edu<li><a href="#ply_nn34">AST Construction</a>
634479Sbinkertn@umich.edu<li><a href="#ply_nn35">Embedded Actions</a>
644479Sbinkertn@umich.edu<li><a href="#ply_nn36">Yacc implementation notes</a>
654479Sbinkertn@umich.edu</ul>
664479Sbinkertn@umich.edu<li><a href="#ply_nn37">Parser and Lexer State Management</a>
674479Sbinkertn@umich.edu<li><a href="#ply_nn38">Using Python's Optimized Mode</a>
684479Sbinkertn@umich.edu<li><a href="#ply_nn39">Where to go from here?</a>
694479Sbinkertn@umich.edu</ul>
704479Sbinkertn@umich.edu</div>
714479Sbinkertn@umich.edu<!-- INDEX -->
724479Sbinkertn@umich.edu
734479Sbinkertn@umich.edu
744479Sbinkertn@umich.edu
754479Sbinkertn@umich.edu
764479Sbinkertn@umich.edu
774479Sbinkertn@umich.edu
784479Sbinkertn@umich.edu<H2><a name="ply_nn1"></a>1. Introduction</H2>
794479Sbinkertn@umich.edu
804479Sbinkertn@umich.edu
814479Sbinkertn@umich.eduPLY is a pure-Python implementation of the popular compiler
824479Sbinkertn@umich.educonstruction tools lex and yacc. The main goal of PLY is to stay
834479Sbinkertn@umich.edufairly faithful to the way in which traditional lex/yacc tools work.
844479Sbinkertn@umich.eduThis includes supporting LALR(1) parsing as well as providing
854479Sbinkertn@umich.eduextensive input validation, error reporting, and diagnostics.  Thus,
864479Sbinkertn@umich.eduif you've used yacc in another programming language, it should be
874479Sbinkertn@umich.edurelatively straightforward to use PLY.  
884479Sbinkertn@umich.edu
894479Sbinkertn@umich.edu<p>
904479Sbinkertn@umich.eduEarly versions of PLY were developed to support an Introduction to
914479Sbinkertn@umich.eduCompilers Course I taught in 2001 at the University of Chicago.  In this course,
922632Sstever@eecs.umich.edustudents built a fully functional compiler for a simple Pascal-like
932632Sstever@eecs.umich.edulanguage.  Their compiler, implemented entirely in Python, had to
942632Sstever@eecs.umich.eduinclude lexical analysis, parsing, type checking, type inference,
952632Sstever@eecs.umich.edunested scoping, and code generation for the SPARC processor.
962632Sstever@eecs.umich.eduApproximately 30 different compiler implementations were completed in
974479Sbinkertn@umich.eduthis course.  Most of PLY's interface and operation has been influenced by common
982632Sstever@eecs.umich.eduusability problems encountered by students.
992632Sstever@eecs.umich.edu
1002632Sstever@eecs.umich.edu<p>
1014479Sbinkertn@umich.eduSince PLY was primarily developed as an instructional tool, you will
1024479Sbinkertn@umich.edufind it to be fairly picky about token and grammar rule
1034479Sbinkertn@umich.eduspecification. In part, this
1042632Sstever@eecs.umich.eduadded formality is meant to catch common programming mistakes made by
1052632Sstever@eecs.umich.edunovice users.  However, advanced users will also find such features to
1062632Sstever@eecs.umich.edube useful when building complicated grammars for real programming
1074479Sbinkertn@umich.edulanguages.  It should also be noted that PLY does not provide much in
1084479Sbinkertn@umich.eduthe way of bells and whistles (e.g., automatic construction of
1094479Sbinkertn@umich.eduabstract syntax trees, tree traversal, etc.). Nor would I consider it
1104479Sbinkertn@umich.eduto be a parsing framework.  Instead, you will find a bare-bones, yet
1112632Sstever@eecs.umich.edufully capable lex/yacc implementation written entirely in Python.
1122632Sstever@eecs.umich.edu
1132632Sstever@eecs.umich.edu<p>
1142632Sstever@eecs.umich.eduThe rest of this document assumes that you are somewhat familar with
1154479Sbinkertn@umich.eduparsing theory, syntax directed translation, and the use of compiler
1164479Sbinkertn@umich.educonstruction tools such as lex and yacc in other programming
1174479Sbinkertn@umich.edulanguages. If you are unfamilar with these topics, you will probably
1184479Sbinkertn@umich.eduwant to consult an introductory text such as "Compilers: Principles,
1194479Sbinkertn@umich.eduTechniques, and Tools", by Aho, Sethi, and Ullman.  O'Reilly's "Lex
1204479Sbinkertn@umich.eduand Yacc" by John Levine may also be handy.  In fact, the O'Reilly book can be
1214479Sbinkertn@umich.eduused as a reference for PLY as the concepts are virtually identical.
1224479Sbinkertn@umich.edu
1234479Sbinkertn@umich.edu<H2><a name="ply_nn2"></a>2. PLY Overview</H2>
1244479Sbinkertn@umich.edu
1254479Sbinkertn@umich.edu
1264479Sbinkertn@umich.eduPLY consists of two separate modules; <tt>lex.py</tt> and
1274479Sbinkertn@umich.edu<tt>yacc.py</tt>, both of which are found in a Python package
1284479Sbinkertn@umich.educalled <tt>ply</tt>. The <tt>lex.py</tt> module is used to break input text into a
1292632Sstever@eecs.umich.educollection of tokens specified by a collection of regular expression
1302632Sstever@eecs.umich.edurules.  <tt>yacc.py</tt> is used to recognize language syntax that has
1314479Sbinkertn@umich.edubeen specified in the form of a context free grammar. <tt>yacc.py</tt> uses LR parsing and generates its parsing tables
1324479Sbinkertn@umich.eduusing either the LALR(1) (the default) or SLR table generation algorithms.
1332632Sstever@eecs.umich.edu
1342632Sstever@eecs.umich.edu<p>
1352632Sstever@eecs.umich.eduThe two tools are meant to work together.  Specifically,
1362632Sstever@eecs.umich.edu<tt>lex.py</tt> provides an external interface in the form of a
1372632Sstever@eecs.umich.edu<tt>token()</tt> function that returns the next valid token on the
1382632Sstever@eecs.umich.eduinput stream.  <tt>yacc.py</tt> calls this repeatedly to retrieve
1392632Sstever@eecs.umich.edutokens and invoke grammar rules.  The output of <tt>yacc.py</tt> is
1402632Sstever@eecs.umich.eduoften an Abstract Syntax Tree (AST).  However, this is entirely up to
1412632Sstever@eecs.umich.eduthe user.  If desired, <tt>yacc.py</tt> can also be used to implement
1424479Sbinkertn@umich.edusimple one-pass compilers.  
1432632Sstever@eecs.umich.edu
1442632Sstever@eecs.umich.edu<p>
1452632Sstever@eecs.umich.eduLike its Unix counterpart, <tt>yacc.py</tt> provides most of the
1462632Sstever@eecs.umich.edufeatures you expect including extensive error checking, grammar
1472632Sstever@eecs.umich.eduvalidation, support for empty productions, error tokens, and ambiguity
1484479Sbinkertn@umich.eduresolution via precedence rules.  In fact, everything that is possible in traditional yacc 
1494479Sbinkertn@umich.edushould be supported in PLY.
1502632Sstever@eecs.umich.edu
1512632Sstever@eecs.umich.edu<p>
1524479Sbinkertn@umich.eduThe primary difference between
1534479Sbinkertn@umich.edu<tt>yacc.py</tt> and Unix <tt>yacc</tt> is that <tt>yacc.py</tt> 
1544479Sbinkertn@umich.edudoesn't involve a separate code-generation process. 
1554479Sbinkertn@umich.eduInstead, PLY relies on reflection (introspection)
1564479Sbinkertn@umich.eduto build its lexers and parsers.  Unlike traditional lex/yacc which
1574479Sbinkertn@umich.edurequire a special input file that is converted into a separate source
1584479Sbinkertn@umich.edufile, the specifications given to PLY <em>are</em> valid Python
1594479Sbinkertn@umich.eduprograms.  This means that there are no extra source files nor is
1604479Sbinkertn@umich.eduthere a special compiler construction step (e.g., running yacc to
1614479Sbinkertn@umich.edugenerate Python code for the compiler).  Since the generation of the
1624479Sbinkertn@umich.eduparsing tables is relatively expensive, PLY caches the results and
1634479Sbinkertn@umich.edusaves them to a file.  If no changes are detected in the input source,
1644479Sbinkertn@umich.eduthe tables are read from the cache. Otherwise, they are regenerated.
1654479Sbinkertn@umich.edu
1664479Sbinkertn@umich.edu<H2><a name="ply_nn3"></a>3. Lex</H2>
1674479Sbinkertn@umich.edu
1684479Sbinkertn@umich.edu
1694479Sbinkertn@umich.edu<tt>lex.py</tt> is used to tokenize an input string.  For example, suppose
1704479Sbinkertn@umich.eduyou're writing a programming language and a user supplied the following input string:
1714479Sbinkertn@umich.edu
1724479Sbinkertn@umich.edu<blockquote>
1734479Sbinkertn@umich.edu<pre>
1744479Sbinkertn@umich.edux = 3 + 42 * (s - t)
1754479Sbinkertn@umich.edu</pre>
1764479Sbinkertn@umich.edu</blockquote>
1774479Sbinkertn@umich.edu
1784479Sbinkertn@umich.eduA tokenizer splits the string into individual tokens
1794479Sbinkertn@umich.edu
1804479Sbinkertn@umich.edu<blockquote>
1814479Sbinkertn@umich.edu<pre>
1824479Sbinkertn@umich.edu'x','=', '3', '+', '42', '*', '(', 's', '-', 't', ')'
1834479Sbinkertn@umich.edu</pre>
1844479Sbinkertn@umich.edu</blockquote>
1854479Sbinkertn@umich.edu
1864479Sbinkertn@umich.eduTokens are usually given names to indicate what they are. For example:
1874479Sbinkertn@umich.edu
1884479Sbinkertn@umich.edu<blockquote>
1894479Sbinkertn@umich.edu<pre>
1904479Sbinkertn@umich.edu'ID','EQUALS','NUMBER','PLUS','NUMBER','TIMES',
1914479Sbinkertn@umich.edu'LPAREN','ID','MINUS','ID','RPAREN'
1924479Sbinkertn@umich.edu</pre>
1934479Sbinkertn@umich.edu</blockquote>
1944479Sbinkertn@umich.edu
1954479Sbinkertn@umich.eduMore specifically, the input is broken into pairs of token types and values.  For example:
1964479Sbinkertn@umich.edu
1974479Sbinkertn@umich.edu<blockquote>
1984479Sbinkertn@umich.edu<pre>
1994479Sbinkertn@umich.edu('ID','x'), ('EQUALS','='), ('NUMBER','3'), 
2004479Sbinkertn@umich.edu('PLUS','+'), ('NUMBER','42), ('TIMES','*'),
2014479Sbinkertn@umich.edu('LPAREN','('), ('ID','s'), ('MINUS','-'),
2024479Sbinkertn@umich.edu('ID','t'), ('RPAREN',')'
2034479Sbinkertn@umich.edu</pre>
2044479Sbinkertn@umich.edu</blockquote>
2054479Sbinkertn@umich.edu
2064479Sbinkertn@umich.eduThe identification of tokens is typically done by writing a series of regular expression
2074479Sbinkertn@umich.edurules.  The next section shows how this is done using <tt>lex.py</tt>.
2084479Sbinkertn@umich.edu
2094479Sbinkertn@umich.edu<H3><a name="ply_nn4"></a>3.1 Lex Example</H3>
2104479Sbinkertn@umich.edu
2114479Sbinkertn@umich.edu
2124479Sbinkertn@umich.eduThe following example shows how <tt>lex.py</tt> is used to write a simple tokenizer.
2132632Sstever@eecs.umich.edu
2142632Sstever@eecs.umich.edu<blockquote>
2152632Sstever@eecs.umich.edu<pre>
2162632Sstever@eecs.umich.edu# ------------------------------------------------------------
2172632Sstever@eecs.umich.edu# calclex.py
2182632Sstever@eecs.umich.edu#
2192632Sstever@eecs.umich.edu# tokenizer for a simple expression evaluator for
2202632Sstever@eecs.umich.edu# numbers and +,-,*,/
2212632Sstever@eecs.umich.edu# ------------------------------------------------------------
2224479Sbinkertn@umich.eduimport ply.lex as lex
2232632Sstever@eecs.umich.edu
2242632Sstever@eecs.umich.edu# List of token names.   This is always required
2252632Sstever@eecs.umich.edutokens = (
2262632Sstever@eecs.umich.edu   'NUMBER',
2272632Sstever@eecs.umich.edu   'PLUS',
2282632Sstever@eecs.umich.edu   'MINUS',
2292632Sstever@eecs.umich.edu   'TIMES',
2302632Sstever@eecs.umich.edu   'DIVIDE',
2312632Sstever@eecs.umich.edu   'LPAREN',
2322632Sstever@eecs.umich.edu   'RPAREN',
2332632Sstever@eecs.umich.edu)
2342632Sstever@eecs.umich.edu
2352632Sstever@eecs.umich.edu# Regular expression rules for simple tokens
2362632Sstever@eecs.umich.edut_PLUS    = r'\+'
2372632Sstever@eecs.umich.edut_MINUS   = r'-'
2382632Sstever@eecs.umich.edut_TIMES   = r'\*'
2392632Sstever@eecs.umich.edut_DIVIDE  = r'/'
2402632Sstever@eecs.umich.edut_LPAREN  = r'\('
2412632Sstever@eecs.umich.edut_RPAREN  = r'\)'
2422632Sstever@eecs.umich.edu
2432632Sstever@eecs.umich.edu# A regular expression rule with some action code
2442632Sstever@eecs.umich.edudef t_NUMBER(t):
2452632Sstever@eecs.umich.edu    r'\d+'
2462632Sstever@eecs.umich.edu    try:
2472632Sstever@eecs.umich.edu         t.value = int(t.value)    
2482632Sstever@eecs.umich.edu    except ValueError:
2492632Sstever@eecs.umich.edu         print "Line %d: Number %s is too large!" % (t.lineno,t.value)
2502632Sstever@eecs.umich.edu	 t.value = 0
2512632Sstever@eecs.umich.edu    return t
2522632Sstever@eecs.umich.edu
2532632Sstever@eecs.umich.edu# Define a rule so we can track line numbers
2542632Sstever@eecs.umich.edudef t_newline(t):
2552632Sstever@eecs.umich.edu    r'\n+'
2564479Sbinkertn@umich.edu    t.lexer.lineno += len(t.value)
2572632Sstever@eecs.umich.edu
2582632Sstever@eecs.umich.edu# A string containing ignored characters (spaces and tabs)
2592632Sstever@eecs.umich.edut_ignore  = ' \t'
2602632Sstever@eecs.umich.edu
2612632Sstever@eecs.umich.edu# Error handling rule
2622632Sstever@eecs.umich.edudef t_error(t):
2632632Sstever@eecs.umich.edu    print "Illegal character '%s'" % t.value[0]
2644479Sbinkertn@umich.edu    t.lexer.skip(1)
2652632Sstever@eecs.umich.edu
2662632Sstever@eecs.umich.edu# Build the lexer
2672632Sstever@eecs.umich.edulex.lex()
2682632Sstever@eecs.umich.edu
2694479Sbinkertn@umich.edu</pre>
2704479Sbinkertn@umich.edu</blockquote>
2714479Sbinkertn@umich.eduTo use the lexer, you first need to feed it some input text using its <tt>input()</tt> method.  After that, repeated calls to <tt>token()</tt> produce tokens.   The following code shows how this works:
2724479Sbinkertn@umich.edu
2734479Sbinkertn@umich.edu<blockquote>
2744479Sbinkertn@umich.edu<pre>
2754479Sbinkertn@umich.edu
2762632Sstever@eecs.umich.edu# Test it out
2772632Sstever@eecs.umich.edudata = '''
2782632Sstever@eecs.umich.edu3 + 4 * 10
2792632Sstever@eecs.umich.edu  + -20 *2
2802632Sstever@eecs.umich.edu'''
2812632Sstever@eecs.umich.edu
2822632Sstever@eecs.umich.edu# Give the lexer some input
2832632Sstever@eecs.umich.edulex.input(data)
2842632Sstever@eecs.umich.edu
2852632Sstever@eecs.umich.edu# Tokenize
2862632Sstever@eecs.umich.eduwhile 1:
2872632Sstever@eecs.umich.edu    tok = lex.token()
2882632Sstever@eecs.umich.edu    if not tok: break      # No more input
2892632Sstever@eecs.umich.edu    print tok
2902632Sstever@eecs.umich.edu</pre>
2912632Sstever@eecs.umich.edu</blockquote>
2922632Sstever@eecs.umich.edu
2934479Sbinkertn@umich.eduWhen executed, the example will produce the following output:
2944479Sbinkertn@umich.edu
2954479Sbinkertn@umich.edu<blockquote>
2964479Sbinkertn@umich.edu<pre>
2974479Sbinkertn@umich.edu$ python example.py
2984479Sbinkertn@umich.eduLexToken(NUMBER,3,2,1)
2994479Sbinkertn@umich.eduLexToken(PLUS,'+',2,3)
3004479Sbinkertn@umich.eduLexToken(NUMBER,4,2,5)
3014479Sbinkertn@umich.eduLexToken(TIMES,'*',2,7)
3024479Sbinkertn@umich.eduLexToken(NUMBER,10,2,10)
3034479Sbinkertn@umich.eduLexToken(PLUS,'+',3,14)
3044479Sbinkertn@umich.eduLexToken(MINUS,'-',3,16)
3054479Sbinkertn@umich.eduLexToken(NUMBER,20,3,18)
3064479Sbinkertn@umich.eduLexToken(TIMES,'*',3,20)
3074479Sbinkertn@umich.eduLexToken(NUMBER,2,3,21)
3084479Sbinkertn@umich.edu</pre>
3094479Sbinkertn@umich.edu</blockquote>
3104479Sbinkertn@umich.edu
3114479Sbinkertn@umich.eduThe tokens returned by <tt>lex.token()</tt> are instances
3124479Sbinkertn@umich.eduof <tt>LexToken</tt>.  This object has
3134479Sbinkertn@umich.eduattributes <tt>tok.type</tt>, <tt>tok.value</tt>,
3144479Sbinkertn@umich.edu<tt>tok.lineno</tt>, and <tt>tok.lexpos</tt>.  The following code shows an example of
3154479Sbinkertn@umich.eduaccessing these attributes:
3164479Sbinkertn@umich.edu
3174479Sbinkertn@umich.edu<blockquote>
3184479Sbinkertn@umich.edu<pre>
3194479Sbinkertn@umich.edu# Tokenize
3204479Sbinkertn@umich.eduwhile 1:
3214479Sbinkertn@umich.edu    tok = lex.token()
3224479Sbinkertn@umich.edu    if not tok: break      # No more input
3234479Sbinkertn@umich.edu    print tok.type, tok.value, tok.line, tok.lexpos
3244479Sbinkertn@umich.edu</pre>
3254479Sbinkertn@umich.edu</blockquote>
3264479Sbinkertn@umich.edu
3274479Sbinkertn@umich.eduThe <tt>tok.type</tt> and <tt>tok.value</tt> attributes contain the
3284479Sbinkertn@umich.edutype and value of the token itself. 
3294479Sbinkertn@umich.edu<tt>tok.line</tt> and <tt>tok.lexpos</tt> contain information about
3304479Sbinkertn@umich.eduthe location of the token.  <tt>tok.lexpos</tt> is the index of the
3314479Sbinkertn@umich.edutoken relative to the start of the input text.
3324479Sbinkertn@umich.edu
3334479Sbinkertn@umich.edu<H3><a name="ply_nn5"></a>3.2 The tokens list</H3>
3344479Sbinkertn@umich.edu
3354479Sbinkertn@umich.edu
3364479Sbinkertn@umich.eduAll lexers must provide a list <tt>tokens</tt> that defines all of the possible token
3374479Sbinkertn@umich.edunames that can be produced by the lexer.  This list is always required
3384479Sbinkertn@umich.eduand is used to perform a variety of validation checks.  The tokens list is also used by the
3394479Sbinkertn@umich.edu<tt>yacc.py</tt> module to identify terminals.
3404479Sbinkertn@umich.edu
3414479Sbinkertn@umich.edu<p>
3424479Sbinkertn@umich.eduIn the example, the following code specified the token names:
3434479Sbinkertn@umich.edu
3444479Sbinkertn@umich.edu<blockquote>
3454479Sbinkertn@umich.edu<pre>
3464479Sbinkertn@umich.edutokens = (
3474479Sbinkertn@umich.edu   'NUMBER',
3484479Sbinkertn@umich.edu   'PLUS',
3494479Sbinkertn@umich.edu   'MINUS',
3504479Sbinkertn@umich.edu   'TIMES',
3514479Sbinkertn@umich.edu   'DIVIDE',
3524479Sbinkertn@umich.edu   'LPAREN',
3534479Sbinkertn@umich.edu   'RPAREN',
3544479Sbinkertn@umich.edu)
3554479Sbinkertn@umich.edu</pre>
3564479Sbinkertn@umich.edu</blockquote>
3574479Sbinkertn@umich.edu
3584479Sbinkertn@umich.edu<H3><a name="ply_nn6"></a>3.3 Specification of tokens</H3>
3594479Sbinkertn@umich.edu
3604479Sbinkertn@umich.edu
3614479Sbinkertn@umich.eduEach token is specified by writing a regular expression rule.  Each of these rules are
3624479Sbinkertn@umich.eduare defined by  making declarations with a special prefix <tt>t_</tt> to indicate that it
3632632Sstever@eecs.umich.edudefines a token.  For simple tokens, the regular expression can
3642632Sstever@eecs.umich.edube specified as strings such as this (note: Python raw strings are used since they are the
3652632Sstever@eecs.umich.edumost convenient way to write regular expression strings):
3662632Sstever@eecs.umich.edu
3672632Sstever@eecs.umich.edu<blockquote>
3682632Sstever@eecs.umich.edu<pre>
3692632Sstever@eecs.umich.edut_PLUS = r'\+'
3702632Sstever@eecs.umich.edu</pre>
3712632Sstever@eecs.umich.edu</blockquote>
3722632Sstever@eecs.umich.edu
3732632Sstever@eecs.umich.eduIn this case, the name following the <tt>t_</tt> must exactly match one of the
3742632Sstever@eecs.umich.edunames supplied in <tt>tokens</tt>.   If some kind of action needs to be performed,
3754479Sbinkertn@umich.edua token rule can be specified as a function.  For example, this rule matches numbers and
3764479Sbinkertn@umich.educonverts the string into a Python integer.
3772632Sstever@eecs.umich.edu
3782632Sstever@eecs.umich.edu<blockquote>
3792632Sstever@eecs.umich.edu<pre>
3802632Sstever@eecs.umich.edudef t_NUMBER(t):
3812632Sstever@eecs.umich.edu    r'\d+'
3822632Sstever@eecs.umich.edu    try:
3832632Sstever@eecs.umich.edu         t.value = int(t.value)
3842632Sstever@eecs.umich.edu    except ValueError:
3852632Sstever@eecs.umich.edu         print "Number %s is too large!" % t.value
3862632Sstever@eecs.umich.edu	 t.value = 0
3872632Sstever@eecs.umich.edu    return t
3882632Sstever@eecs.umich.edu</pre>
3892632Sstever@eecs.umich.edu</blockquote>
3902632Sstever@eecs.umich.edu
3914479Sbinkertn@umich.eduWhen a function is used, the regular expression rule is specified in the function documentation string. 
3922632Sstever@eecs.umich.eduThe function always takes a single argument which is an instance of 
3934479Sbinkertn@umich.edu<tt>LexToken</tt>.   This object has attributes of <tt>t.type</tt> which is the token type (as a string),
3944479Sbinkertn@umich.edu<tt>t.value</tt> which is the lexeme (the actual text matched), <tt>t.lineno</tt> which is the current line number, and <tt>t.lexpos</tt> which
3954479Sbinkertn@umich.eduis the position of the token relative to the beginning of the input text.
3962632Sstever@eecs.umich.eduBy default, <tt>t.type</tt> is set to the name following the <tt>t_</tt> prefix.  The action
3972632Sstever@eecs.umich.edufunction can modify the contents of the <tt>LexToken</tt> object as appropriate.  However, 
3982632Sstever@eecs.umich.eduwhen it is done, the resulting token should be returned.  If no value is returned by the action
3992632Sstever@eecs.umich.edufunction, the token is simply discarded and the next token read.
4002632Sstever@eecs.umich.edu
4012632Sstever@eecs.umich.edu<p>
4024479Sbinkertn@umich.eduInternally, <tt>lex.py</tt> uses the <tt>re</tt> module to do its patten matching.  When building the master regular expression,
4032632Sstever@eecs.umich.edurules are added in the following order:
4042632Sstever@eecs.umich.edu<p>
4052632Sstever@eecs.umich.edu<ol>
4062632Sstever@eecs.umich.edu<li>All tokens defined by functions are added in the same order as they appear in the lexer file.
4074479Sbinkertn@umich.edu<li>Tokens defined by strings are added next by sorting them in order of decreasing regular expression length (longer expressions
4082632Sstever@eecs.umich.eduare added first).
4092632Sstever@eecs.umich.edu</ol>
4102632Sstever@eecs.umich.edu<p>
4112632Sstever@eecs.umich.eduWithout this ordering, it can be difficult to correctly match certain types of tokens.  For example, if you 
4122632Sstever@eecs.umich.eduwanted to have separate tokens for "=" and "==", you need to make sure that "==" is checked first.  By sorting regular
4132632Sstever@eecs.umich.eduexpressions in order of decreasing length, this problem is solved for rules defined as strings.  For functions,
4142632Sstever@eecs.umich.eduthe order can be explicitly controlled since rules appearing first are checked first.
4152632Sstever@eecs.umich.edu
4162632Sstever@eecs.umich.edu<p>
4172632Sstever@eecs.umich.eduTo handle reserved words, it is usually easier to just match an identifier and do a special name lookup in a function
4182632Sstever@eecs.umich.edulike this:
4192632Sstever@eecs.umich.edu
4202632Sstever@eecs.umich.edu<blockquote>
4212632Sstever@eecs.umich.edu<pre>
4222632Sstever@eecs.umich.edureserved = {
4232632Sstever@eecs.umich.edu   'if' : 'IF',
4242632Sstever@eecs.umich.edu   'then' : 'THEN',
4252632Sstever@eecs.umich.edu   'else' : 'ELSE',
4262632Sstever@eecs.umich.edu   'while' : 'WHILE',
4272632Sstever@eecs.umich.edu   ...
4282632Sstever@eecs.umich.edu}
4292632Sstever@eecs.umich.edu
4302632Sstever@eecs.umich.edudef t_ID(t):
4312632Sstever@eecs.umich.edu    r'[a-zA-Z_][a-zA-Z_0-9]*'
4322632Sstever@eecs.umich.edu    t.type = reserved.get(t.value,'ID')    # Check for reserved words
4332632Sstever@eecs.umich.edu    return t
4342632Sstever@eecs.umich.edu</pre>
4352632Sstever@eecs.umich.edu</blockquote>
4362632Sstever@eecs.umich.edu
4374479Sbinkertn@umich.eduThis approach greatly reduces the number of regular expression rules and is likely to make things a little faster.
4384479Sbinkertn@umich.edu
4392632Sstever@eecs.umich.edu<p>
4404479Sbinkertn@umich.edu<b>Note:</b> You should avoid writing individual rules for reserved words.  For example, if you write rules like this,
4414479Sbinkertn@umich.edu
4424479Sbinkertn@umich.edu<blockquote>
4434479Sbinkertn@umich.edu<pre>
4444479Sbinkertn@umich.edut_FOR   = r'for'
4454479Sbinkertn@umich.edut_PRINT = r'print'
4464479Sbinkertn@umich.edu</pre>
4474479Sbinkertn@umich.edu</blockquote>
4484479Sbinkertn@umich.edu
4494479Sbinkertn@umich.eduthose rules will be triggered for identifiers that include those words as a prefix such as "forget" or "printed".  This is probably not
4504479Sbinkertn@umich.eduwhat you want.
4514479Sbinkertn@umich.edu
4524479Sbinkertn@umich.edu<H3><a name="ply_nn7"></a>3.4 Token values</H3>
4534479Sbinkertn@umich.edu
4544479Sbinkertn@umich.edu
4554479Sbinkertn@umich.eduWhen tokens are returned by lex, they have a value that is stored in the <tt>value</tt> attribute.    Normally, the value is the text
4564479Sbinkertn@umich.eduthat was matched.   However, the value can be assigned to any Python object.   For instance, when lexing identifiers, you may
4574479Sbinkertn@umich.eduwant to return both the identifier name and information from some sort of symbol table.  To do this, you might write a rule like this:
4582632Sstever@eecs.umich.edu
4592632Sstever@eecs.umich.edu<blockquote>
4602632Sstever@eecs.umich.edu<pre>
4612632Sstever@eecs.umich.edudef t_ID(t):
4622632Sstever@eecs.umich.edu    ...
4634479Sbinkertn@umich.edu    # Look up symbol table information and return a tuple
4642632Sstever@eecs.umich.edu    t.value = (t.value, symbol_lookup(t.value))
4652632Sstever@eecs.umich.edu    ...
4662632Sstever@eecs.umich.edu    return t
4672632Sstever@eecs.umich.edu</pre>
4682632Sstever@eecs.umich.edu</blockquote>
4692632Sstever@eecs.umich.edu
4704479Sbinkertn@umich.eduIt is important to note that storing data in other attribute names is <em>not</em> recommended.  The <tt>yacc.py</tt> module only exposes the
4714479Sbinkertn@umich.educontents of the <tt>value</tt> attribute.  Thus, accessing other attributes may  be unnecessarily awkward.
4724479Sbinkertn@umich.edu
4734479Sbinkertn@umich.edu<H3><a name="ply_nn8"></a>3.5 Discarded tokens</H3>
4744479Sbinkertn@umich.edu
4754479Sbinkertn@umich.edu
4764479Sbinkertn@umich.eduTo discard a token, such as a comment, simply define a token rule that returns no value.  For example:
4774479Sbinkertn@umich.edu
4782632Sstever@eecs.umich.edu<blockquote>
4792632Sstever@eecs.umich.edu<pre>
4804479Sbinkertn@umich.edudef t_COMMENT(t):
4814479Sbinkertn@umich.edu    r'\#.*'
4824479Sbinkertn@umich.edu    pass
4834479Sbinkertn@umich.edu    # No return value. Token discarded
4842632Sstever@eecs.umich.edu</pre>
4852632Sstever@eecs.umich.edu</blockquote>
4862632Sstever@eecs.umich.edu
4874479Sbinkertn@umich.eduAlternatively, you can include the prefix "ignore_" in the token declaration to force a token to be ignored.  For example:
4884479Sbinkertn@umich.edu
4894479Sbinkertn@umich.edu<blockquote>
4904479Sbinkertn@umich.edu<pre>
4914479Sbinkertn@umich.edut_ignore_COMMENT = r'\#.*'
4924479Sbinkertn@umich.edu</pre>
4934479Sbinkertn@umich.edu</blockquote>
4944479Sbinkertn@umich.edu
4954479Sbinkertn@umich.eduBe advised that if you are ignoring many different kinds of text, you may still want to use functions since these provide more precise
4964479Sbinkertn@umich.educontrol over the order in which regular expressions are matched (i.e., functions are matched in order of specification whereas strings are
4974479Sbinkertn@umich.edusorted by regular expression length).
4984479Sbinkertn@umich.edu
4994479Sbinkertn@umich.edu<H3><a name="ply_nn9"></a>3.6 Line numbers and positional information</H3>
5004479Sbinkertn@umich.edu
5014479Sbinkertn@umich.edu
5024479Sbinkertn@umich.edu<p>By default, <tt>lex.py</tt> knows nothing about line numbers.  This is because <tt>lex.py</tt> doesn't know anything
5034479Sbinkertn@umich.eduabout what constitutes a "line" of input (e.g., the newline character or even if the input is textual data).
5044479Sbinkertn@umich.eduTo update this information, you need to write a special rule.  In the example, the <tt>t_newline()</tt> rule shows how to do this.
5054479Sbinkertn@umich.edu
5064479Sbinkertn@umich.edu<blockquote>
5074479Sbinkertn@umich.edu<pre>
5084479Sbinkertn@umich.edu# Define a rule so we can track line numbers
5094479Sbinkertn@umich.edudef t_newline(t):
5104479Sbinkertn@umich.edu    r'\n+'
5114479Sbinkertn@umich.edu    t.lexer.lineno += len(t.value)
5124479Sbinkertn@umich.edu</pre>
5134479Sbinkertn@umich.edu</blockquote>
5144479Sbinkertn@umich.eduWithin the rule, the <tt>lineno</tt> attribute of the underlying lexer <tt>t.lexer</tt> is updated.
5154479Sbinkertn@umich.eduAfter the line number is updated, the token is simply discarded since nothing is returned.
5162632Sstever@eecs.umich.edu
5172632Sstever@eecs.umich.edu<p>
5184479Sbinkertn@umich.edu<tt>lex.py</tt> does not perform and kind of automatic column tracking.  However, it does record positional
5194479Sbinkertn@umich.eduinformation related to each token in the <tt>lexpos</tt> attribute.   Using this, it is usually possible to compute 
5204479Sbinkertn@umich.educolumn information as a separate step.   For instance, just count backwards until you reach a newline.
5214479Sbinkertn@umich.edu
5224479Sbinkertn@umich.edu<blockquote>
5234479Sbinkertn@umich.edu<pre>
5244479Sbinkertn@umich.edu# Compute column. 
5254479Sbinkertn@umich.edu#     input is the input text string
5264479Sbinkertn@umich.edu#     token is a token instance
5274479Sbinkertn@umich.edudef find_column(input,token):
5284479Sbinkertn@umich.edu    i = token.lexpos
5294479Sbinkertn@umich.edu    while i > 0:
5304479Sbinkertn@umich.edu        if input[i] == '\n': break
5314479Sbinkertn@umich.edu        i -= 1
5324479Sbinkertn@umich.edu    column = (token.lexpos - i)+1
5334479Sbinkertn@umich.edu    return column
5344479Sbinkertn@umich.edu</pre>
5354479Sbinkertn@umich.edu</blockquote>
5364479Sbinkertn@umich.edu
5374479Sbinkertn@umich.eduSince column information is often only useful in the context of error handling, calculating the column
5384479Sbinkertn@umich.eduposition can be performed when needed as opposed to doing it for each token.
5394479Sbinkertn@umich.edu
5404479Sbinkertn@umich.edu<H3><a name="ply_nn10"></a>3.7 Ignored characters</H3>
5414479Sbinkertn@umich.edu
5422632Sstever@eecs.umich.edu
5432632Sstever@eecs.umich.edu<p>
5444479Sbinkertn@umich.eduThe special <tt>t_ignore</tt> rule is reserved by <tt>lex.py</tt> for characters
5454479Sbinkertn@umich.eduthat should be completely ignored in the input stream. 
5464479Sbinkertn@umich.eduUsually this is used to skip over whitespace and other non-essential characters. 
5474479Sbinkertn@umich.eduAlthough it is possible to define a regular expression rule for whitespace in a manner
5484479Sbinkertn@umich.edusimilar to <tt>t_newline()</tt>, the use of <tt>t_ignore</tt> provides substantially better
5494479Sbinkertn@umich.edulexing performance because it is handled as a special case and is checked in a much
5504479Sbinkertn@umich.edumore efficient manner than the normal regular expression rules.
5514479Sbinkertn@umich.edu
5524479Sbinkertn@umich.edu<H3><a name="ply_nn11"></a>3.8 Literal characters</H3>
5534479Sbinkertn@umich.edu
5544479Sbinkertn@umich.edu
5554479Sbinkertn@umich.edu<p>
5564479Sbinkertn@umich.eduLiteral characters can be specified by defining a variable <tt>literals</tt> in your lexing module.  For example:
5574479Sbinkertn@umich.edu
5584479Sbinkertn@umich.edu<blockquote>
5594479Sbinkertn@umich.edu<pre>
5604479Sbinkertn@umich.eduliterals = [ '+','-','*','/' ]
5614479Sbinkertn@umich.edu</pre>
5624479Sbinkertn@umich.edu</blockquote>
5634479Sbinkertn@umich.edu
5644479Sbinkertn@umich.eduor alternatively
5654479Sbinkertn@umich.edu
5664479Sbinkertn@umich.edu<blockquote>
5674479Sbinkertn@umich.edu<pre>
5684479Sbinkertn@umich.eduliterals = "+-*/"
5694479Sbinkertn@umich.edu</pre>
5704479Sbinkertn@umich.edu</blockquote>
5714479Sbinkertn@umich.edu
5724479Sbinkertn@umich.eduA literal character is simply a single character that is returned "as is" when encountered by the lexer.  Literals are checked
5734479Sbinkertn@umich.eduafter all of the defined regular expression rules.  Thus, if a rule starts with one of the literal characters, it will always 
5744479Sbinkertn@umich.edutake precedence.
5754479Sbinkertn@umich.edu<p>
5764479Sbinkertn@umich.eduWhen a literal token is returned, both its <tt>type</tt> and <tt>value</tt> attributes are set to the character itself. For example, <tt>'+'</tt>.
5774479Sbinkertn@umich.edu
5784479Sbinkertn@umich.edu<H3><a name="ply_nn12"></a>3.9 Error handling</H3>
5794479Sbinkertn@umich.edu
5804479Sbinkertn@umich.edu
5814479Sbinkertn@umich.edu<p>
5824479Sbinkertn@umich.eduFinally, the <tt>t_error()</tt>
5834479Sbinkertn@umich.edufunction is used to handle lexing errors that occur when illegal
5844479Sbinkertn@umich.educharacters are detected.  In this case, the <tt>t.value</tt> attribute contains the
5854479Sbinkertn@umich.edurest of the input string that has not been tokenized.  In the example, the error function
5864479Sbinkertn@umich.eduwas defined as follows:
5874479Sbinkertn@umich.edu
5884479Sbinkertn@umich.edu<blockquote>
5894479Sbinkertn@umich.edu<pre>
5904479Sbinkertn@umich.edu# Error handling rule
5914479Sbinkertn@umich.edudef t_error(t):
5924479Sbinkertn@umich.edu    print "Illegal character '%s'" % t.value[0]
5934479Sbinkertn@umich.edu    t.lexer.skip(1)
5944479Sbinkertn@umich.edu</pre>
5954479Sbinkertn@umich.edu</blockquote>
5964479Sbinkertn@umich.edu
5974479Sbinkertn@umich.eduIn this case, we simply print the offending character and skip ahead one character by calling <tt>t.lexer.skip(1)</tt>.
5984479Sbinkertn@umich.edu
5994479Sbinkertn@umich.edu<H3><a name="ply_nn13"></a>3.10 Building and using the lexer</H3>
6004479Sbinkertn@umich.edu
6014479Sbinkertn@umich.edu
6024479Sbinkertn@umich.edu<p>
6034479Sbinkertn@umich.eduTo build the lexer, the function <tt>lex.lex()</tt> is used.  This function
6044479Sbinkertn@umich.eduuses Python reflection (or introspection) to read the the regular expression rules
6054479Sbinkertn@umich.eduout of the calling context and build the lexer. Once the lexer has been built, two functions can
6064479Sbinkertn@umich.edube used to control the lexer.
6074479Sbinkertn@umich.edu
6084479Sbinkertn@umich.edu<ul>
6094479Sbinkertn@umich.edu<li><tt>lex.input(data)</tt>.   Reset the lexer and store a new input string.
6104479Sbinkertn@umich.edu<li><tt>lex.token()</tt>.  Return the next token.  Returns a special <tt>LexToken</tt> instance on success or
6114479Sbinkertn@umich.eduNone if the end of the input text has been reached.
6124479Sbinkertn@umich.edu</ul>
6134479Sbinkertn@umich.edu
6144479Sbinkertn@umich.eduIf desired, the lexer can also be used as an object.  The <tt>lex()</tt> returns a <tt>Lexer</tt> object that
6154479Sbinkertn@umich.educan be used for this purpose.  For example:
6162632Sstever@eecs.umich.edu
6172632Sstever@eecs.umich.edu<blockquote>
6182632Sstever@eecs.umich.edu<pre>
6192632Sstever@eecs.umich.edulexer = lex.lex()
6202632Sstever@eecs.umich.edulexer.input(sometext)
6212632Sstever@eecs.umich.eduwhile 1:
6222632Sstever@eecs.umich.edu    tok = lexer.token()
6232632Sstever@eecs.umich.edu    if not tok: break
6242632Sstever@eecs.umich.edu    print tok
6252632Sstever@eecs.umich.edu</pre>
6262632Sstever@eecs.umich.edu</blockquote>
6272632Sstever@eecs.umich.edu
6284479Sbinkertn@umich.edu<p>
6294479Sbinkertn@umich.eduThis latter technique should be used if you intend to use multiple lexers in your application.  Simply define each
6304479Sbinkertn@umich.edulexer in its own module and use the object returned by <tt>lex()</tt> as appropriate.
6314479Sbinkertn@umich.edu
6324479Sbinkertn@umich.edu<p>
6334479Sbinkertn@umich.eduNote: The global functions <tt>lex.input()</tt> and <tt>lex.token()</tt> are bound to the <tt>input()</tt> 
6342632Sstever@eecs.umich.eduand <tt>token()</tt> methods of the last lexer created by the lex module. 
6352632Sstever@eecs.umich.edu
6364479Sbinkertn@umich.edu<H3><a name="ply_nn14"></a>3.11 The @TOKEN decorator</H3>
6374479Sbinkertn@umich.edu
6384479Sbinkertn@umich.edu
6394479Sbinkertn@umich.eduIn some applications, you may want to define build tokens from as a series of
6404479Sbinkertn@umich.edumore complex regular expression rules.  For example:
6412632Sstever@eecs.umich.edu
6422632Sstever@eecs.umich.edu<blockquote>
6432632Sstever@eecs.umich.edu<pre>
6444479Sbinkertn@umich.edudigit            = r'([0-9])'
6454479Sbinkertn@umich.edunondigit         = r'([_A-Za-z])'
6464479Sbinkertn@umich.eduidentifier       = r'(' + nondigit + r'(' + digit + r'|' + nondigit + r')*)'        
6474479Sbinkertn@umich.edu
6484479Sbinkertn@umich.edudef t_ID(t):
6494479Sbinkertn@umich.edu    # want docstring to be identifier above. ?????
6504479Sbinkertn@umich.edu    ...
6512632Sstever@eecs.umich.edu</pre>
6522632Sstever@eecs.umich.edu</blockquote>
6532632Sstever@eecs.umich.edu
6544479Sbinkertn@umich.eduIn this case, we want the regular expression rule for <tt>ID</tt> to be one of the variables above. However, there is no
6554479Sbinkertn@umich.eduway to directly specify this using a normal documentation string.   To solve this problem, you can use the <tt>@TOKEN</tt>
6564479Sbinkertn@umich.edudecorator.  For example:
6572632Sstever@eecs.umich.edu
6582632Sstever@eecs.umich.edu<blockquote>
6592632Sstever@eecs.umich.edu<pre>
6604479Sbinkertn@umich.edufrom ply.lex import TOKEN
6614479Sbinkertn@umich.edu
6624479Sbinkertn@umich.edu@TOKEN(identifier)
6634479Sbinkertn@umich.edudef t_ID(t):
6644479Sbinkertn@umich.edu    ...
6652632Sstever@eecs.umich.edu</pre>
6662632Sstever@eecs.umich.edu</blockquote>
6672632Sstever@eecs.umich.edu
6684479Sbinkertn@umich.eduThis will attach <tt>identifier</tt> to the docstring for <tt>t_ID()</tt> allowing <tt>lex.py</tt> to work normally.  An alternative
6694479Sbinkertn@umich.eduapproach this problem is to set the docstring directly like this:
6704479Sbinkertn@umich.edu
6714479Sbinkertn@umich.edu<blockquote>
6724479Sbinkertn@umich.edu<pre>
6734479Sbinkertn@umich.edudef t_ID(t):
6744479Sbinkertn@umich.edu    ...
6754479Sbinkertn@umich.edu
6764479Sbinkertn@umich.edut_ID.__doc__ = identifier
6774479Sbinkertn@umich.edu</pre>
6784479Sbinkertn@umich.edu</blockquote>
6794479Sbinkertn@umich.edu
6804479Sbinkertn@umich.edu<b>NOTE:</b> Use of <tt>@TOKEN</tt> requires Python-2.4 or newer.  If you're concerned about backwards compatibility with older
6814479Sbinkertn@umich.eduversions of Python, use the alternative approach of setting the docstring directly.
6824479Sbinkertn@umich.edu
6834479Sbinkertn@umich.edu<H3><a name="ply_nn15"></a>3.12 Optimized mode</H3>
6844479Sbinkertn@umich.edu
6854479Sbinkertn@umich.edu
6864479Sbinkertn@umich.eduFor improved performance, it may be desirable to use Python's
6874479Sbinkertn@umich.eduoptimized mode (e.g., running Python with the <tt>-O</tt>
6884479Sbinkertn@umich.eduoption). However, doing so causes Python to ignore documentation
6894479Sbinkertn@umich.edustrings.  This presents special problems for <tt>lex.py</tt>.  To
6904479Sbinkertn@umich.eduhandle this case, you can create your lexer using
6914479Sbinkertn@umich.eduthe <tt>optimize</tt> option as follows:
6924479Sbinkertn@umich.edu
6934479Sbinkertn@umich.edu<blockquote>
6944479Sbinkertn@umich.edu<pre>
6954479Sbinkertn@umich.edulexer = lex.lex(optimize=1)
6964479Sbinkertn@umich.edu</pre>
6974479Sbinkertn@umich.edu</blockquote>
6984479Sbinkertn@umich.edu
6994479Sbinkertn@umich.eduNext, run Python in its normal operating mode.  When you do
7004479Sbinkertn@umich.eduthis, <tt>lex.py</tt> will write a file called <tt>lextab.py</tt> to
7014479Sbinkertn@umich.eduthe current directory.  This file contains all of the regular
7024479Sbinkertn@umich.eduexpression rules and tables used during lexing.  On subsequent
7034479Sbinkertn@umich.eduexecutions,
7044479Sbinkertn@umich.edu<tt>lextab.py</tt> will simply be imported to build the lexer.  This
7054479Sbinkertn@umich.eduapproach substantially improves the startup time of the lexer and it
7064479Sbinkertn@umich.eduworks in Python's optimized mode.
7074479Sbinkertn@umich.edu
7082632Sstever@eecs.umich.edu<p>
7094479Sbinkertn@umich.eduTo change the name of the lexer-generated file, use the <tt>lextab</tt> keyword argument.  For example:
7104479Sbinkertn@umich.edu
7114479Sbinkertn@umich.edu<blockquote>
7124479Sbinkertn@umich.edu<pre>
7134479Sbinkertn@umich.edulexer = lex.lex(optimize=1,lextab="footab")
7144479Sbinkertn@umich.edu</pre>
7154479Sbinkertn@umich.edu</blockquote>
7164479Sbinkertn@umich.edu
7174479Sbinkertn@umich.eduWhen running in optimized mode, it is important to note that lex disables most error checking.  Thus, this is really only recommended
7184479Sbinkertn@umich.eduif you're sure everything is working correctly and you're ready to start releasing production code.
7194479Sbinkertn@umich.edu
7204479Sbinkertn@umich.edu<H3><a name="ply_nn16"></a>3.13 Debugging</H3>
7214479Sbinkertn@umich.edu
7224479Sbinkertn@umich.edu
7234479Sbinkertn@umich.eduFor the purpose of debugging, you can run <tt>lex()</tt> in a debugging mode as follows:
7244479Sbinkertn@umich.edu
7254479Sbinkertn@umich.edu<blockquote>
7264479Sbinkertn@umich.edu<pre>
7274479Sbinkertn@umich.edulexer = lex.lex(debug=1)
7284479Sbinkertn@umich.edu</pre>
7294479Sbinkertn@umich.edu</blockquote>
7304479Sbinkertn@umich.edu
7314479Sbinkertn@umich.eduThis will result in a large amount of debugging information to be printed including all of the added rules and the master
7324479Sbinkertn@umich.eduregular expressions.
7334479Sbinkertn@umich.edu
7344479Sbinkertn@umich.eduIn addition, <tt>lex.py</tt> comes with a simple main function which
7354479Sbinkertn@umich.eduwill either tokenize input read from standard input or from a file specified
7364479Sbinkertn@umich.eduon the command line. To use it, simply put this in your lexer:
7372632Sstever@eecs.umich.edu
7382632Sstever@eecs.umich.edu<blockquote>
7392632Sstever@eecs.umich.edu<pre>
7402632Sstever@eecs.umich.eduif __name__ == '__main__':
7412632Sstever@eecs.umich.edu     lex.runmain()
7422632Sstever@eecs.umich.edu</pre>
7432632Sstever@eecs.umich.edu</blockquote>
7442632Sstever@eecs.umich.edu
7454479Sbinkertn@umich.edu<H3><a name="ply_nn17"></a>3.14 Alternative specification of lexers</H3>
7464479Sbinkertn@umich.edu
7474479Sbinkertn@umich.edu
7484479Sbinkertn@umich.eduAs shown in the example, lexers are specified all within one Python module.   If you want to
7494479Sbinkertn@umich.eduput token rules in a different module from the one in which you invoke <tt>lex()</tt>, use the
7504479Sbinkertn@umich.edu<tt>module</tt> keyword argument.
7514479Sbinkertn@umich.edu
7524479Sbinkertn@umich.edu<p>
7534479Sbinkertn@umich.eduFor example, you might have a dedicated module that just contains
7544479Sbinkertn@umich.eduthe token rules:
7554479Sbinkertn@umich.edu
7564479Sbinkertn@umich.edu<blockquote>
7574479Sbinkertn@umich.edu<pre>
7584479Sbinkertn@umich.edu# module: tokrules.py
7594479Sbinkertn@umich.edu# This module just contains the lexing rules
7604479Sbinkertn@umich.edu
7614479Sbinkertn@umich.edu# List of token names.   This is always required
7624479Sbinkertn@umich.edutokens = (
7634479Sbinkertn@umich.edu   'NUMBER',
7644479Sbinkertn@umich.edu   'PLUS',
7654479Sbinkertn@umich.edu   'MINUS',
7664479Sbinkertn@umich.edu   'TIMES',
7674479Sbinkertn@umich.edu   'DIVIDE',
7684479Sbinkertn@umich.edu   'LPAREN',
7694479Sbinkertn@umich.edu   'RPAREN',
7704479Sbinkertn@umich.edu)
7714479Sbinkertn@umich.edu
7724479Sbinkertn@umich.edu# Regular expression rules for simple tokens
7734479Sbinkertn@umich.edut_PLUS    = r'\+'
7744479Sbinkertn@umich.edut_MINUS   = r'-'
7754479Sbinkertn@umich.edut_TIMES   = r'\*'
7764479Sbinkertn@umich.edut_DIVIDE  = r'/'
7774479Sbinkertn@umich.edut_LPAREN  = r'\('
7784479Sbinkertn@umich.edut_RPAREN  = r'\)'
7794479Sbinkertn@umich.edu
7804479Sbinkertn@umich.edu# A regular expression rule with some action code
7814479Sbinkertn@umich.edudef t_NUMBER(t):
7824479Sbinkertn@umich.edu    r'\d+'
7834479Sbinkertn@umich.edu    try:
7844479Sbinkertn@umich.edu         t.value = int(t.value)    
7854479Sbinkertn@umich.edu    except ValueError:
7864479Sbinkertn@umich.edu         print "Line %d: Number %s is too large!" % (t.lineno,t.value)
7874479Sbinkertn@umich.edu	 t.value = 0
7884479Sbinkertn@umich.edu    return t
7894479Sbinkertn@umich.edu
7904479Sbinkertn@umich.edu# Define a rule so we can track line numbers
7914479Sbinkertn@umich.edudef t_newline(t):
7924479Sbinkertn@umich.edu    r'\n+'
7934479Sbinkertn@umich.edu    t.lexer.lineno += len(t.value)
7944479Sbinkertn@umich.edu
7954479Sbinkertn@umich.edu# A string containing ignored characters (spaces and tabs)
7964479Sbinkertn@umich.edut_ignore  = ' \t'
7974479Sbinkertn@umich.edu
7984479Sbinkertn@umich.edu# Error handling rule
7994479Sbinkertn@umich.edudef t_error(t):
8004479Sbinkertn@umich.edu    print "Illegal character '%s'" % t.value[0]
8014479Sbinkertn@umich.edu    t.lexer.skip(1)
8024479Sbinkertn@umich.edu</pre>
8034479Sbinkertn@umich.edu</blockquote>
8044479Sbinkertn@umich.edu
8054479Sbinkertn@umich.eduNow, if you wanted to build a tokenizer from these rules from within a different module, you would do the following (shown for Python interactive mode):
8064479Sbinkertn@umich.edu
8074479Sbinkertn@umich.edu<blockquote>
8084479Sbinkertn@umich.edu<pre>
8094479Sbinkertn@umich.edu>>> import tokrules
8104479Sbinkertn@umich.edu>>> <b>lexer = lex.lex(module=tokrules)</b>
8114479Sbinkertn@umich.edu>>> lexer.input("3 + 4")
8124479Sbinkertn@umich.edu>>> lexer.token()
8134479Sbinkertn@umich.eduLexToken(NUMBER,3,1,1,0)
8144479Sbinkertn@umich.edu>>> lexer.token()
8154479Sbinkertn@umich.eduLexToken(PLUS,'+',1,2)
8164479Sbinkertn@umich.edu>>> lexer.token()
8174479Sbinkertn@umich.eduLexToken(NUMBER,4,1,4)
8184479Sbinkertn@umich.edu>>> lexer.token()
8194479Sbinkertn@umich.eduNone
8204479Sbinkertn@umich.edu>>>
8214479Sbinkertn@umich.edu</pre>
8224479Sbinkertn@umich.edu</blockquote>
8234479Sbinkertn@umich.edu
8244479Sbinkertn@umich.eduThe <tt>object</tt> option can be used to define lexers as a class instead of a module.  For example:
8254479Sbinkertn@umich.edu
8264479Sbinkertn@umich.edu<blockquote>
8274479Sbinkertn@umich.edu<pre>
8284479Sbinkertn@umich.eduimport ply.lex as lex
8294479Sbinkertn@umich.edu
8304479Sbinkertn@umich.educlass MyLexer:
8314479Sbinkertn@umich.edu    # List of token names.   This is always required
8324479Sbinkertn@umich.edu    tokens = (
8334479Sbinkertn@umich.edu       'NUMBER',
8344479Sbinkertn@umich.edu       'PLUS',
8354479Sbinkertn@umich.edu       'MINUS',
8364479Sbinkertn@umich.edu       'TIMES',
8374479Sbinkertn@umich.edu       'DIVIDE',
8384479Sbinkertn@umich.edu       'LPAREN',
8394479Sbinkertn@umich.edu       'RPAREN',
8404479Sbinkertn@umich.edu    )
8414479Sbinkertn@umich.edu
8424479Sbinkertn@umich.edu    # Regular expression rules for simple tokens
8434479Sbinkertn@umich.edu    t_PLUS    = r'\+'
8444479Sbinkertn@umich.edu    t_MINUS   = r'-'
8454479Sbinkertn@umich.edu    t_TIMES   = r'\*'
8464479Sbinkertn@umich.edu    t_DIVIDE  = r'/'
8474479Sbinkertn@umich.edu    t_LPAREN  = r'\('
8484479Sbinkertn@umich.edu    t_RPAREN  = r'\)'
8494479Sbinkertn@umich.edu
8504479Sbinkertn@umich.edu    # A regular expression rule with some action code
8514479Sbinkertn@umich.edu    # Note addition of self parameter since we're in a class
8524479Sbinkertn@umich.edu    def t_NUMBER(self,t):
8534479Sbinkertn@umich.edu        r'\d+'
8544479Sbinkertn@umich.edu        try:
8554479Sbinkertn@umich.edu             t.value = int(t.value)    
8564479Sbinkertn@umich.edu        except ValueError:
8574479Sbinkertn@umich.edu             print "Line %d: Number %s is too large!" % (t.lineno,t.value)
8584479Sbinkertn@umich.edu             t.value = 0
8594479Sbinkertn@umich.edu        return t
8604479Sbinkertn@umich.edu
8614479Sbinkertn@umich.edu    # Define a rule so we can track line numbers
8624479Sbinkertn@umich.edu    def t_newline(self,t):
8634479Sbinkertn@umich.edu        r'\n+'
8644479Sbinkertn@umich.edu        t.lexer.lineno += len(t.value)
8654479Sbinkertn@umich.edu
8664479Sbinkertn@umich.edu    # A string containing ignored characters (spaces and tabs)
8674479Sbinkertn@umich.edu    t_ignore  = ' \t'
8684479Sbinkertn@umich.edu
8694479Sbinkertn@umich.edu    # Error handling rule
8704479Sbinkertn@umich.edu    def t_error(self,t):
8714479Sbinkertn@umich.edu        print "Illegal character '%s'" % t.value[0]
8724479Sbinkertn@umich.edu        t.lexer.skip(1)
8734479Sbinkertn@umich.edu
8744479Sbinkertn@umich.edu    <b># Build the lexer
8754479Sbinkertn@umich.edu    def build(self,**kwargs):
8764479Sbinkertn@umich.edu        self.lexer = lex.lex(object=self, **kwargs)</b>
8774479Sbinkertn@umich.edu    
8784479Sbinkertn@umich.edu    # Test it output
8794479Sbinkertn@umich.edu    def test(self,data):
8804479Sbinkertn@umich.edu        self.lexer.input(data)
8814479Sbinkertn@umich.edu        while 1:
8824479Sbinkertn@umich.edu             tok = lexer.token()
8834479Sbinkertn@umich.edu             if not tok: break
8844479Sbinkertn@umich.edu             print tok
8854479Sbinkertn@umich.edu
8864479Sbinkertn@umich.edu# Build the lexer and try it out
8874479Sbinkertn@umich.edum = MyLexer()
8884479Sbinkertn@umich.edum.build()           # Build the lexer
8894479Sbinkertn@umich.edum.test("3 + 4")     # Test it
8904479Sbinkertn@umich.edu</pre>
8914479Sbinkertn@umich.edu</blockquote>
8924479Sbinkertn@umich.edu
8934479Sbinkertn@umich.eduFor reasons that are subtle, you should <em>NOT</em> invoke <tt>lex.lex()</tt> inside the <tt>__init__()</tt> method of your class.  If you
8944479Sbinkertn@umich.edudo, it may cause bizarre behavior if someone tries to duplicate a lexer object.  Keep reading.
8954479Sbinkertn@umich.edu
8964479Sbinkertn@umich.edu<H3><a name="ply_nn18"></a>3.15 Maintaining state</H3>
8974479Sbinkertn@umich.edu
8984479Sbinkertn@umich.edu
8994479Sbinkertn@umich.eduIn your lexer, you may want to maintain a variety of state information.  This might include mode settings, symbol tables, and other details.  There are a few
9004479Sbinkertn@umich.edudifferent ways to handle this situation.  First, you could just keep some global variables:
9014479Sbinkertn@umich.edu
9024479Sbinkertn@umich.edu<blockquote>
9034479Sbinkertn@umich.edu<pre>
9044479Sbinkertn@umich.edunum_count = 0
9054479Sbinkertn@umich.edudef t_NUMBER(t):
9064479Sbinkertn@umich.edu    r'\d+'
9074479Sbinkertn@umich.edu    global num_count
9084479Sbinkertn@umich.edu    num_count += 1
9094479Sbinkertn@umich.edu    try:
9104479Sbinkertn@umich.edu         t.value = int(t.value)    
9114479Sbinkertn@umich.edu    except ValueError:
9124479Sbinkertn@umich.edu         print "Line %d: Number %s is too large!" % (t.lineno,t.value)
9134479Sbinkertn@umich.edu	 t.value = 0
9144479Sbinkertn@umich.edu    return t
9154479Sbinkertn@umich.edu</pre>
9164479Sbinkertn@umich.edu</blockquote>
9174479Sbinkertn@umich.edu
9184479Sbinkertn@umich.eduAlternatively, you can store this information inside the Lexer object created by <tt>lex()</tt>.  To this, you can use the <tt>lexer</tt> attribute
9194479Sbinkertn@umich.eduof tokens passed to the various rules. For example:
9204479Sbinkertn@umich.edu
9214479Sbinkertn@umich.edu<blockquote>
9224479Sbinkertn@umich.edu<pre>
9234479Sbinkertn@umich.edudef t_NUMBER(t):
9244479Sbinkertn@umich.edu    r'\d+'
9254479Sbinkertn@umich.edu    t.lexer.num_count += 1     # Note use of lexer attribute
9264479Sbinkertn@umich.edu    try:
9274479Sbinkertn@umich.edu         t.value = int(t.value)    
9284479Sbinkertn@umich.edu    except ValueError:
9294479Sbinkertn@umich.edu         print "Line %d: Number %s is too large!" % (t.lineno,t.value)
9304479Sbinkertn@umich.edu	 t.value = 0
9314479Sbinkertn@umich.edu    return t
9324479Sbinkertn@umich.edu
9334479Sbinkertn@umich.edulexer = lex.lex()
9344479Sbinkertn@umich.edulexer.num_count = 0            # Set the initial count
9354479Sbinkertn@umich.edu</pre>
9364479Sbinkertn@umich.edu</blockquote>
9374479Sbinkertn@umich.edu
9384479Sbinkertn@umich.eduThis latter approach has the advantage of storing information inside
9394479Sbinkertn@umich.eduthe lexer itself---something that may be useful if multiple instances
9404479Sbinkertn@umich.eduof the same lexer have been created.  However, it may also feel kind
9414479Sbinkertn@umich.eduof "hacky" to the purists.  Just to put their mind at some ease, all
9424479Sbinkertn@umich.eduinternal attributes of the lexer (with the exception of <tt>lineno</tt>) have names that are prefixed
9434479Sbinkertn@umich.eduby <tt>lex</tt> (e.g., <tt>lexdata</tt>,<tt>lexpos</tt>, etc.).  Thus,
9444479Sbinkertn@umich.eduit should be perfectly safe to store attributes in the lexer that
9454479Sbinkertn@umich.edudon't have names starting with that prefix.
9464479Sbinkertn@umich.edu
9474479Sbinkertn@umich.edu<p>
9484479Sbinkertn@umich.eduA third approach is to define the lexer as a class as shown in the previous example:
9494479Sbinkertn@umich.edu
9504479Sbinkertn@umich.edu<blockquote>
9514479Sbinkertn@umich.edu<pre>
9524479Sbinkertn@umich.educlass MyLexer:
9534479Sbinkertn@umich.edu    ...
9544479Sbinkertn@umich.edu    def t_NUMBER(self,t):
9554479Sbinkertn@umich.edu        r'\d+'
9564479Sbinkertn@umich.edu        self.num_count += 1
9574479Sbinkertn@umich.edu        try:
9584479Sbinkertn@umich.edu             t.value = int(t.value)    
9594479Sbinkertn@umich.edu        except ValueError:
9604479Sbinkertn@umich.edu             print "Line %d: Number %s is too large!" % (t.lineno,t.value)
9614479Sbinkertn@umich.edu             t.value = 0
9624479Sbinkertn@umich.edu        return t
9634479Sbinkertn@umich.edu
9644479Sbinkertn@umich.edu    def build(self, **kwargs):
9654479Sbinkertn@umich.edu        self.lexer = lex.lex(object=self,**kwargs)
9664479Sbinkertn@umich.edu
9674479Sbinkertn@umich.edu    def __init__(self):
9684479Sbinkertn@umich.edu        self.num_count = 0
9694479Sbinkertn@umich.edu
9704479Sbinkertn@umich.edu# Create a lexer 
9714479Sbinkertn@umich.edum = MyLexer()
9724479Sbinkertn@umich.edulexer = lex.lex(object=m)
9734479Sbinkertn@umich.edu</pre>
9744479Sbinkertn@umich.edu</blockquote>
9754479Sbinkertn@umich.edu
9764479Sbinkertn@umich.eduThe class approach may be the easiest to manage if your application is going to be creating multiple instances of the same lexer and
9774479Sbinkertn@umich.eduyou need to manage a lot of state.  
9784479Sbinkertn@umich.edu
9794479Sbinkertn@umich.edu<H3><a name="ply_nn19"></a>3.16 Duplicating lexers</H3>
9804479Sbinkertn@umich.edu
9814479Sbinkertn@umich.edu
9824479Sbinkertn@umich.edu<b>NOTE: I am thinking about deprecating this feature.  Post comments on <a href="http://groups.google.com/group/ply-hack">ply-hack@googlegroups.com</a> or send me a private email at dave@dabeaz.com.</b>
9834479Sbinkertn@umich.edu
9844479Sbinkertn@umich.edu<p>
9854479Sbinkertn@umich.eduIf necessary, a lexer object can be quickly duplicated by invoking its <tt>clone()</tt> method.  For example:
9864479Sbinkertn@umich.edu
9874479Sbinkertn@umich.edu<blockquote>
9884479Sbinkertn@umich.edu<pre>
9894479Sbinkertn@umich.edulexer = lex.lex()
9904479Sbinkertn@umich.edu...
9914479Sbinkertn@umich.edunewlexer = lexer.clone()
9924479Sbinkertn@umich.edu</pre>
9934479Sbinkertn@umich.edu</blockquote>
9944479Sbinkertn@umich.edu
9954479Sbinkertn@umich.eduWhen a lexer is cloned, the copy is identical to the original lexer,
9964479Sbinkertn@umich.eduincluding any input text. However, once created, different text can be
9974479Sbinkertn@umich.edufed to the clone which can be used independently.  This capability may
9984479Sbinkertn@umich.edube useful in situations when you are writing a parser/compiler that
9994479Sbinkertn@umich.eduinvolves recursive or reentrant processing.  For instance, if you
10004479Sbinkertn@umich.eduneeded to scan ahead in the input for some reason, you could create a
10014479Sbinkertn@umich.educlone and use it to look ahead.
10024479Sbinkertn@umich.edu
10034479Sbinkertn@umich.edu<p>
10044479Sbinkertn@umich.eduThe advantage of using <tt>clone()</tt> instead of reinvoking <tt>lex()</tt> is
10054479Sbinkertn@umich.eduthat it is significantly faster.  Namely, it is not necessary to re-examine all of the 
10064479Sbinkertn@umich.edutoken rules, build a regular expression, and construct internal tables.  All of this
10074479Sbinkertn@umich.eduinformation can simply be reused in the new lexer.
10084479Sbinkertn@umich.edu
10094479Sbinkertn@umich.edu<p>
10104479Sbinkertn@umich.eduSpecial considerations need to be made when cloning a lexer that is defined as a class.  Previous sections
10114479Sbinkertn@umich.edushowed an example of a class <tt>MyLexer</tt>.  If you have the following code:
10124479Sbinkertn@umich.edu
10134479Sbinkertn@umich.edu<blockquote>
10144479Sbinkertn@umich.edu<pre>
10154479Sbinkertn@umich.edum = MyLexer()
10164479Sbinkertn@umich.edua = lex.lex(object=m)      # Create a lexer
10174479Sbinkertn@umich.edu
10184479Sbinkertn@umich.edub = a.clone()              # Clone the lexer
10194479Sbinkertn@umich.edu</pre>
10204479Sbinkertn@umich.edu</blockquote>
10214479Sbinkertn@umich.edu
10224479Sbinkertn@umich.eduThen both <tt>a</tt> and <tt>b</tt> are going to be bound to the same
10234479Sbinkertn@umich.eduobject <tt>m</tt>.  If the object <tt>m</tt> contains internal state
10244479Sbinkertn@umich.edurelated to lexing, this sharing may lead to quite a bit of confusion. To fix this,
10254479Sbinkertn@umich.eduthe <tt>clone()</tt> method accepts an optional argument that can be used to supply a new object.  This
10264479Sbinkertn@umich.educan be used to clone the lexer and bind it to a new instance.  For example:
10274479Sbinkertn@umich.edu
10284479Sbinkertn@umich.edu<blockquote>
10294479Sbinkertn@umich.edu<pre>
10304479Sbinkertn@umich.edum = MyLexer()              # Create a lexer
10314479Sbinkertn@umich.edua = lex.lex(object=m)
10324479Sbinkertn@umich.edu
10334479Sbinkertn@umich.edu# Create a clone 
10344479Sbinkertn@umich.edun = MyLexer()              # New instance of MyLexer
10354479Sbinkertn@umich.edub = a.clone(n)             # New lexer bound to n
10364479Sbinkertn@umich.edu</pre>
10374479Sbinkertn@umich.edu</blockquote>
10384479Sbinkertn@umich.edu
10394479Sbinkertn@umich.eduIt may make sense to encapsulate all of this inside a method:
10404479Sbinkertn@umich.edu
10414479Sbinkertn@umich.edu<blockquote>
10424479Sbinkertn@umich.edu<pre>
10434479Sbinkertn@umich.educlass MyLexer:
10444479Sbinkertn@umich.edu     ...
10454479Sbinkertn@umich.edu     def clone(self):
10464479Sbinkertn@umich.edu         c = MyLexer()        # Create a new instance of myself
10474479Sbinkertn@umich.edu         # Copy attributes from self to c as appropriate
10484479Sbinkertn@umich.edu         ...
10494479Sbinkertn@umich.edu         # Clone the lexer
10504479Sbinkertn@umich.edu         c.lexer = self.lexer.clone(c)
10514479Sbinkertn@umich.edu         return c
10524479Sbinkertn@umich.edu</pre>
10534479Sbinkertn@umich.edu</blockquote>
10544479Sbinkertn@umich.edu
10554479Sbinkertn@umich.eduThe fact that a new instance of <tt>MyLexer</tt> may be created while cloning a lexer is the reason why you should never
10564479Sbinkertn@umich.eduinvoke <tt>lex.lex()</tt> inside <tt>__init__()</tt>.  If you do, the lexer will be rebuilt from scratch and you lose
10574479Sbinkertn@umich.eduall of the performance benefits of using <tt>clone()</tt> in the first place.
10584479Sbinkertn@umich.edu
10594479Sbinkertn@umich.edu<H3><a name="ply_nn20"></a>3.17 Internal lexer state</H3>
10604479Sbinkertn@umich.edu
10614479Sbinkertn@umich.edu
10624479Sbinkertn@umich.eduA Lexer object <tt>lexer</tt> has a number of internal attributes that may be useful in certain
10634479Sbinkertn@umich.edusituations. 
10644479Sbinkertn@umich.edu
10654479Sbinkertn@umich.edu<p>
10664479Sbinkertn@umich.edu<tt>lexer.lexpos</tt>
10674479Sbinkertn@umich.edu<blockquote>
10684479Sbinkertn@umich.eduThis attribute is an integer that contains the current position within the input text.  If you modify
10694479Sbinkertn@umich.eduthe value, it will change the result of the next call to <tt>token()</tt>.  Within token rule functions, this points
10704479Sbinkertn@umich.eduto the first character <em>after</em> the matched text.  If the value is modified within a rule, the next returned token will be
10714479Sbinkertn@umich.edumatched at the new position.
10724479Sbinkertn@umich.edu</blockquote>
10734479Sbinkertn@umich.edu
10744479Sbinkertn@umich.edu<p>
10754479Sbinkertn@umich.edu<tt>lexer.lineno</tt>
10764479Sbinkertn@umich.edu<blockquote>
10774479Sbinkertn@umich.eduThe current value of the line number attribute stored in the lexer.  This can be modified as needed to
10784479Sbinkertn@umich.educhange the line number.
10794479Sbinkertn@umich.edu</blockquote>
10804479Sbinkertn@umich.edu
10814479Sbinkertn@umich.edu<p>
10824479Sbinkertn@umich.edu<tt>lexer.lexdata</tt>
10834479Sbinkertn@umich.edu<blockquote>
10844479Sbinkertn@umich.eduThe current input text stored in the lexer.  This is the string passed with the <tt>input()</tt> method. It
10854479Sbinkertn@umich.eduwould probably be a bad idea to modify this unless you really know what you're doing.
10864479Sbinkertn@umich.edu</blockquote>
10874479Sbinkertn@umich.edu
10884479Sbinkertn@umich.edu<P>
10894479Sbinkertn@umich.edu<tt>lexer.lexmatch</tt>
10904479Sbinkertn@umich.edu<blockquote>
10914479Sbinkertn@umich.eduThis is the raw <tt>Match</tt> object returned by the Python <tt>re.match()</tt> function (used internally by PLY) for the
10924479Sbinkertn@umich.educurrent token.  If you have written a regular expression that contains named groups, you can use this to retrieve those values.
10934479Sbinkertn@umich.edu</blockquote>
10944479Sbinkertn@umich.edu
10954479Sbinkertn@umich.edu<H3><a name="ply_nn21"></a>3.18 Conditional lexing and start conditions</H3>
10964479Sbinkertn@umich.edu
10974479Sbinkertn@umich.edu
10984479Sbinkertn@umich.eduIn advanced parsing applications, it may be useful to have different
10994479Sbinkertn@umich.edulexing states. For instance, you may want the occurrence of a certain
11004479Sbinkertn@umich.edutoken or syntactic construct to trigger a different kind of lexing.
11014479Sbinkertn@umich.eduPLY supports a feature that allows the underlying lexer to be put into
11024479Sbinkertn@umich.edua series of different states.  Each state can have its own tokens,
11034479Sbinkertn@umich.edulexing rules, and so forth.  The implementation is based largely on
11044479Sbinkertn@umich.eduthe "start condition" feature of GNU flex.  Details of this can be found
11054479Sbinkertn@umich.eduat <a
11064479Sbinkertn@umich.eduhref="http://www.gnu.org/software/flex/manual/html_chapter/flex_11.html">http://www.gnu.org/software/flex/manual/html_chapter/flex_11.html.</a>.
11074479Sbinkertn@umich.edu
11084479Sbinkertn@umich.edu<p>
11094479Sbinkertn@umich.eduTo define a new lexing state, it must first be declared.  This is done by including a "states" declaration in your
11104479Sbinkertn@umich.edulex file.  For example:
11114479Sbinkertn@umich.edu
11124479Sbinkertn@umich.edu<blockquote>
11134479Sbinkertn@umich.edu<pre>
11144479Sbinkertn@umich.edustates = (
11154479Sbinkertn@umich.edu   ('foo','exclusive'),
11164479Sbinkertn@umich.edu   ('bar','inclusive'),
11174479Sbinkertn@umich.edu)
11184479Sbinkertn@umich.edu</pre>
11194479Sbinkertn@umich.edu</blockquote>
11204479Sbinkertn@umich.edu
11214479Sbinkertn@umich.eduThis declaration declares two states, <tt>'foo'</tt>
11224479Sbinkertn@umich.eduand <tt>'bar'</tt>.  States may be of two types; <tt>'exclusive'</tt>
11234479Sbinkertn@umich.eduand <tt>'inclusive'</tt>.  An exclusive state completely overrides the
11244479Sbinkertn@umich.edudefault behavior of the lexer.  That is, lex will only return tokens
11254479Sbinkertn@umich.eduand apply rules defined specifically for that state.  An inclusive
11264479Sbinkertn@umich.edustate adds additional tokens and rules to the default set of rules.
11274479Sbinkertn@umich.eduThus, lex will return both the tokens defined by default in addition
11284479Sbinkertn@umich.eduto those defined for the inclusive state.
11294479Sbinkertn@umich.edu
11304479Sbinkertn@umich.edu<p>
11314479Sbinkertn@umich.eduOnce a state has been declared, tokens and rules are declared by including the
11324479Sbinkertn@umich.edustate name in token/rule declaration.  For example:
11334479Sbinkertn@umich.edu
11344479Sbinkertn@umich.edu<blockquote>
11354479Sbinkertn@umich.edu<pre>
11364479Sbinkertn@umich.edut_foo_NUMBER = r'\d+'                      # Token 'NUMBER' in state 'foo'        
11374479Sbinkertn@umich.edut_bar_ID     = r'[a-zA-Z_][a-zA-Z0-9_]*'   # Token 'ID' in state 'bar'
11384479Sbinkertn@umich.edu
11394479Sbinkertn@umich.edudef t_foo_newline(t):
11404479Sbinkertn@umich.edu    r'\n'
11414479Sbinkertn@umich.edu    t.lexer.lineno += 1
11424479Sbinkertn@umich.edu</pre>
11434479Sbinkertn@umich.edu</blockquote>
11444479Sbinkertn@umich.edu
11454479Sbinkertn@umich.eduA token can be declared in multiple states by including multiple state names in the declaration. For example:
11464479Sbinkertn@umich.edu
11474479Sbinkertn@umich.edu<blockquote>
11484479Sbinkertn@umich.edu<pre>
11494479Sbinkertn@umich.edut_foo_bar_NUMBER = r'\d+'         # Defines token 'NUMBER' in both state 'foo' and 'bar'
11504479Sbinkertn@umich.edu</pre>
11514479Sbinkertn@umich.edu</blockquote>
11524479Sbinkertn@umich.edu
11534479Sbinkertn@umich.eduAlternative, a token can be declared in all states using the 'ANY' in the name.
11544479Sbinkertn@umich.edu
11554479Sbinkertn@umich.edu<blockquote>
11564479Sbinkertn@umich.edu<pre>
11574479Sbinkertn@umich.edut_ANY_NUMBER = r'\d+'         # Defines a token 'NUMBER' in all states
11584479Sbinkertn@umich.edu</pre>
11594479Sbinkertn@umich.edu</blockquote>
11604479Sbinkertn@umich.edu
11614479Sbinkertn@umich.eduIf no state name is supplied, as is normally the case, the token is associated with a special state <tt>'INITIAL'</tt>.  For example,
11624479Sbinkertn@umich.eduthese two declarations are identical:
11634479Sbinkertn@umich.edu
11644479Sbinkertn@umich.edu<blockquote>
11654479Sbinkertn@umich.edu<pre>
11664479Sbinkertn@umich.edut_NUMBER = r'\d+'
11674479Sbinkertn@umich.edut_INITIAL_NUMBER = r'\d+'
11684479Sbinkertn@umich.edu</pre>
11694479Sbinkertn@umich.edu</blockquote>
11704479Sbinkertn@umich.edu
11714479Sbinkertn@umich.edu<p>
11724479Sbinkertn@umich.eduStates are also associated with the special <tt>t_ignore</tt> and <tt>t_error()</tt> declarations.  For example, if a state treats
11734479Sbinkertn@umich.eduthese differently, you can declare:
11744479Sbinkertn@umich.edu
11754479Sbinkertn@umich.edu<blockquote>
11764479Sbinkertn@umich.edu<pre>
11774479Sbinkertn@umich.edut_foo_ignore = " \t\n"       # Ignored characters for state 'foo'
11784479Sbinkertn@umich.edu
11794479Sbinkertn@umich.edudef t_bar_error(t):          # Special error handler for state 'bar'
11804479Sbinkertn@umich.edu    pass 
11814479Sbinkertn@umich.edu</pre>
11824479Sbinkertn@umich.edu</blockquote>
11834479Sbinkertn@umich.edu
11844479Sbinkertn@umich.eduBy default, lexing operates in the <tt>'INITIAL'</tt> state.  This state includes all of the normally defined tokens. 
11854479Sbinkertn@umich.eduFor users who aren't using different states, this fact is completely transparent.   If, during lexing or parsing, you want to change
11864479Sbinkertn@umich.eduthe lexing state, use the <tt>begin()</tt> method.   For example:
11874479Sbinkertn@umich.edu
11884479Sbinkertn@umich.edu<blockquote>
11894479Sbinkertn@umich.edu<pre>
11904479Sbinkertn@umich.edudef t_begin_foo(t):
11914479Sbinkertn@umich.edu    r'start_foo'
11924479Sbinkertn@umich.edu    t.lexer.begin('foo')             # Starts 'foo' state
11934479Sbinkertn@umich.edu</pre>
11944479Sbinkertn@umich.edu</blockquote>
11954479Sbinkertn@umich.edu
11964479Sbinkertn@umich.eduTo get out of a state, you use <tt>begin()</tt> to switch back to the initial state.  For example:
11974479Sbinkertn@umich.edu
11984479Sbinkertn@umich.edu<blockquote>
11994479Sbinkertn@umich.edu<pre>
12004479Sbinkertn@umich.edudef t_foo_end(t):
12014479Sbinkertn@umich.edu    r'end_foo'
12024479Sbinkertn@umich.edu    t.lexer.begin('INITIAL')        # Back to the initial state
12034479Sbinkertn@umich.edu</pre>
12044479Sbinkertn@umich.edu</blockquote>
12054479Sbinkertn@umich.edu
12064479Sbinkertn@umich.eduThe management of states can also be done with a stack.  For example:
12074479Sbinkertn@umich.edu
12084479Sbinkertn@umich.edu<blockquote>
12094479Sbinkertn@umich.edu<pre>
12104479Sbinkertn@umich.edudef t_begin_foo(t):
12114479Sbinkertn@umich.edu    r'start_foo'
12124479Sbinkertn@umich.edu    t.lexer.push_state('foo')             # Starts 'foo' state
12134479Sbinkertn@umich.edu
12144479Sbinkertn@umich.edudef t_foo_end(t):
12154479Sbinkertn@umich.edu    r'end_foo'
12164479Sbinkertn@umich.edu    t.lexer.pop_state()                   # Back to the previous state
12174479Sbinkertn@umich.edu</pre>
12184479Sbinkertn@umich.edu</blockquote>
12194479Sbinkertn@umich.edu
12204479Sbinkertn@umich.edu<p>
12214479Sbinkertn@umich.eduThe use of a stack would be useful in situations where there are many ways of entering a new lexing state and you merely want to go back
12224479Sbinkertn@umich.eduto the previous state afterwards.
12234479Sbinkertn@umich.edu
12244479Sbinkertn@umich.edu<P>
12254479Sbinkertn@umich.eduAn example might help clarify.  Suppose you were writing a parser and you wanted to grab sections of arbitrary C code enclosed by
12264479Sbinkertn@umich.educurly braces.  That is, whenever you encounter a starting brace '{', you want to read all of the enclosed code up to the ending brace '}' 
12274479Sbinkertn@umich.eduand return it as a string.   Doing this with a normal regular expression rule is nearly (if not actually) impossible.  This is because braces can
12284479Sbinkertn@umich.edube nested and can be included in comments and strings.  Thus, simply matching up to the first matching '}' character isn't good enough.  Here is how
12294479Sbinkertn@umich.eduyou might use lexer states to do this:
12304479Sbinkertn@umich.edu
12314479Sbinkertn@umich.edu<blockquote>
12324479Sbinkertn@umich.edu<pre>
12334479Sbinkertn@umich.edu# Declare the state
12344479Sbinkertn@umich.edustates = (
12354479Sbinkertn@umich.edu  ('ccode','exclusive'),
12364479Sbinkertn@umich.edu)
12374479Sbinkertn@umich.edu
12384479Sbinkertn@umich.edu# Match the first {. Enter ccode state.
12394479Sbinkertn@umich.edudef t_ccode(t):
12404479Sbinkertn@umich.edu    r'\{'
12414479Sbinkertn@umich.edu    t.lexer.code_start = t.lexer.lexpos        # Record the starting position
12424479Sbinkertn@umich.edu    t.lexer.level = 1                          # Initial brace level
12434479Sbinkertn@umich.edu    t.lexer.begin('ccode')                     # Enter 'ccode' state
12444479Sbinkertn@umich.edu
12454479Sbinkertn@umich.edu# Rules for the ccode state
12464479Sbinkertn@umich.edudef t_ccode_lbrace(t):     
12474479Sbinkertn@umich.edu    r'\{'
12484479Sbinkertn@umich.edu    t.lexer.level +=1                
12494479Sbinkertn@umich.edu
12504479Sbinkertn@umich.edudef t_ccode_rbrace(t):
12514479Sbinkertn@umich.edu    r'\}'
12524479Sbinkertn@umich.edu    t.lexer.level -=1
12534479Sbinkertn@umich.edu
12544479Sbinkertn@umich.edu    # If closing brace, return the code fragment
12554479Sbinkertn@umich.edu    if t.lexer.level == 0:
12564479Sbinkertn@umich.edu         t.value = t.lexer.lexdata[t.lexer.code_start:t.lexer.lexpos+1]
12574479Sbinkertn@umich.edu         t.type = "CCODE"
12584479Sbinkertn@umich.edu         t.lexer.lineno += t.value.count('\n')
12594479Sbinkertn@umich.edu         t.lexer.begin('INITIAL')           
12604479Sbinkertn@umich.edu         return t
12614479Sbinkertn@umich.edu
12624479Sbinkertn@umich.edu# C or C++ comment (ignore)    
12634479Sbinkertn@umich.edudef t_ccode_comment(t):
12644479Sbinkertn@umich.edu    r'(/\*(.|\n)*?*/)|(//.*)'
12654479Sbinkertn@umich.edu    pass
12664479Sbinkertn@umich.edu
12674479Sbinkertn@umich.edu# C string
12684479Sbinkertn@umich.edudef t_ccode_string(t):
12694479Sbinkertn@umich.edu   r'\"([^\\\n]|(\\.))*?\"'
12704479Sbinkertn@umich.edu
12714479Sbinkertn@umich.edu# C character literal
12724479Sbinkertn@umich.edudef t_ccode_char(t):
12734479Sbinkertn@umich.edu   r'\'([^\\\n]|(\\.))*?\''
12744479Sbinkertn@umich.edu
12754479Sbinkertn@umich.edu# Any sequence of non-whitespace characters (not braces, strings)
12764479Sbinkertn@umich.edudef t_ccode_nonspace(t):
12774479Sbinkertn@umich.edu   r'[^\s\{\}\'\"]+'
12784479Sbinkertn@umich.edu
12794479Sbinkertn@umich.edu# Ignored characters (whitespace)
12804479Sbinkertn@umich.edut_ccode_ignore = " \t\n"
12814479Sbinkertn@umich.edu
12824479Sbinkertn@umich.edu# For bad characters, we just skip over it
12834479Sbinkertn@umich.edudef t_ccode_error(t):
12844479Sbinkertn@umich.edu    t.lexer.skip(1)
12854479Sbinkertn@umich.edu</pre>
12864479Sbinkertn@umich.edu</blockquote>
12874479Sbinkertn@umich.edu
12884479Sbinkertn@umich.eduIn this example, the occurrence of the first '{' causes the lexer to record the starting position and enter a new state <tt>'ccode'</tt>.  A collection of rules then match
12894479Sbinkertn@umich.eduvarious parts of the input that follow (comments, strings, etc.).  All of these rules merely discard the token (by not returning a value).
12904479Sbinkertn@umich.eduHowever, if the closing right brace is encountered, the rule <tt>t_ccode_rbrace</tt> collects all of the code (using the earlier recorded starting
12914479Sbinkertn@umich.eduposition), stores it, and returns a token 'CCODE' containing all of that text.  When returning the token, the lexing state is restored back to its
12924479Sbinkertn@umich.eduinitial state.
12934479Sbinkertn@umich.edu
12944479Sbinkertn@umich.edu<H3><a name="ply_nn21"></a>3.19 Miscellaneous Issues</H3>
12954479Sbinkertn@umich.edu
12964479Sbinkertn@umich.edu
12974479Sbinkertn@umich.edu<P>
12984479Sbinkertn@umich.edu<li>The lexer requires input to be supplied as a single input string.  Since most machines have more than enough memory, this 
12994479Sbinkertn@umich.edurarely presents a performance concern.  However, it means that the lexer currently can't be used with streaming data
13004479Sbinkertn@umich.edusuch as open files or sockets.  This limitation is primarily a side-effect of using the <tt>re</tt> module.
13014479Sbinkertn@umich.edu
13024479Sbinkertn@umich.edu<p>
13034479Sbinkertn@umich.edu<li>The lexer should work properly with both Unicode strings given as token and pattern matching rules as
13044479Sbinkertn@umich.eduwell as for input text.
13054479Sbinkertn@umich.edu
13064479Sbinkertn@umich.edu<p>
13074479Sbinkertn@umich.edu<li>If you need to supply optional flags to the re.compile() function, use the reflags option to lex.  For example:
13084479Sbinkertn@umich.edu
13094479Sbinkertn@umich.edu<blockquote>
13104479Sbinkertn@umich.edu<pre>
13114479Sbinkertn@umich.edulex.lex(reflags=re.UNICODE)
13124479Sbinkertn@umich.edu</pre>
13134479Sbinkertn@umich.edu</blockquote>
13142632Sstever@eecs.umich.edu
13152632Sstever@eecs.umich.edu<p>
13162632Sstever@eecs.umich.edu<li>Since the lexer is written entirely in Python, its performance is
13172632Sstever@eecs.umich.edulargely determined by that of the Python <tt>re</tt> module.  Although
13182632Sstever@eecs.umich.eduthe lexer has been written to be as efficient as possible, it's not
13194479Sbinkertn@umich.edublazingly fast when used on very large input files.  If
13202632Sstever@eecs.umich.eduperformance is concern, you might consider upgrading to the most
13212632Sstever@eecs.umich.edurecent version of Python, creating a hand-written lexer, or offloading
13224479Sbinkertn@umich.eduthe lexer into a C extension module.  
13234479Sbinkertn@umich.edu
13244479Sbinkertn@umich.edu<p>
13254479Sbinkertn@umich.eduIf you are going to create a hand-written lexer and you plan to use it with <tt>yacc.py</tt>, 
13264479Sbinkertn@umich.eduit only needs to conform to the following requirements:
13274479Sbinkertn@umich.edu
13284479Sbinkertn@umich.edu<ul>
13294479Sbinkertn@umich.edu<li>It must provide a <tt>token()</tt> method that returns the next token or <tt>None</tt> if no more
13304479Sbinkertn@umich.edutokens are available.
13314479Sbinkertn@umich.edu<li>The <tt>token()</tt> method must return an object <tt>tok</tt> that has <tt>type</tt> and <tt>value</tt> attributes.
13322632Sstever@eecs.umich.edu</ul>
13332632Sstever@eecs.umich.edu
13344479Sbinkertn@umich.edu<H2><a name="ply_nn22"></a>4. Parsing basics</H2>
13354479Sbinkertn@umich.edu
13362632Sstever@eecs.umich.edu
13372632Sstever@eecs.umich.edu<tt>yacc.py</tt> is used to parse language syntax.  Before showing an
13382632Sstever@eecs.umich.eduexample, there are a few important bits of background that must be
13394479Sbinkertn@umich.edumentioned.  First, <em>syntax</em> is usually specified in terms of a BNF grammar.
13404479Sbinkertn@umich.eduFor example, if you wanted to parse
13412632Sstever@eecs.umich.edusimple arithmetic expressions, you might first write an unambiguous
13422632Sstever@eecs.umich.edugrammar specification like this:
13432632Sstever@eecs.umich.edu
13442632Sstever@eecs.umich.edu<blockquote>
13452632Sstever@eecs.umich.edu<pre> 
13462632Sstever@eecs.umich.eduexpression : expression + term
13472632Sstever@eecs.umich.edu           | expression - term
13482632Sstever@eecs.umich.edu           | term
13492632Sstever@eecs.umich.edu
13502632Sstever@eecs.umich.eduterm       : term * factor
13512632Sstever@eecs.umich.edu           | term / factor
13522632Sstever@eecs.umich.edu           | factor
13532632Sstever@eecs.umich.edu
13542632Sstever@eecs.umich.edufactor     : NUMBER
13552632Sstever@eecs.umich.edu           | ( expression )
13562632Sstever@eecs.umich.edu</pre>
13572632Sstever@eecs.umich.edu</blockquote>
13582632Sstever@eecs.umich.edu
13594479Sbinkertn@umich.eduIn the grammar, symbols such as <tt>NUMBER</tt>, <tt>+</tt>, <tt>-</tt>, <tt>*</tt>, and <tt>/</tt> are known
13604479Sbinkertn@umich.eduas <em>terminals</em> and correspond to raw input tokens.  Identifiers such as <tt>term</tt> and <tt>factor</tt> refer to more
13614479Sbinkertn@umich.educomplex rules, typically comprised of a collection of tokens.  These identifiers are known as <em>non-terminals</em>.
13624479Sbinkertn@umich.edu<P>
13634479Sbinkertn@umich.eduThe semantic behavior of a language is often specified using a
13642632Sstever@eecs.umich.edutechnique known as syntax directed translation.  In syntax directed
13652632Sstever@eecs.umich.edutranslation, attributes are attached to each symbol in a given grammar
13662632Sstever@eecs.umich.edurule along with an action.  Whenever a particular grammar rule is
13672632Sstever@eecs.umich.edurecognized, the action describes what to do.  For example, given the
13682632Sstever@eecs.umich.eduexpression grammar above, you might write the specification for a
13692632Sstever@eecs.umich.edusimple calculator like this:
13702632Sstever@eecs.umich.edu
13712632Sstever@eecs.umich.edu<blockquote>
13722632Sstever@eecs.umich.edu<pre> 
13732632Sstever@eecs.umich.eduGrammar                             Action
13742632Sstever@eecs.umich.edu--------------------------------    -------------------------------------------- 
13752632Sstever@eecs.umich.eduexpression0 : expression1 + term    expression0.val = expression1.val + term.val
13762632Sstever@eecs.umich.edu            | expression1 - term    expression0.val = expression1.val - term.val
13772632Sstever@eecs.umich.edu            | term                  expression0.val = term.val
13782632Sstever@eecs.umich.edu
13792632Sstever@eecs.umich.eduterm0       : term1 * factor        term0.val = term1.val * factor.val
13802632Sstever@eecs.umich.edu            | term1 / factor        term0.val = term1.val / factor.val
13812632Sstever@eecs.umich.edu            | factor                term0.val = factor.val
13822632Sstever@eecs.umich.edu
13832632Sstever@eecs.umich.edufactor      : NUMBER                factor.val = int(NUMBER.lexval)
13842632Sstever@eecs.umich.edu            | ( expression )        factor.val = expression.val
13852632Sstever@eecs.umich.edu</pre>
13862632Sstever@eecs.umich.edu</blockquote>
13872632Sstever@eecs.umich.edu
13884479Sbinkertn@umich.eduA good way to think about syntax directed translation is to simply think of each symbol in the grammar as some
13894479Sbinkertn@umich.edukind of object.  The semantics of the language are then expressed as a collection of methods/operations on these
13904479Sbinkertn@umich.eduobjects. 
13914479Sbinkertn@umich.edu
13924479Sbinkertn@umich.edu<p>
13934479Sbinkertn@umich.eduYacc uses a parsing technique known as LR-parsing or shift-reduce parsing.  LR parsing is a
13942632Sstever@eecs.umich.edubottom up technique that tries to recognize the right-hand-side of various grammar rules.
13952632Sstever@eecs.umich.eduWhenever a valid right-hand-side is found in the input, the appropriate action code is triggered and the
13962632Sstever@eecs.umich.edugrammar symbols are replaced by the grammar symbol on the left-hand-side. 
13972632Sstever@eecs.umich.edu
13982632Sstever@eecs.umich.edu<p>
13992632Sstever@eecs.umich.eduLR parsing is commonly implemented by shifting grammar symbols onto a stack and looking at the stack and the next
14002632Sstever@eecs.umich.eduinput token for patterns.   The details of the algorithm can be found in a compiler text, but the
14012632Sstever@eecs.umich.edufollowing example illustrates the steps that are performed if you wanted to parse the expression 
14022632Sstever@eecs.umich.edu<tt>3 + 5 * (10 - 20)</tt> using the grammar defined above:
14032632Sstever@eecs.umich.edu
14042632Sstever@eecs.umich.edu<blockquote>
14052632Sstever@eecs.umich.edu<pre>
14062632Sstever@eecs.umich.eduStep Symbol Stack           Input Tokens            Action
14072632Sstever@eecs.umich.edu---- ---------------------  ---------------------   -------------------------------
14082632Sstever@eecs.umich.edu1    $                      3 + 5 * ( 10 - 20 )$    Shift 3
14092632Sstever@eecs.umich.edu2    $ 3                      + 5 * ( 10 - 20 )$    Reduce factor : NUMBER
14102632Sstever@eecs.umich.edu3    $ factor                 + 5 * ( 10 - 20 )$    Reduce term   : factor
14112632Sstever@eecs.umich.edu4    $ term                   + 5 * ( 10 - 20 )$    Reduce expr : term
14122632Sstever@eecs.umich.edu5    $ expr                   + 5 * ( 10 - 20 )$    Shift +
14132632Sstever@eecs.umich.edu6    $ expr +                   5 * ( 10 - 20 )$    Shift 5
14142632Sstever@eecs.umich.edu7    $ expr + 5                   * ( 10 - 20 )$    Reduce factor : NUMBER
14152632Sstever@eecs.umich.edu8    $ expr + factor              * ( 10 - 20 )$    Reduce term   : factor
14162632Sstever@eecs.umich.edu9    $ expr + term                * ( 10 - 20 )$    Shift *
14172632Sstever@eecs.umich.edu10   $ expr + term *                ( 10 - 20 )$    Shift (
14182632Sstever@eecs.umich.edu11   $ expr + term * (                10 - 20 )$    Shift 10
14192632Sstever@eecs.umich.edu12   $ expr + term * ( 10                - 20 )$    Reduce factor : NUMBER
14202632Sstever@eecs.umich.edu13   $ expr + term * ( factor            - 20 )$    Reduce term : factor
14212632Sstever@eecs.umich.edu14   $ expr + term * ( term              - 20 )$    Reduce expr : term
14222632Sstever@eecs.umich.edu15   $ expr + term * ( expr              - 20 )$    Shift -
14232632Sstever@eecs.umich.edu16   $ expr + term * ( expr -              20 )$    Shift 20
14242632Sstever@eecs.umich.edu17   $ expr + term * ( expr - 20              )$    Reduce factor : NUMBER
14252632Sstever@eecs.umich.edu18   $ expr + term * ( expr - factor          )$    Reduce term : factor
14262632Sstever@eecs.umich.edu19   $ expr + term * ( expr - term            )$    Reduce expr : expr - term
14272632Sstever@eecs.umich.edu20   $ expr + term * ( expr                   )$    Shift )
14282632Sstever@eecs.umich.edu21   $ expr + term * ( expr )                  $    Reduce factor : (expr)
14292632Sstever@eecs.umich.edu22   $ expr + term * factor                    $    Reduce term : term * factor
14302632Sstever@eecs.umich.edu23   $ expr + term                             $    Reduce expr : expr + term
14312632Sstever@eecs.umich.edu24   $ expr                                    $    Reduce expr
14322632Sstever@eecs.umich.edu25   $                                         $    Success!
14332632Sstever@eecs.umich.edu</pre>
14342632Sstever@eecs.umich.edu</blockquote>
14352632Sstever@eecs.umich.edu
14362632Sstever@eecs.umich.eduWhen parsing the expression, an underlying state machine and the current input token determine what to do next.  
14372632Sstever@eecs.umich.eduIf the next token looks like part of a valid grammar rule (based on other items on the stack), it is generally shifted
14382632Sstever@eecs.umich.eduonto the stack.  If the top of the stack contains a valid right-hand-side of a grammar rule, it is
14392632Sstever@eecs.umich.eduusually "reduced" and the symbols replaced with the symbol on the left-hand-side.  When this reduction occurs, the
14402632Sstever@eecs.umich.eduappropriate action is triggered (if defined).  If the input token can't be shifted and the top of stack doesn't match
14412632Sstever@eecs.umich.eduany grammar rules, a syntax error has occurred and the parser must take some kind of recovery step (or bail out).
14422632Sstever@eecs.umich.edu
14432632Sstever@eecs.umich.edu<p>
14444479Sbinkertn@umich.eduIt is important to note that the underlying implementation is built around a large finite-state machine that is encoded
14454479Sbinkertn@umich.eduin a collection of tables. The construction of these tables is quite complicated and beyond the scope of this discussion.
14462632Sstever@eecs.umich.eduHowever, subtle details of this process explain why, in the example above, the parser chooses to shift a token
14472632Sstever@eecs.umich.eduonto the stack in step 9 rather than reducing the rule <tt>expr : expr + term</tt>.
14482632Sstever@eecs.umich.edu
14494479Sbinkertn@umich.edu<H2><a name="ply_nn23"></a>5. Yacc reference</H2>
14504479Sbinkertn@umich.edu
14514479Sbinkertn@umich.edu
14524479Sbinkertn@umich.eduThis section describes how to use write parsers in PLY.
14534479Sbinkertn@umich.edu
14544479Sbinkertn@umich.edu<H3><a name="ply_nn24"></a>5.1 An example</H3>
14554479Sbinkertn@umich.edu
14562632Sstever@eecs.umich.edu
14572632Sstever@eecs.umich.eduSuppose you wanted to make a grammar for simple arithmetic expressions as previously described.   Here is
14582632Sstever@eecs.umich.eduhow you would do it with <tt>yacc.py</tt>:
14592632Sstever@eecs.umich.edu
14602632Sstever@eecs.umich.edu<blockquote>
14612632Sstever@eecs.umich.edu<pre>
14622632Sstever@eecs.umich.edu# Yacc example
14632632Sstever@eecs.umich.edu
14644479Sbinkertn@umich.eduimport ply.yacc as yacc
14652632Sstever@eecs.umich.edu
14662632Sstever@eecs.umich.edu# Get the token map from the lexer.  This is required.
14672632Sstever@eecs.umich.edufrom calclex import tokens
14682632Sstever@eecs.umich.edu
14694479Sbinkertn@umich.edudef p_expression_plus(p):
14702632Sstever@eecs.umich.edu    'expression : expression PLUS term'
14714479Sbinkertn@umich.edu    p[0] = p[1] + p[3]
14724479Sbinkertn@umich.edu
14734479Sbinkertn@umich.edudef p_expression_minus(p):
14742632Sstever@eecs.umich.edu    'expression : expression MINUS term'
14754479Sbinkertn@umich.edu    p[0] = p[1] - p[3]
14764479Sbinkertn@umich.edu
14774479Sbinkertn@umich.edudef p_expression_term(p):
14782632Sstever@eecs.umich.edu    'expression : term'
14794479Sbinkertn@umich.edu    p[0] = p[1]
14804479Sbinkertn@umich.edu
14814479Sbinkertn@umich.edudef p_term_times(p):
14822632Sstever@eecs.umich.edu    'term : term TIMES factor'
14834479Sbinkertn@umich.edu    p[0] = p[1] * p[3]
14844479Sbinkertn@umich.edu
14854479Sbinkertn@umich.edudef p_term_div(p):
14862632Sstever@eecs.umich.edu    'term : term DIVIDE factor'
14874479Sbinkertn@umich.edu    p[0] = p[1] / p[3]
14884479Sbinkertn@umich.edu
14894479Sbinkertn@umich.edudef p_term_factor(p):
14902632Sstever@eecs.umich.edu    'term : factor'
14914479Sbinkertn@umich.edu    p[0] = p[1]
14924479Sbinkertn@umich.edu
14934479Sbinkertn@umich.edudef p_factor_num(p):
14942632Sstever@eecs.umich.edu    'factor : NUMBER'
14954479Sbinkertn@umich.edu    p[0] = p[1]
14964479Sbinkertn@umich.edu
14974479Sbinkertn@umich.edudef p_factor_expr(p):
14982632Sstever@eecs.umich.edu    'factor : LPAREN expression RPAREN'
14994479Sbinkertn@umich.edu    p[0] = p[2]
15002632Sstever@eecs.umich.edu
15012632Sstever@eecs.umich.edu# Error rule for syntax errors
15024479Sbinkertn@umich.edudef p_error(p):
15032632Sstever@eecs.umich.edu    print "Syntax error in input!"
15042632Sstever@eecs.umich.edu
15052632Sstever@eecs.umich.edu# Build the parser
15062632Sstever@eecs.umich.eduyacc.yacc()
15072632Sstever@eecs.umich.edu
15084479Sbinkertn@umich.edu# Use this if you want to build the parser using SLR instead of LALR
15094479Sbinkertn@umich.edu# yacc.yacc(method="SLR")
15104479Sbinkertn@umich.edu
15112632Sstever@eecs.umich.eduwhile 1:
15122632Sstever@eecs.umich.edu   try:
15132632Sstever@eecs.umich.edu       s = raw_input('calc > ')
15142632Sstever@eecs.umich.edu   except EOFError:
15152632Sstever@eecs.umich.edu       break
15162632Sstever@eecs.umich.edu   if not s: continue
15172632Sstever@eecs.umich.edu   result = yacc.parse(s)
15182632Sstever@eecs.umich.edu   print result
15192632Sstever@eecs.umich.edu</pre>
15202632Sstever@eecs.umich.edu</blockquote>
15212632Sstever@eecs.umich.edu
15222632Sstever@eecs.umich.eduIn this example, each grammar rule is defined by a Python function where the docstring to that function contains the
15234479Sbinkertn@umich.eduappropriate context-free grammar specification.  Each function accepts a single
15244479Sbinkertn@umich.eduargument <tt>p</tt> that is a sequence containing the values of each grammar symbol in the corresponding rule.  The values of
15254479Sbinkertn@umich.edu<tt>p[i]</tt> are mapped to grammar symbols as shown here:
15262632Sstever@eecs.umich.edu
15272632Sstever@eecs.umich.edu<blockquote>
15282632Sstever@eecs.umich.edu<pre>
15294479Sbinkertn@umich.edudef p_expression_plus(p):
15302632Sstever@eecs.umich.edu    'expression : expression PLUS term'
15312632Sstever@eecs.umich.edu    #   ^            ^        ^    ^
15324479Sbinkertn@umich.edu    #  p[0]         p[1]     p[2] p[3]
15334479Sbinkertn@umich.edu
15344479Sbinkertn@umich.edu    p[0] = p[1] + p[3]
15352632Sstever@eecs.umich.edu</pre>
15362632Sstever@eecs.umich.edu</blockquote>
15372632Sstever@eecs.umich.edu
15384479Sbinkertn@umich.eduFor tokens, the "value" of the corresponding <tt>p[i]</tt> is the
15394479Sbinkertn@umich.edu<em>same</em> as the <tt>p.value</tt> attribute assigned
15402632Sstever@eecs.umich.eduin the lexer module.  For non-terminals, the value is determined by
15414479Sbinkertn@umich.eduwhatever is placed in <tt>p[0]</tt> when rules are reduced.  This
15422632Sstever@eecs.umich.eduvalue can be anything at all.  However, it probably most common for
15432632Sstever@eecs.umich.eduthe value to be a simple Python type, a tuple, or an instance.  In this example, we
15442632Sstever@eecs.umich.eduare relying on the fact that the <tt>NUMBER</tt> token stores an integer value in its value
15452632Sstever@eecs.umich.edufield.  All of the other rules simply perform various types of integer operations and store
15462632Sstever@eecs.umich.eduthe result.
15472632Sstever@eecs.umich.edu
15484479Sbinkertn@umich.edu<P>
15494479Sbinkertn@umich.eduNote: The use of negative indices have a special meaning in yacc---specially <tt>p[-1]</tt> does
15504479Sbinkertn@umich.edunot have the same value as <tt>p[3]</tt> in this example.  Please see the section on "Embedded Actions" for further
15514479Sbinkertn@umich.edudetails.
15524479Sbinkertn@umich.edu
15532632Sstever@eecs.umich.edu<p>
15542632Sstever@eecs.umich.eduThe first rule defined in the yacc specification determines the starting grammar
15552632Sstever@eecs.umich.edusymbol (in this case, a rule for <tt>expression</tt> appears first).  Whenever
15562632Sstever@eecs.umich.eduthe starting rule is reduced by the parser and no more input is available, parsing 
15572632Sstever@eecs.umich.edustops and the final value is returned (this value will be whatever the top-most rule
15584479Sbinkertn@umich.eduplaced in <tt>p[0]</tt>). Note: an alternative starting symbol can be specified using the <tt>start</tt> keyword argument to
15594479Sbinkertn@umich.edu<tt>yacc()</tt>.
15604479Sbinkertn@umich.edu
15614479Sbinkertn@umich.edu<p>The <tt>p_error(p)</tt> rule is defined to catch syntax errors.  See the error handling section
15622632Sstever@eecs.umich.edubelow for more detail.
15632632Sstever@eecs.umich.edu
15642632Sstever@eecs.umich.edu<p>
15652632Sstever@eecs.umich.eduTo build the parser, call the <tt>yacc.yacc()</tt> function.  This function
15662632Sstever@eecs.umich.edulooks at the module and attempts to construct all of the LR parsing tables for the grammar
15672632Sstever@eecs.umich.eduyou have specified.   The first time <tt>yacc.yacc()</tt> is invoked, you will get a message
15682632Sstever@eecs.umich.edusuch as this:
15692632Sstever@eecs.umich.edu
15702632Sstever@eecs.umich.edu<blockquote>
15712632Sstever@eecs.umich.edu<pre>
15722632Sstever@eecs.umich.edu$ python calcparse.py
15734479Sbinkertn@umich.eduyacc: Generating LALR parsing table...  
15742632Sstever@eecs.umich.educalc > 
15752632Sstever@eecs.umich.edu</pre>
15762632Sstever@eecs.umich.edu</blockquote>
15772632Sstever@eecs.umich.edu
15782632Sstever@eecs.umich.eduSince table construction is relatively expensive (especially for large
15792632Sstever@eecs.umich.edugrammars), the resulting parsing table is written to the current
15802632Sstever@eecs.umich.edudirectory in a file called <tt>parsetab.py</tt>.  In addition, a
15812632Sstever@eecs.umich.edudebugging file called <tt>parser.out</tt> is created.  On subsequent
15822632Sstever@eecs.umich.eduexecutions, <tt>yacc</tt> will reload the table from
15832632Sstever@eecs.umich.edu<tt>parsetab.py</tt> unless it has detected a change in the underlying
15842632Sstever@eecs.umich.edugrammar (in which case the tables and <tt>parsetab.py</tt> file are
15854479Sbinkertn@umich.eduregenerated).   Note: The names of parser output files can be changed if necessary.  See the notes that follow later.
15862632Sstever@eecs.umich.edu
15872632Sstever@eecs.umich.edu<p>
15882632Sstever@eecs.umich.eduIf any errors are detected in your grammar specification, <tt>yacc.py</tt> will produce
15892632Sstever@eecs.umich.edudiagnostic messages and possibly raise an exception.  Some of the errors that can be detected include:
15902632Sstever@eecs.umich.edu
15912632Sstever@eecs.umich.edu<ul>
15922632Sstever@eecs.umich.edu<li>Duplicated function names (if more than one rule function have the same name in the grammar file).
15932632Sstever@eecs.umich.edu<li>Shift/reduce and reduce/reduce conflicts generated by ambiguous grammars.
15942632Sstever@eecs.umich.edu<li>Badly specified grammar rules.
15952632Sstever@eecs.umich.edu<li>Infinite recursion (rules that can never terminate).
15962632Sstever@eecs.umich.edu<li>Unused rules and tokens
15972632Sstever@eecs.umich.edu<li>Undefined rules and tokens
15982632Sstever@eecs.umich.edu</ul>
15992632Sstever@eecs.umich.edu
16002632Sstever@eecs.umich.eduThe next few sections now discuss a few finer points of grammar construction.
16012632Sstever@eecs.umich.edu
16024479Sbinkertn@umich.edu<H3><a name="ply_nn25"></a>5.2 Combining Grammar Rule Functions</H3>
16034479Sbinkertn@umich.edu
16042632Sstever@eecs.umich.edu
16052632Sstever@eecs.umich.eduWhen grammar rules are similar, they can be combined into a single function.
16062632Sstever@eecs.umich.eduFor example, consider the two rules in our earlier example:
16072632Sstever@eecs.umich.edu
16082632Sstever@eecs.umich.edu<blockquote>
16092632Sstever@eecs.umich.edu<pre>
16104479Sbinkertn@umich.edudef p_expression_plus(p):
16112632Sstever@eecs.umich.edu    'expression : expression PLUS term'
16124479Sbinkertn@umich.edu    p[0] = p[1] + p[3]
16132632Sstever@eecs.umich.edu
16142632Sstever@eecs.umich.edudef p_expression_minus(t):
16152632Sstever@eecs.umich.edu    'expression : expression MINUS term'
16164479Sbinkertn@umich.edu    p[0] = p[1] - p[3]
16172632Sstever@eecs.umich.edu</pre>
16182632Sstever@eecs.umich.edu</blockquote>
16192632Sstever@eecs.umich.edu
16202632Sstever@eecs.umich.eduInstead of writing two functions, you might write a single function like this:
16212632Sstever@eecs.umich.edu
16222632Sstever@eecs.umich.edu<blockquote>
16232632Sstever@eecs.umich.edu<pre>
16244479Sbinkertn@umich.edudef p_expression(p):
16252632Sstever@eecs.umich.edu    '''expression : expression PLUS term
16262632Sstever@eecs.umich.edu                  | expression MINUS term'''
16274479Sbinkertn@umich.edu    if p[2] == '+':
16284479Sbinkertn@umich.edu        p[0] = p[1] + p[3]
16294479Sbinkertn@umich.edu    elif p[2] == '-':
16304479Sbinkertn@umich.edu        p[0] = p[1] - p[3]
16312632Sstever@eecs.umich.edu</pre>
16322632Sstever@eecs.umich.edu</blockquote>
16332632Sstever@eecs.umich.edu
16342632Sstever@eecs.umich.eduIn general, the doc string for any given function can contain multiple grammar rules.  So, it would
16352632Sstever@eecs.umich.eduhave also been legal (although possibly confusing) to write this:
16362632Sstever@eecs.umich.edu
16372632Sstever@eecs.umich.edu<blockquote>
16382632Sstever@eecs.umich.edu<pre>
16394479Sbinkertn@umich.edudef p_binary_operators(p):
16402632Sstever@eecs.umich.edu    '''expression : expression PLUS term
16412632Sstever@eecs.umich.edu                  | expression MINUS term
16422632Sstever@eecs.umich.edu       term       : term TIMES factor
16432632Sstever@eecs.umich.edu                  | term DIVIDE factor'''
16444479Sbinkertn@umich.edu    if p[2] == '+':
16454479Sbinkertn@umich.edu        p[0] = p[1] + p[3]
16464479Sbinkertn@umich.edu    elif p[2] == '-':
16474479Sbinkertn@umich.edu        p[0] = p[1] - p[3]
16484479Sbinkertn@umich.edu    elif p[2] == '*':
16494479Sbinkertn@umich.edu        p[0] = p[1] * p[3]
16504479Sbinkertn@umich.edu    elif p[2] == '/':
16514479Sbinkertn@umich.edu        p[0] = p[1] / p[3]
16522632Sstever@eecs.umich.edu</pre>
16532632Sstever@eecs.umich.edu</blockquote>
16542632Sstever@eecs.umich.edu
16552632Sstever@eecs.umich.eduWhen combining grammar rules into a single function, it is usually a good idea for all of the rules to have
16562632Sstever@eecs.umich.edua similar structure (e.g., the same number of terms).  Otherwise, the corresponding action code may be more 
16574479Sbinkertn@umich.educomplicated than necessary.  However, it is possible to handle simple cases using len().  For example:
16582632Sstever@eecs.umich.edu
16592632Sstever@eecs.umich.edu<blockquote>
16602632Sstever@eecs.umich.edu<pre>
16614479Sbinkertn@umich.edudef p_expressions(p):
16624479Sbinkertn@umich.edu    '''expression : expression MINUS expression
16634479Sbinkertn@umich.edu                  | MINUS expression'''
16644479Sbinkertn@umich.edu    if (len(p) == 4):
16654479Sbinkertn@umich.edu        p[0] = p[1] - p[3]
16664479Sbinkertn@umich.edu    elif (len(p) == 3):
16674479Sbinkertn@umich.edu        p[0] = -p[2]
16684479Sbinkertn@umich.edu</pre>
16694479Sbinkertn@umich.edu</blockquote>
16704479Sbinkertn@umich.edu
16714479Sbinkertn@umich.edu<H3><a name="ply_nn26"></a>5.3 Character Literals</H3>
16724479Sbinkertn@umich.edu
16734479Sbinkertn@umich.edu
16744479Sbinkertn@umich.eduIf desired, a grammar may contain tokens defined as single character literals.   For example:
16754479Sbinkertn@umich.edu
16764479Sbinkertn@umich.edu<blockquote>
16774479Sbinkertn@umich.edu<pre>
16784479Sbinkertn@umich.edudef p_binary_operators(p):
16794479Sbinkertn@umich.edu    '''expression : expression '+' term
16804479Sbinkertn@umich.edu                  | expression '-' term
16814479Sbinkertn@umich.edu       term       : term '*' factor
16824479Sbinkertn@umich.edu                  | term '/' factor'''
16834479Sbinkertn@umich.edu    if p[2] == '+':
16844479Sbinkertn@umich.edu        p[0] = p[1] + p[3]
16854479Sbinkertn@umich.edu    elif p[2] == '-':
16864479Sbinkertn@umich.edu        p[0] = p[1] - p[3]
16874479Sbinkertn@umich.edu    elif p[2] == '*':
16884479Sbinkertn@umich.edu        p[0] = p[1] * p[3]
16894479Sbinkertn@umich.edu    elif p[2] == '/':
16904479Sbinkertn@umich.edu        p[0] = p[1] / p[3]
16914479Sbinkertn@umich.edu</pre>
16924479Sbinkertn@umich.edu</blockquote>
16934479Sbinkertn@umich.edu
16944479Sbinkertn@umich.eduA character literal must be enclosed in quotes such as <tt>'+'</tt>.  In addition, if literals are used, they must be declared in the
16954479Sbinkertn@umich.educorresponding <tt>lex</tt> file through the use of a special <tt>literals</tt> declaration.
16964479Sbinkertn@umich.edu
16974479Sbinkertn@umich.edu<blockquote>
16984479Sbinkertn@umich.edu<pre>
16994479Sbinkertn@umich.edu# Literals.  Should be placed in module given to lex()
17004479Sbinkertn@umich.eduliterals = ['+','-','*','/' ]
17014479Sbinkertn@umich.edu</pre>
17024479Sbinkertn@umich.edu</blockquote>
17034479Sbinkertn@umich.edu
17044479Sbinkertn@umich.edu<b>Character literals are limited to a single character</b>.  Thus, it is not legal to specify literals such as <tt>'&lt;='</tt> or <tt>'=='</tt>.  For this, use
17054479Sbinkertn@umich.eduthe normal lexing rules (e.g., define a rule such as <tt>t_EQ = r'=='</tt>).
17064479Sbinkertn@umich.edu
17074479Sbinkertn@umich.edu<H3><a name="ply_nn26"></a>5.4 Empty Productions</H3>
17084479Sbinkertn@umich.edu
17094479Sbinkertn@umich.edu
17104479Sbinkertn@umich.edu<tt>yacc.py</tt> can handle empty productions by defining a rule like this:
17114479Sbinkertn@umich.edu
17124479Sbinkertn@umich.edu<blockquote>
17134479Sbinkertn@umich.edu<pre>
17144479Sbinkertn@umich.edudef p_empty(p):
17152632Sstever@eecs.umich.edu    'empty :'
17162632Sstever@eecs.umich.edu    pass
17172632Sstever@eecs.umich.edu</pre>
17182632Sstever@eecs.umich.edu</blockquote>
17192632Sstever@eecs.umich.edu
17202632Sstever@eecs.umich.eduNow to use the empty production, simply use 'empty' as a symbol.  For example:
17212632Sstever@eecs.umich.edu
17222632Sstever@eecs.umich.edu<blockquote>
17232632Sstever@eecs.umich.edu<pre>
17244479Sbinkertn@umich.edudef p_optitem(p):
17252632Sstever@eecs.umich.edu    'optitem : item'
17262632Sstever@eecs.umich.edu    '        | empty'
17272632Sstever@eecs.umich.edu    ...
17282632Sstever@eecs.umich.edu</pre>
17292632Sstever@eecs.umich.edu</blockquote>
17302632Sstever@eecs.umich.edu
17314479Sbinkertn@umich.eduNote: You can write empty rules anywhere by simply specifying an empty right hand side.  However, I personally find that
17324479Sbinkertn@umich.eduwriting an "empty" rule and using "empty" to denote an empty production is easier to read.
17334479Sbinkertn@umich.edu
17344479Sbinkertn@umich.edu<H3><a name="ply_nn28"></a>5.5 Changing the starting symbol</H3>
17354479Sbinkertn@umich.edu
17364479Sbinkertn@umich.edu
17374479Sbinkertn@umich.eduNormally, the first rule found in a yacc specification defines the starting grammar rule (top level rule).  To change this, simply
17384479Sbinkertn@umich.edusupply a <tt>start</tt> specifier in your file.  For example:
17394479Sbinkertn@umich.edu
17404479Sbinkertn@umich.edu<blockquote>
17414479Sbinkertn@umich.edu<pre>
17424479Sbinkertn@umich.edustart = 'foo'
17434479Sbinkertn@umich.edu
17444479Sbinkertn@umich.edudef p_bar(p):
17454479Sbinkertn@umich.edu    'bar : A B'
17464479Sbinkertn@umich.edu
17474479Sbinkertn@umich.edu# This is the starting rule due to the start specifier above
17484479Sbinkertn@umich.edudef p_foo(p):
17494479Sbinkertn@umich.edu    'foo : bar X'
17504479Sbinkertn@umich.edu...
17514479Sbinkertn@umich.edu</pre>
17524479Sbinkertn@umich.edu</blockquote>
17534479Sbinkertn@umich.edu
17544479Sbinkertn@umich.eduThe use of a <tt>start</tt> specifier may be useful during debugging since you can use it to have yacc build a subset of
17554479Sbinkertn@umich.edua larger grammar.  For this purpose, it is also possible to specify a starting symbol as an argument to <tt>yacc()</tt>. For example:
17564479Sbinkertn@umich.edu
17574479Sbinkertn@umich.edu<blockquote>
17584479Sbinkertn@umich.edu<pre>
17594479Sbinkertn@umich.eduyacc.yacc(start='foo')
17604479Sbinkertn@umich.edu</pre>
17614479Sbinkertn@umich.edu</blockquote>
17624479Sbinkertn@umich.edu
17634479Sbinkertn@umich.edu<H3><a name="ply_nn27"></a>5.6 Dealing With Ambiguous Grammars</H3>
17644479Sbinkertn@umich.edu
17652632Sstever@eecs.umich.edu
17662632Sstever@eecs.umich.eduThe expression grammar given in the earlier example has been written in a special format to eliminate ambiguity. 
17672632Sstever@eecs.umich.eduHowever, in many situations, it is extremely difficult or awkward to write grammars in this format.  A
17682632Sstever@eecs.umich.edumuch more natural way to express the grammar is in a more compact form like this:
17692632Sstever@eecs.umich.edu
17702632Sstever@eecs.umich.edu<blockquote>
17712632Sstever@eecs.umich.edu<pre>
17722632Sstever@eecs.umich.eduexpression : expression PLUS expression
17732632Sstever@eecs.umich.edu           | expression MINUS expression
17742632Sstever@eecs.umich.edu           | expression TIMES expression
17752632Sstever@eecs.umich.edu           | expression DIVIDE expression
17762632Sstever@eecs.umich.edu           | LPAREN expression RPAREN
17772632Sstever@eecs.umich.edu           | NUMBER
17782632Sstever@eecs.umich.edu</pre>
17792632Sstever@eecs.umich.edu</blockquote>
17802632Sstever@eecs.umich.edu
17812632Sstever@eecs.umich.eduUnfortunately, this grammar specification is ambiguous.  For example, if you are parsing the string
17822632Sstever@eecs.umich.edu"3 * 4 + 5", there is no way to tell how the operators are supposed to be grouped.
17834479Sbinkertn@umich.eduFor example, does the expression mean "(3 * 4) + 5" or is it "3 * (4+5)"?
17842632Sstever@eecs.umich.edu
17852632Sstever@eecs.umich.edu<p>
17862632Sstever@eecs.umich.eduWhen an ambiguous grammar is given to <tt>yacc.py</tt> it will print messages about "shift/reduce conflicts" 
17872632Sstever@eecs.umich.eduor a "reduce/reduce conflicts".   A shift/reduce conflict is caused when the parser generator can't decide
17882632Sstever@eecs.umich.eduwhether or not to reduce a rule or shift a symbol on the parsing stack.   For example, consider
17892632Sstever@eecs.umich.eduthe string "3 * 4 + 5" and the internal parsing stack:
17902632Sstever@eecs.umich.edu
17912632Sstever@eecs.umich.edu<blockquote>
17922632Sstever@eecs.umich.edu<pre>
17932632Sstever@eecs.umich.eduStep Symbol Stack           Input Tokens            Action
17942632Sstever@eecs.umich.edu---- ---------------------  ---------------------   -------------------------------
17952632Sstever@eecs.umich.edu1    $                                3 * 4 + 5$    Shift 3
17962632Sstever@eecs.umich.edu2    $ 3                                * 4 + 5$    Reduce : expression : NUMBER
17972632Sstever@eecs.umich.edu3    $ expr                             * 4 + 5$    Shift *
17982632Sstever@eecs.umich.edu4    $ expr *                             4 + 5$    Shift 4
17992632Sstever@eecs.umich.edu5    $ expr * 4                             + 5$    Reduce: expression : NUMBER
18002632Sstever@eecs.umich.edu6    $ expr * expr                          + 5$    SHIFT/REDUCE CONFLICT ????
18012632Sstever@eecs.umich.edu</pre>
18022632Sstever@eecs.umich.edu</blockquote>
18032632Sstever@eecs.umich.edu
18044479Sbinkertn@umich.eduIn this case, when the parser reaches step 6, it has two options.  One is to reduce the
18052632Sstever@eecs.umich.edurule <tt>expr : expr * expr</tt> on the stack.  The other option is to shift the
18062632Sstever@eecs.umich.edutoken <tt>+</tt> on the stack.   Both options are perfectly legal from the rules
18072632Sstever@eecs.umich.eduof the context-free-grammar.
18082632Sstever@eecs.umich.edu
18092632Sstever@eecs.umich.edu<p>
18102632Sstever@eecs.umich.eduBy default, all shift/reduce conflicts are resolved in favor of shifting.  Therefore, in the above
18112632Sstever@eecs.umich.eduexample, the parser will always shift the <tt>+</tt> instead of reducing.    Although this
18122632Sstever@eecs.umich.edustrategy works in many cases (including the ambiguous if-then-else), it is not enough for arithmetic
18132632Sstever@eecs.umich.eduexpressions.  In fact, in the above example, the decision to shift <tt>+</tt> is completely wrong---we should have
18144479Sbinkertn@umich.edureduced <tt>expr * expr</tt> since multiplication has higher mathematical precedence than addition.
18152632Sstever@eecs.umich.edu
18162632Sstever@eecs.umich.edu<p>To resolve ambiguity, especially in expression grammars, <tt>yacc.py</tt> allows individual
18172632Sstever@eecs.umich.edutokens to be assigned a precedence level and associativity.  This is done by adding a variable
18182632Sstever@eecs.umich.edu<tt>precedence</tt> to the grammar file like this:
18192632Sstever@eecs.umich.edu
18202632Sstever@eecs.umich.edu<blockquote>
18212632Sstever@eecs.umich.edu<pre>
18222632Sstever@eecs.umich.eduprecedence = (
18232632Sstever@eecs.umich.edu    ('left', 'PLUS', 'MINUS'),
18242632Sstever@eecs.umich.edu    ('left', 'TIMES', 'DIVIDE'),
18252632Sstever@eecs.umich.edu)
18262632Sstever@eecs.umich.edu</pre>
18272632Sstever@eecs.umich.edu</blockquote>
18282632Sstever@eecs.umich.edu
18292632Sstever@eecs.umich.eduThis declaration specifies that <tt>PLUS</tt>/<tt>MINUS</tt> have
18302632Sstever@eecs.umich.eduthe same precedence level and are left-associative and that 
18314479Sbinkertn@umich.edu<tt>TIMES</tt>/<tt>DIVIDE</tt> have the same precedence and are left-associative. 
18324479Sbinkertn@umich.eduWithin the <tt>precedence</tt> declaration, tokens are ordered from lowest to highest precedence. Thus,
18334479Sbinkertn@umich.eduthis declaration specifies that <tt>TIMES</tt>/<tt>DIVIDE</tt> have higher
18342632Sstever@eecs.umich.eduprecedence than <tt>PLUS</tt>/<tt>MINUS</tt> (since they appear later in the
18352632Sstever@eecs.umich.eduprecedence specification).
18362632Sstever@eecs.umich.edu
18372632Sstever@eecs.umich.edu<p>
18384479Sbinkertn@umich.eduThe precedence specification works by associating a numerical precedence level value and associativity direction to
18394479Sbinkertn@umich.eduthe listed tokens.  For example, in the above example you get:
18402632Sstever@eecs.umich.edu
18412632Sstever@eecs.umich.edu<blockquote>
18422632Sstever@eecs.umich.edu<pre>
18434479Sbinkertn@umich.eduPLUS      : level = 1,  assoc = 'left'
18444479Sbinkertn@umich.eduMINUS     : level = 1,  assoc = 'left'
18454479Sbinkertn@umich.eduTIMES     : level = 2,  assoc = 'left'
18464479Sbinkertn@umich.eduDIVIDE    : level = 2,  assoc = 'left'
18474479Sbinkertn@umich.edu</pre>
18484479Sbinkertn@umich.edu</blockquote>
18494479Sbinkertn@umich.edu
18504479Sbinkertn@umich.eduThese values are then used to attach a numerical precedence value and associativity direction 
18514479Sbinkertn@umich.eduto each grammar rule. <em>This is always determined by looking at the precedence of the right-most terminal symbol.</em>  
18524479Sbinkertn@umich.eduFor example:
18534479Sbinkertn@umich.edu
18544479Sbinkertn@umich.edu<blockquote>
18554479Sbinkertn@umich.edu<pre>
18564479Sbinkertn@umich.eduexpression : expression PLUS expression                 # level = 1, left
18574479Sbinkertn@umich.edu           | expression MINUS expression                # level = 1, left
18584479Sbinkertn@umich.edu           | expression TIMES expression                # level = 2, left
18594479Sbinkertn@umich.edu           | expression DIVIDE expression               # level = 2, left
18604479Sbinkertn@umich.edu           | LPAREN expression RPAREN                   # level = None (not specified)
18614479Sbinkertn@umich.edu           | NUMBER                                     # level = None (not specified)
18622632Sstever@eecs.umich.edu</pre>
18632632Sstever@eecs.umich.edu</blockquote>
18642632Sstever@eecs.umich.edu
18652632Sstever@eecs.umich.eduWhen shift/reduce conflicts are encountered, the parser generator resolves the conflict by
18662632Sstever@eecs.umich.edulooking at the precedence rules and associativity specifiers.
18672632Sstever@eecs.umich.edu
18682632Sstever@eecs.umich.edu<p>
18692632Sstever@eecs.umich.edu<ol>
18702632Sstever@eecs.umich.edu<li>If the current token has higher precedence, it is shifted.
18712632Sstever@eecs.umich.edu<li>If the grammar rule on the stack has higher precedence, the rule is reduced.
18722632Sstever@eecs.umich.edu<li>If the current token and the grammar rule have the same precedence, the
18732632Sstever@eecs.umich.edurule is reduced for left associativity, whereas the token is shifted for right associativity.
18742632Sstever@eecs.umich.edu<li>If nothing is known about the precedence, shift/reduce conflicts are resolved in
18752632Sstever@eecs.umich.edufavor of shifting (the default).
18762632Sstever@eecs.umich.edu</ol>
18772632Sstever@eecs.umich.edu
18784479Sbinkertn@umich.eduFor example, if "expression PLUS expression" has been parsed and the next token
18794479Sbinkertn@umich.eduis "TIMES", the action is going to be a shift because "TIMES" has a higher precedence level than "PLUS".  On the other
18804479Sbinkertn@umich.eduhand, if "expression TIMES expression" has been parsed and the next token is "PLUS", the action
18814479Sbinkertn@umich.eduis going to be reduce because "PLUS" has a lower precedence than "TIMES."
18824479Sbinkertn@umich.edu
18832632Sstever@eecs.umich.edu<p>
18842632Sstever@eecs.umich.eduWhen shift/reduce conflicts are resolved using the first three techniques (with the help of
18852632Sstever@eecs.umich.eduprecedence rules), <tt>yacc.py</tt> will report no errors or conflicts in the grammar. 
18862632Sstever@eecs.umich.edu
18872632Sstever@eecs.umich.edu<p>
18882632Sstever@eecs.umich.eduOne problem with the precedence specifier technique is that it is sometimes necessary to
18892632Sstever@eecs.umich.educhange the precedence of an operator in certain contents.  For example, consider a unary-minus operator
18902632Sstever@eecs.umich.eduin "3 + 4 * -5".  Normally, unary minus has a very high precedence--being evaluated before the multiply.
18912632Sstever@eecs.umich.eduHowever, in our precedence specifier, MINUS has a lower precedence than TIMES.  To deal with this,
18922632Sstever@eecs.umich.eduprecedence rules can be given for fictitious tokens like this:
18932632Sstever@eecs.umich.edu
18942632Sstever@eecs.umich.edu<blockquote>
18952632Sstever@eecs.umich.edu<pre>
18962632Sstever@eecs.umich.eduprecedence = (
18972632Sstever@eecs.umich.edu    ('left', 'PLUS', 'MINUS'),
18982632Sstever@eecs.umich.edu    ('left', 'TIMES', 'DIVIDE'),
18992632Sstever@eecs.umich.edu    ('right', 'UMINUS'),            # Unary minus operator
19002632Sstever@eecs.umich.edu)
19012632Sstever@eecs.umich.edu</pre>
19022632Sstever@eecs.umich.edu</blockquote>
19032632Sstever@eecs.umich.edu
19042632Sstever@eecs.umich.eduNow, in the grammar file, we can write our unary minus rule like this:
19052632Sstever@eecs.umich.edu
19062632Sstever@eecs.umich.edu<blockquote>
19072632Sstever@eecs.umich.edu<pre>
19084479Sbinkertn@umich.edudef p_expr_uminus(p):
19092632Sstever@eecs.umich.edu    'expression : MINUS expression %prec UMINUS'
19104479Sbinkertn@umich.edu    p[0] = -p[2]
19112632Sstever@eecs.umich.edu</pre>
19122632Sstever@eecs.umich.edu</blockquote>
19132632Sstever@eecs.umich.edu
19142632Sstever@eecs.umich.eduIn this case, <tt>%prec UMINUS</tt> overrides the default rule precedence--setting it to that
19152632Sstever@eecs.umich.eduof UMINUS in the precedence specifier.
19162632Sstever@eecs.umich.edu
19172632Sstever@eecs.umich.edu<p>
19184479Sbinkertn@umich.eduAt first, the use of UMINUS in this example may appear very confusing.
19194479Sbinkertn@umich.eduUMINUS is not an input token or a grammer rule.  Instead, you should
19204479Sbinkertn@umich.eduthink of it as the name of a special marker in the precedence table.   When you use the <tt>%prec</tt> qualifier, you're simply
19214479Sbinkertn@umich.edutelling yacc that you want the precedence of the expression to be the same as for this special marker instead of the usual precedence.
19224479Sbinkertn@umich.edu
19234479Sbinkertn@umich.edu<p>
19242632Sstever@eecs.umich.eduIt is also possible to specify non-associativity in the <tt>precedence</tt> table. This would
19252632Sstever@eecs.umich.edube used when you <em>don't</em> want operations to chain together.  For example, suppose
19264479Sbinkertn@umich.eduyou wanted to support comparison operators like <tt>&lt;</tt> and <tt>&gt;</tt> but you didn't want to allow
19272632Sstever@eecs.umich.educombinations like <tt>a &lt; b &lt; c</tt>.   To do this, simply specify a rule like this:
19282632Sstever@eecs.umich.edu
19292632Sstever@eecs.umich.edu<blockquote>
19302632Sstever@eecs.umich.edu<pre>
19312632Sstever@eecs.umich.eduprecedence = (
19322632Sstever@eecs.umich.edu    ('nonassoc', 'LESSTHAN', 'GREATERTHAN'),  # Nonassociative operators
19332632Sstever@eecs.umich.edu    ('left', 'PLUS', 'MINUS'),
19342632Sstever@eecs.umich.edu    ('left', 'TIMES', 'DIVIDE'),
19352632Sstever@eecs.umich.edu    ('right', 'UMINUS'),            # Unary minus operator
19362632Sstever@eecs.umich.edu)
19372632Sstever@eecs.umich.edu</pre>
19382632Sstever@eecs.umich.edu</blockquote>
19392632Sstever@eecs.umich.edu
19402632Sstever@eecs.umich.edu<p>
19414479Sbinkertn@umich.eduIf you do this, the occurrence of input text such as <tt> a &lt; b &lt; c</tt> will result in a syntax error.  However, simple
19424479Sbinkertn@umich.eduexpressions such as <tt>a &lt; b</tt> will still be fine.
19434479Sbinkertn@umich.edu
19444479Sbinkertn@umich.edu<p>
19452632Sstever@eecs.umich.eduReduce/reduce conflicts are caused when there are multiple grammar
19462632Sstever@eecs.umich.edurules that can be applied to a given set of symbols.  This kind of
19472632Sstever@eecs.umich.educonflict is almost always bad and is always resolved by picking the
19482632Sstever@eecs.umich.edurule that appears first in the grammar file.   Reduce/reduce conflicts
19492632Sstever@eecs.umich.eduare almost always caused when different sets of grammar rules somehow
19502632Sstever@eecs.umich.edugenerate the same set of symbols.  For example:
19512632Sstever@eecs.umich.edu
19522632Sstever@eecs.umich.edu<blockquote>
19532632Sstever@eecs.umich.edu<pre>
19542632Sstever@eecs.umich.eduassignment :  ID EQUALS NUMBER
19552632Sstever@eecs.umich.edu           |  ID EQUALS expression
19562632Sstever@eecs.umich.edu           
19572632Sstever@eecs.umich.eduexpression : expression PLUS expression
19582632Sstever@eecs.umich.edu           | expression MINUS expression
19592632Sstever@eecs.umich.edu           | expression TIMES expression
19602632Sstever@eecs.umich.edu           | expression DIVIDE expression
19612632Sstever@eecs.umich.edu           | LPAREN expression RPAREN
19622632Sstever@eecs.umich.edu           | NUMBER
19632632Sstever@eecs.umich.edu</pre>
19642632Sstever@eecs.umich.edu</blockquote>
19652632Sstever@eecs.umich.edu
19662632Sstever@eecs.umich.eduIn this case, a reduce/reduce conflict exists between these two rules:
19672632Sstever@eecs.umich.edu
19682632Sstever@eecs.umich.edu<blockquote>
19692632Sstever@eecs.umich.edu<pre>
19702632Sstever@eecs.umich.eduassignment  : ID EQUALS NUMBER
19712632Sstever@eecs.umich.eduexpression  : NUMBER
19722632Sstever@eecs.umich.edu</pre>
19732632Sstever@eecs.umich.edu</blockquote>
19742632Sstever@eecs.umich.edu
19752632Sstever@eecs.umich.eduFor example, if you wrote "a = 5", the parser can't figure out if this
19764479Sbinkertn@umich.eduis supposed to be reduced as <tt>assignment : ID EQUALS NUMBER</tt> or
19772632Sstever@eecs.umich.eduwhether it's supposed to reduce the 5 as an expression and then reduce
19782632Sstever@eecs.umich.eduthe rule <tt>assignment : ID EQUALS expression</tt>.
19792632Sstever@eecs.umich.edu
19804479Sbinkertn@umich.edu<p>
19814479Sbinkertn@umich.eduIt should be noted that reduce/reduce conflicts are notoriously difficult to spot
19824479Sbinkertn@umich.edusimply looking at the input grammer.    To locate these, it is usually easier to look at the
19834479Sbinkertn@umich.edu<tt>parser.out</tt> debugging file with an appropriately high level of caffeination.
19844479Sbinkertn@umich.edu
19854479Sbinkertn@umich.edu<H3><a name="ply_nn28"></a>5.7 The parser.out file</H3>
19864479Sbinkertn@umich.edu
19872632Sstever@eecs.umich.edu
19882632Sstever@eecs.umich.eduTracking down shift/reduce and reduce/reduce conflicts is one of the finer pleasures of using an LR
19892632Sstever@eecs.umich.eduparsing algorithm.  To assist in debugging, <tt>yacc.py</tt> creates a debugging file called
19902632Sstever@eecs.umich.edu'parser.out' when it generates the parsing table.   The contents of this file look like the following:
19912632Sstever@eecs.umich.edu
19922632Sstever@eecs.umich.edu<blockquote>
19932632Sstever@eecs.umich.edu<pre>
19942632Sstever@eecs.umich.eduUnused terminals:
19952632Sstever@eecs.umich.edu
19962632Sstever@eecs.umich.edu
19972632Sstever@eecs.umich.eduGrammar
19982632Sstever@eecs.umich.edu
19992632Sstever@eecs.umich.eduRule 1     expression -> expression PLUS expression
20002632Sstever@eecs.umich.eduRule 2     expression -> expression MINUS expression
20012632Sstever@eecs.umich.eduRule 3     expression -> expression TIMES expression
20022632Sstever@eecs.umich.eduRule 4     expression -> expression DIVIDE expression
20032632Sstever@eecs.umich.eduRule 5     expression -> NUMBER
20042632Sstever@eecs.umich.eduRule 6     expression -> LPAREN expression RPAREN
20052632Sstever@eecs.umich.edu
20062632Sstever@eecs.umich.eduTerminals, with rules where they appear
20072632Sstever@eecs.umich.edu
20082632Sstever@eecs.umich.eduTIMES                : 3
20092632Sstever@eecs.umich.eduerror                : 
20102632Sstever@eecs.umich.eduMINUS                : 2
20112632Sstever@eecs.umich.eduRPAREN               : 6
20122632Sstever@eecs.umich.eduLPAREN               : 6
20132632Sstever@eecs.umich.eduDIVIDE               : 4
20142632Sstever@eecs.umich.eduPLUS                 : 1
20152632Sstever@eecs.umich.eduNUMBER               : 5
20162632Sstever@eecs.umich.edu
20172632Sstever@eecs.umich.eduNonterminals, with rules where they appear
20182632Sstever@eecs.umich.edu
20192632Sstever@eecs.umich.eduexpression           : 1 1 2 2 3 3 4 4 6 0
20202632Sstever@eecs.umich.edu
20212632Sstever@eecs.umich.edu
20224479Sbinkertn@umich.eduParsing method: LALR
20232632Sstever@eecs.umich.edu
20242632Sstever@eecs.umich.edu
20252632Sstever@eecs.umich.edustate 0
20262632Sstever@eecs.umich.edu
20272632Sstever@eecs.umich.edu    S' -> . expression
20282632Sstever@eecs.umich.edu    expression -> . expression PLUS expression
20292632Sstever@eecs.umich.edu    expression -> . expression MINUS expression
20302632Sstever@eecs.umich.edu    expression -> . expression TIMES expression
20312632Sstever@eecs.umich.edu    expression -> . expression DIVIDE expression
20322632Sstever@eecs.umich.edu    expression -> . NUMBER
20332632Sstever@eecs.umich.edu    expression -> . LPAREN expression RPAREN
20342632Sstever@eecs.umich.edu
20352632Sstever@eecs.umich.edu    NUMBER          shift and go to state 3
20362632Sstever@eecs.umich.edu    LPAREN          shift and go to state 2
20372632Sstever@eecs.umich.edu
20382632Sstever@eecs.umich.edu
20392632Sstever@eecs.umich.edustate 1
20402632Sstever@eecs.umich.edu
20412632Sstever@eecs.umich.edu    S' -> expression .
20422632Sstever@eecs.umich.edu    expression -> expression . PLUS expression
20432632Sstever@eecs.umich.edu    expression -> expression . MINUS expression
20442632Sstever@eecs.umich.edu    expression -> expression . TIMES expression
20452632Sstever@eecs.umich.edu    expression -> expression . DIVIDE expression
20462632Sstever@eecs.umich.edu
20472632Sstever@eecs.umich.edu    PLUS            shift and go to state 6
20482632Sstever@eecs.umich.edu    MINUS           shift and go to state 5
20492632Sstever@eecs.umich.edu    TIMES           shift and go to state 4
20502632Sstever@eecs.umich.edu    DIVIDE          shift and go to state 7
20512632Sstever@eecs.umich.edu
20522632Sstever@eecs.umich.edu
20532632Sstever@eecs.umich.edustate 2
20542632Sstever@eecs.umich.edu
20552632Sstever@eecs.umich.edu    expression -> LPAREN . expression RPAREN
20562632Sstever@eecs.umich.edu    expression -> . expression PLUS expression
20572632Sstever@eecs.umich.edu    expression -> . expression MINUS expression
20582632Sstever@eecs.umich.edu    expression -> . expression TIMES expression
20592632Sstever@eecs.umich.edu    expression -> . expression DIVIDE expression
20602632Sstever@eecs.umich.edu    expression -> . NUMBER
20612632Sstever@eecs.umich.edu    expression -> . LPAREN expression RPAREN
20622632Sstever@eecs.umich.edu
20632632Sstever@eecs.umich.edu    NUMBER          shift and go to state 3
20642632Sstever@eecs.umich.edu    LPAREN          shift and go to state 2
20652632Sstever@eecs.umich.edu
20662632Sstever@eecs.umich.edu
20672632Sstever@eecs.umich.edustate 3
20682632Sstever@eecs.umich.edu
20692632Sstever@eecs.umich.edu    expression -> NUMBER .
20702632Sstever@eecs.umich.edu
20712632Sstever@eecs.umich.edu    $               reduce using rule 5
20722632Sstever@eecs.umich.edu    PLUS            reduce using rule 5
20732632Sstever@eecs.umich.edu    MINUS           reduce using rule 5
20742632Sstever@eecs.umich.edu    TIMES           reduce using rule 5
20752632Sstever@eecs.umich.edu    DIVIDE          reduce using rule 5
20762632Sstever@eecs.umich.edu    RPAREN          reduce using rule 5
20772632Sstever@eecs.umich.edu
20782632Sstever@eecs.umich.edu
20792632Sstever@eecs.umich.edustate 4
20802632Sstever@eecs.umich.edu
20812632Sstever@eecs.umich.edu    expression -> expression TIMES . expression
20822632Sstever@eecs.umich.edu    expression -> . expression PLUS expression
20832632Sstever@eecs.umich.edu    expression -> . expression MINUS expression
20842632Sstever@eecs.umich.edu    expression -> . expression TIMES expression
20852632Sstever@eecs.umich.edu    expression -> . expression DIVIDE expression
20862632Sstever@eecs.umich.edu    expression -> . NUMBER
20872632Sstever@eecs.umich.edu    expression -> . LPAREN expression RPAREN
20882632Sstever@eecs.umich.edu
20892632Sstever@eecs.umich.edu    NUMBER          shift and go to state 3
20902632Sstever@eecs.umich.edu    LPAREN          shift and go to state 2
20912632Sstever@eecs.umich.edu
20922632Sstever@eecs.umich.edu
20932632Sstever@eecs.umich.edustate 5
20942632Sstever@eecs.umich.edu
20952632Sstever@eecs.umich.edu    expression -> expression MINUS . expression
20962632Sstever@eecs.umich.edu    expression -> . expression PLUS expression
20972632Sstever@eecs.umich.edu    expression -> . expression MINUS expression
20982632Sstever@eecs.umich.edu    expression -> . expression TIMES expression
20992632Sstever@eecs.umich.edu    expression -> . expression DIVIDE expression
21002632Sstever@eecs.umich.edu    expression -> . NUMBER
21012632Sstever@eecs.umich.edu    expression -> . LPAREN expression RPAREN
21022632Sstever@eecs.umich.edu
21032632Sstever@eecs.umich.edu    NUMBER          shift and go to state 3
21042632Sstever@eecs.umich.edu    LPAREN          shift and go to state 2
21052632Sstever@eecs.umich.edu
21062632Sstever@eecs.umich.edu
21072632Sstever@eecs.umich.edustate 6
21082632Sstever@eecs.umich.edu
21092632Sstever@eecs.umich.edu    expression -> expression PLUS . expression
21102632Sstever@eecs.umich.edu    expression -> . expression PLUS expression
21112632Sstever@eecs.umich.edu    expression -> . expression MINUS expression
21122632Sstever@eecs.umich.edu    expression -> . expression TIMES expression
21132632Sstever@eecs.umich.edu    expression -> . expression DIVIDE expression
21142632Sstever@eecs.umich.edu    expression -> . NUMBER
21152632Sstever@eecs.umich.edu    expression -> . LPAREN expression RPAREN
21162632Sstever@eecs.umich.edu
21172632Sstever@eecs.umich.edu    NUMBER          shift and go to state 3
21182632Sstever@eecs.umich.edu    LPAREN          shift and go to state 2
21192632Sstever@eecs.umich.edu
21202632Sstever@eecs.umich.edu
21212632Sstever@eecs.umich.edustate 7
21222632Sstever@eecs.umich.edu
21232632Sstever@eecs.umich.edu    expression -> expression DIVIDE . expression
21242632Sstever@eecs.umich.edu    expression -> . expression PLUS expression
21252632Sstever@eecs.umich.edu    expression -> . expression MINUS expression
21262632Sstever@eecs.umich.edu    expression -> . expression TIMES expression
21272632Sstever@eecs.umich.edu    expression -> . expression DIVIDE expression
21282632Sstever@eecs.umich.edu    expression -> . NUMBER
21292632Sstever@eecs.umich.edu    expression -> . LPAREN expression RPAREN
21302632Sstever@eecs.umich.edu
21312632Sstever@eecs.umich.edu    NUMBER          shift and go to state 3
21322632Sstever@eecs.umich.edu    LPAREN          shift and go to state 2
21332632Sstever@eecs.umich.edu
21342632Sstever@eecs.umich.edu
21352632Sstever@eecs.umich.edustate 8
21362632Sstever@eecs.umich.edu
21372632Sstever@eecs.umich.edu    expression -> LPAREN expression . RPAREN
21382632Sstever@eecs.umich.edu    expression -> expression . PLUS expression
21392632Sstever@eecs.umich.edu    expression -> expression . MINUS expression
21402632Sstever@eecs.umich.edu    expression -> expression . TIMES expression
21412632Sstever@eecs.umich.edu    expression -> expression . DIVIDE expression
21422632Sstever@eecs.umich.edu
21432632Sstever@eecs.umich.edu    RPAREN          shift and go to state 13
21442632Sstever@eecs.umich.edu    PLUS            shift and go to state 6
21452632Sstever@eecs.umich.edu    MINUS           shift and go to state 5
21462632Sstever@eecs.umich.edu    TIMES           shift and go to state 4
21472632Sstever@eecs.umich.edu    DIVIDE          shift and go to state 7
21482632Sstever@eecs.umich.edu
21492632Sstever@eecs.umich.edu
21502632Sstever@eecs.umich.edustate 9
21512632Sstever@eecs.umich.edu
21522632Sstever@eecs.umich.edu    expression -> expression TIMES expression .
21532632Sstever@eecs.umich.edu    expression -> expression . PLUS expression
21542632Sstever@eecs.umich.edu    expression -> expression . MINUS expression
21552632Sstever@eecs.umich.edu    expression -> expression . TIMES expression
21562632Sstever@eecs.umich.edu    expression -> expression . DIVIDE expression
21572632Sstever@eecs.umich.edu
21582632Sstever@eecs.umich.edu    $               reduce using rule 3
21592632Sstever@eecs.umich.edu    PLUS            reduce using rule 3
21602632Sstever@eecs.umich.edu    MINUS           reduce using rule 3
21612632Sstever@eecs.umich.edu    TIMES           reduce using rule 3
21622632Sstever@eecs.umich.edu    DIVIDE          reduce using rule 3
21632632Sstever@eecs.umich.edu    RPAREN          reduce using rule 3
21642632Sstever@eecs.umich.edu
21652632Sstever@eecs.umich.edu  ! PLUS            [ shift and go to state 6 ]
21662632Sstever@eecs.umich.edu  ! MINUS           [ shift and go to state 5 ]
21672632Sstever@eecs.umich.edu  ! TIMES           [ shift and go to state 4 ]
21682632Sstever@eecs.umich.edu  ! DIVIDE          [ shift and go to state 7 ]
21692632Sstever@eecs.umich.edu
21702632Sstever@eecs.umich.edustate 10
21712632Sstever@eecs.umich.edu
21722632Sstever@eecs.umich.edu    expression -> expression MINUS expression .
21732632Sstever@eecs.umich.edu    expression -> expression . PLUS expression
21742632Sstever@eecs.umich.edu    expression -> expression . MINUS expression
21752632Sstever@eecs.umich.edu    expression -> expression . TIMES expression
21762632Sstever@eecs.umich.edu    expression -> expression . DIVIDE expression
21772632Sstever@eecs.umich.edu
21782632Sstever@eecs.umich.edu    $               reduce using rule 2
21792632Sstever@eecs.umich.edu    PLUS            reduce using rule 2
21802632Sstever@eecs.umich.edu    MINUS           reduce using rule 2
21812632Sstever@eecs.umich.edu    RPAREN          reduce using rule 2
21822632Sstever@eecs.umich.edu    TIMES           shift and go to state 4
21832632Sstever@eecs.umich.edu    DIVIDE          shift and go to state 7
21842632Sstever@eecs.umich.edu
21852632Sstever@eecs.umich.edu  ! TIMES           [ reduce using rule 2 ]
21862632Sstever@eecs.umich.edu  ! DIVIDE          [ reduce using rule 2 ]
21872632Sstever@eecs.umich.edu  ! PLUS            [ shift and go to state 6 ]
21882632Sstever@eecs.umich.edu  ! MINUS           [ shift and go to state 5 ]
21892632Sstever@eecs.umich.edu
21902632Sstever@eecs.umich.edustate 11
21912632Sstever@eecs.umich.edu
21922632Sstever@eecs.umich.edu    expression -> expression PLUS expression .
21932632Sstever@eecs.umich.edu    expression -> expression . PLUS expression
21942632Sstever@eecs.umich.edu    expression -> expression . MINUS expression
21952632Sstever@eecs.umich.edu    expression -> expression . TIMES expression
21962632Sstever@eecs.umich.edu    expression -> expression . DIVIDE expression
21972632Sstever@eecs.umich.edu
21982632Sstever@eecs.umich.edu    $               reduce using rule 1
21992632Sstever@eecs.umich.edu    PLUS            reduce using rule 1
22002632Sstever@eecs.umich.edu    MINUS           reduce using rule 1
22012632Sstever@eecs.umich.edu    RPAREN          reduce using rule 1
22022632Sstever@eecs.umich.edu    TIMES           shift and go to state 4
22032632Sstever@eecs.umich.edu    DIVIDE          shift and go to state 7
22042632Sstever@eecs.umich.edu
22052632Sstever@eecs.umich.edu  ! TIMES           [ reduce using rule 1 ]
22062632Sstever@eecs.umich.edu  ! DIVIDE          [ reduce using rule 1 ]
22072632Sstever@eecs.umich.edu  ! PLUS            [ shift and go to state 6 ]
22082632Sstever@eecs.umich.edu  ! MINUS           [ shift and go to state 5 ]
22092632Sstever@eecs.umich.edu
22102632Sstever@eecs.umich.edustate 12
22112632Sstever@eecs.umich.edu
22122632Sstever@eecs.umich.edu    expression -> expression DIVIDE expression .
22132632Sstever@eecs.umich.edu    expression -> expression . PLUS expression
22142632Sstever@eecs.umich.edu    expression -> expression . MINUS expression
22152632Sstever@eecs.umich.edu    expression -> expression . TIMES expression
22162632Sstever@eecs.umich.edu    expression -> expression . DIVIDE expression
22172632Sstever@eecs.umich.edu
22182632Sstever@eecs.umich.edu    $               reduce using rule 4
22192632Sstever@eecs.umich.edu    PLUS            reduce using rule 4
22202632Sstever@eecs.umich.edu    MINUS           reduce using rule 4
22212632Sstever@eecs.umich.edu    TIMES           reduce using rule 4
22222632Sstever@eecs.umich.edu    DIVIDE          reduce using rule 4
22232632Sstever@eecs.umich.edu    RPAREN          reduce using rule 4
22242632Sstever@eecs.umich.edu
22252632Sstever@eecs.umich.edu  ! PLUS            [ shift and go to state 6 ]
22262632Sstever@eecs.umich.edu  ! MINUS           [ shift and go to state 5 ]
22272632Sstever@eecs.umich.edu  ! TIMES           [ shift and go to state 4 ]
22282632Sstever@eecs.umich.edu  ! DIVIDE          [ shift and go to state 7 ]
22292632Sstever@eecs.umich.edu
22302632Sstever@eecs.umich.edustate 13
22312632Sstever@eecs.umich.edu
22322632Sstever@eecs.umich.edu    expression -> LPAREN expression RPAREN .
22332632Sstever@eecs.umich.edu
22342632Sstever@eecs.umich.edu    $               reduce using rule 6
22352632Sstever@eecs.umich.edu    PLUS            reduce using rule 6
22362632Sstever@eecs.umich.edu    MINUS           reduce using rule 6
22372632Sstever@eecs.umich.edu    TIMES           reduce using rule 6
22382632Sstever@eecs.umich.edu    DIVIDE          reduce using rule 6
22392632Sstever@eecs.umich.edu    RPAREN          reduce using rule 6
22402632Sstever@eecs.umich.edu</pre>
22412632Sstever@eecs.umich.edu</blockquote>
22422632Sstever@eecs.umich.edu
22432632Sstever@eecs.umich.eduIn the file, each state of the grammar is described.  Within each state the "." indicates the current
22442632Sstever@eecs.umich.edulocation of the parse within any applicable grammar rules.   In addition, the actions for each valid
22452632Sstever@eecs.umich.eduinput token are listed.   When a shift/reduce or reduce/reduce conflict arises, rules <em>not</em> selected
22462632Sstever@eecs.umich.eduare prefixed with an !.  For example:
22472632Sstever@eecs.umich.edu
22482632Sstever@eecs.umich.edu<blockquote>
22492632Sstever@eecs.umich.edu<pre>
22502632Sstever@eecs.umich.edu  ! TIMES           [ reduce using rule 2 ]
22512632Sstever@eecs.umich.edu  ! DIVIDE          [ reduce using rule 2 ]
22522632Sstever@eecs.umich.edu  ! PLUS            [ shift and go to state 6 ]
22532632Sstever@eecs.umich.edu  ! MINUS           [ shift and go to state 5 ]
22542632Sstever@eecs.umich.edu</pre>
22552632Sstever@eecs.umich.edu</blockquote>
22562632Sstever@eecs.umich.edu
22572632Sstever@eecs.umich.eduBy looking at these rules (and with a little practice), you can usually track down the source
22582632Sstever@eecs.umich.eduof most parsing conflicts.  It should also be stressed that not all shift-reduce conflicts are
22592632Sstever@eecs.umich.edubad.  However, the only way to be sure that they are resolved correctly is to look at <tt>parser.out</tt>.
22602632Sstever@eecs.umich.edu  
22614479Sbinkertn@umich.edu<H3><a name="ply_nn29"></a>5.8 Syntax Error Handling</H3>
22624479Sbinkertn@umich.edu
22632632Sstever@eecs.umich.edu
22642632Sstever@eecs.umich.eduWhen a syntax error occurs during parsing, the error is immediately
22652632Sstever@eecs.umich.edudetected (i.e., the parser does not read any more tokens beyond the
22662632Sstever@eecs.umich.edusource of the error).  Error recovery in LR parsers is a delicate
22672632Sstever@eecs.umich.edutopic that involves ancient rituals and black-magic.   The recovery mechanism
22682632Sstever@eecs.umich.eduprovided by <tt>yacc.py</tt> is comparable to Unix yacc so you may want
22692632Sstever@eecs.umich.educonsult a book like O'Reilly's "Lex and Yacc" for some of the finer details.
22702632Sstever@eecs.umich.edu
22712632Sstever@eecs.umich.edu<p>
22722632Sstever@eecs.umich.eduWhen a syntax error occurs, <tt>yacc.py</tt> performs the following steps:
22732632Sstever@eecs.umich.edu
22742632Sstever@eecs.umich.edu<ol>
22752632Sstever@eecs.umich.edu<li>On the first occurrence of an error, the user-defined <tt>p_error()</tt> function
22762632Sstever@eecs.umich.eduis called with the offending token as an argument.  Afterwards, the parser enters
22772632Sstever@eecs.umich.eduan "error-recovery" mode in which it will not make future calls to <tt>p_error()</tt> until it
22782632Sstever@eecs.umich.eduhas successfully shifted at least 3 tokens onto the parsing stack.
22792632Sstever@eecs.umich.edu
22802632Sstever@eecs.umich.edu<p>
22812632Sstever@eecs.umich.edu<li>If no recovery action is taken in <tt>p_error()</tt>, the offending lookahead token is replaced
22822632Sstever@eecs.umich.eduwith a special <tt>error</tt> token.
22832632Sstever@eecs.umich.edu
22842632Sstever@eecs.umich.edu<p>
22852632Sstever@eecs.umich.edu<li>If the offending lookahead token is already set to <tt>error</tt>, the top item of the parsing stack is
22862632Sstever@eecs.umich.edudeleted.
22872632Sstever@eecs.umich.edu
22882632Sstever@eecs.umich.edu<p>
22892632Sstever@eecs.umich.edu<li>If the entire parsing stack is unwound, the parser enters a restart state and attempts to start
22902632Sstever@eecs.umich.eduparsing from its initial state.
22912632Sstever@eecs.umich.edu
22922632Sstever@eecs.umich.edu<p>
22932632Sstever@eecs.umich.edu<li>If a grammar rule accepts <tt>error</tt> as a token, it will be
22942632Sstever@eecs.umich.edushifted onto the parsing stack.
22952632Sstever@eecs.umich.edu
22962632Sstever@eecs.umich.edu<p>
22972632Sstever@eecs.umich.edu<li>If the top item of the parsing stack is <tt>error</tt>, lookahead tokens will be discarded until the
22982632Sstever@eecs.umich.eduparser can successfully shift a new symbol or reduce a rule involving <tt>error</tt>.
22992632Sstever@eecs.umich.edu</ol>
23002632Sstever@eecs.umich.edu
23014479Sbinkertn@umich.edu<H4><a name="ply_nn30"></a>5.8.1 Recovery and resynchronization with error rules</H4>
23024479Sbinkertn@umich.edu
23032632Sstever@eecs.umich.edu
23042632Sstever@eecs.umich.eduThe most well-behaved approach for handling syntax errors is to write grammar rules that include the <tt>error</tt>
23052632Sstever@eecs.umich.edutoken.  For example, suppose your language had a grammar rule for a print statement like this:
23062632Sstever@eecs.umich.edu
23072632Sstever@eecs.umich.edu<blockquote>
23082632Sstever@eecs.umich.edu<pre>
23094479Sbinkertn@umich.edudef p_statement_print(p):
23102632Sstever@eecs.umich.edu     'statement : PRINT expr SEMI'
23112632Sstever@eecs.umich.edu     ...
23122632Sstever@eecs.umich.edu</pre>
23132632Sstever@eecs.umich.edu</blockquote>
23142632Sstever@eecs.umich.edu
23152632Sstever@eecs.umich.eduTo account for the possibility of a bad expression, you might write an additional grammar rule like this:
23162632Sstever@eecs.umich.edu
23172632Sstever@eecs.umich.edu<blockquote>
23182632Sstever@eecs.umich.edu<pre>
23194479Sbinkertn@umich.edudef p_statement_print_error(p):
23202632Sstever@eecs.umich.edu     'statement : PRINT error SEMI'
23212632Sstever@eecs.umich.edu     print "Syntax error in print statement. Bad expression"
23222632Sstever@eecs.umich.edu
23232632Sstever@eecs.umich.edu</pre>
23242632Sstever@eecs.umich.edu</blockquote>
23252632Sstever@eecs.umich.edu
23262632Sstever@eecs.umich.eduIn this case, the <tt>error</tt> token will match any sequence of
23272632Sstever@eecs.umich.edutokens that might appear up to the first semicolon that is
23282632Sstever@eecs.umich.eduencountered.  Once the semicolon is reached, the rule will be
23292632Sstever@eecs.umich.eduinvoked and the <tt>error</tt> token will go away.
23302632Sstever@eecs.umich.edu
23312632Sstever@eecs.umich.edu<p>
23322632Sstever@eecs.umich.eduThis type of recovery is sometimes known as parser resynchronization.
23332632Sstever@eecs.umich.eduThe <tt>error</tt> token acts as a wildcard for any bad input text and
23342632Sstever@eecs.umich.eduthe token immediately following <tt>error</tt> acts as a
23352632Sstever@eecs.umich.edusynchronization token.
23362632Sstever@eecs.umich.edu
23372632Sstever@eecs.umich.edu<p>
23382632Sstever@eecs.umich.eduIt is important to note that the <tt>error</tt> token usually does not appear as the last token
23392632Sstever@eecs.umich.eduon the right in an error rule.  For example:
23402632Sstever@eecs.umich.edu
23412632Sstever@eecs.umich.edu<blockquote>
23422632Sstever@eecs.umich.edu<pre>
23434479Sbinkertn@umich.edudef p_statement_print_error(p):
23442632Sstever@eecs.umich.edu    'statement : PRINT error'
23452632Sstever@eecs.umich.edu    print "Syntax error in print statement. Bad expression"
23462632Sstever@eecs.umich.edu</pre>
23472632Sstever@eecs.umich.edu</blockquote>
23482632Sstever@eecs.umich.edu
23492632Sstever@eecs.umich.eduThis is because the first bad token encountered will cause the rule to
23502632Sstever@eecs.umich.edube reduced--which may make it difficult to recover if more bad tokens
23512632Sstever@eecs.umich.eduimmediately follow.   
23522632Sstever@eecs.umich.edu
23534479Sbinkertn@umich.edu<H4><a name="ply_nn31"></a>5.8.2 Panic mode recovery</H4>
23544479Sbinkertn@umich.edu
23552632Sstever@eecs.umich.edu
23562632Sstever@eecs.umich.eduAn alternative error recovery scheme is to enter a panic mode recovery in which tokens are
23572632Sstever@eecs.umich.edudiscarded to a point where the parser might be able to recover in some sensible manner.
23582632Sstever@eecs.umich.edu
23592632Sstever@eecs.umich.edu<p>
23602632Sstever@eecs.umich.eduPanic mode recovery is implemented entirely in the <tt>p_error()</tt> function.  For example, this
23612632Sstever@eecs.umich.edufunction starts discarding tokens until it reaches a closing '}'.  Then, it restarts the 
23622632Sstever@eecs.umich.eduparser in its initial state.
23632632Sstever@eecs.umich.edu
23642632Sstever@eecs.umich.edu<blockquote>
23652632Sstever@eecs.umich.edu<pre>
23664479Sbinkertn@umich.edudef p_error(p):
23672632Sstever@eecs.umich.edu    print "Whoa. You are seriously hosed."
23682632Sstever@eecs.umich.edu    # Read ahead looking for a closing '}'
23692632Sstever@eecs.umich.edu    while 1:
23702632Sstever@eecs.umich.edu        tok = yacc.token()             # Get the next token
23712632Sstever@eecs.umich.edu        if not tok or tok.type == 'RBRACE': break
23722632Sstever@eecs.umich.edu    yacc.restart()
23732632Sstever@eecs.umich.edu</pre>
23742632Sstever@eecs.umich.edu</blockquote>
23752632Sstever@eecs.umich.edu
23762632Sstever@eecs.umich.edu<p>
23772632Sstever@eecs.umich.eduThis function simply discards the bad token and tells the parser that the error was ok.
23782632Sstever@eecs.umich.edu
23792632Sstever@eecs.umich.edu<blockquote>
23802632Sstever@eecs.umich.edu<pre>
23814479Sbinkertn@umich.edudef p_error(p):
23824479Sbinkertn@umich.edu    print "Syntax error at token", p.type
23832632Sstever@eecs.umich.edu    # Just discard the token and tell the parser it's okay.
23842632Sstever@eecs.umich.edu    yacc.errok()
23852632Sstever@eecs.umich.edu</pre>
23862632Sstever@eecs.umich.edu</blockquote>
23872632Sstever@eecs.umich.edu
23882632Sstever@eecs.umich.edu<P>
23892632Sstever@eecs.umich.eduWithin the <tt>p_error()</tt> function, three functions are available to control the behavior
23902632Sstever@eecs.umich.eduof the parser:
23912632Sstever@eecs.umich.edu<p>
23922632Sstever@eecs.umich.edu<ul>
23932632Sstever@eecs.umich.edu<li><tt>yacc.errok()</tt>.  This resets the parser state so it doesn't think it's in error-recovery
23942632Sstever@eecs.umich.edumode.   This will prevent an <tt>error</tt> token from being generated and will reset the internal
23952632Sstever@eecs.umich.eduerror counters so that the next syntax error will call <tt>p_error()</tt> again.
23962632Sstever@eecs.umich.edu
23972632Sstever@eecs.umich.edu<p>
23982632Sstever@eecs.umich.edu<li><tt>yacc.token()</tt>.  This returns the next token on the input stream.
23992632Sstever@eecs.umich.edu
24002632Sstever@eecs.umich.edu<p>
24012632Sstever@eecs.umich.edu<li><tt>yacc.restart()</tt>.  This discards the entire parsing stack and resets the parser
24022632Sstever@eecs.umich.eduto its initial state. 
24032632Sstever@eecs.umich.edu</ul>
24042632Sstever@eecs.umich.edu
24052632Sstever@eecs.umich.eduNote: these functions are only available when invoking <tt>p_error()</tt> and are not available
24062632Sstever@eecs.umich.eduat any other time.
24072632Sstever@eecs.umich.edu
24082632Sstever@eecs.umich.edu<p>
24092632Sstever@eecs.umich.eduTo supply the next lookahead token to the parser, <tt>p_error()</tt> can return a token.  This might be
24102632Sstever@eecs.umich.eduuseful if trying to synchronize on special characters.  For example:
24112632Sstever@eecs.umich.edu
24122632Sstever@eecs.umich.edu<blockquote>
24132632Sstever@eecs.umich.edu<pre>
24144479Sbinkertn@umich.edudef p_error(p):
24152632Sstever@eecs.umich.edu    # Read ahead looking for a terminating ";"
24162632Sstever@eecs.umich.edu    while 1:
24172632Sstever@eecs.umich.edu        tok = yacc.token()             # Get the next token
24182632Sstever@eecs.umich.edu        if not tok or tok.type == 'SEMI': break
24192632Sstever@eecs.umich.edu    yacc.errok()
24202632Sstever@eecs.umich.edu
24212632Sstever@eecs.umich.edu    # Return SEMI to the parser as the next lookahead token
24222632Sstever@eecs.umich.edu    return tok  
24232632Sstever@eecs.umich.edu</pre>
24242632Sstever@eecs.umich.edu</blockquote>
24252632Sstever@eecs.umich.edu
24264479Sbinkertn@umich.edu<H4><a name="ply_nn32"></a>5.8.3 General comments on error handling</H4>
24274479Sbinkertn@umich.edu
24282632Sstever@eecs.umich.edu
24292632Sstever@eecs.umich.eduFor normal types of languages, error recovery with error rules and resynchronization characters is probably the most reliable
24302632Sstever@eecs.umich.edutechnique. This is because you can instrument the grammar to catch errors at selected places where it is relatively easy 
24312632Sstever@eecs.umich.eduto recover and continue parsing.  Panic mode recovery is really only useful in certain specialized applications where you might want
24322632Sstever@eecs.umich.eduto discard huge portions of the input text to find a valid restart point.
24332632Sstever@eecs.umich.edu
24344479Sbinkertn@umich.edu<H3><a name="ply_nn33"></a>5.9 Line Number and Position Tracking</H3>
24354479Sbinkertn@umich.edu
24364479Sbinkertn@umich.eduPosition tracking is often a tricky problem when writing compilers.  By default, PLY tracks the line number and position of
24374479Sbinkertn@umich.eduall tokens.    This information is available using the following functions:
24382632Sstever@eecs.umich.edu
24392632Sstever@eecs.umich.edu<ul>
24404479Sbinkertn@umich.edu<li><tt>p.lineno(num)</tt>. Return the line number for symbol <em>num</em>
24414479Sbinkertn@umich.edu<li><tt>p.lexpos(num)</tt>. Return the lexing position for symbol <em>num</em>
24422632Sstever@eecs.umich.edu</ul>
24432632Sstever@eecs.umich.edu
24442632Sstever@eecs.umich.eduFor example:
24452632Sstever@eecs.umich.edu
24462632Sstever@eecs.umich.edu<blockquote>
24472632Sstever@eecs.umich.edu<pre>
24484479Sbinkertn@umich.edudef p_expression(p):
24492632Sstever@eecs.umich.edu    'expression : expression PLUS expression'
24504479Sbinkertn@umich.edu    line   = p.lineno(2)        # line number of the PLUS token
24514479Sbinkertn@umich.edu    index  = p.lexpos(2)        # Position of the PLUS token
24522632Sstever@eecs.umich.edu</pre>
24532632Sstever@eecs.umich.edu</blockquote>
24542632Sstever@eecs.umich.edu
24554479Sbinkertn@umich.eduAs an optional feature, <tt>yacc.py</tt> can automatically track line numbers and positions for all of the grammar symbols 
24564479Sbinkertn@umich.eduas well.  However, this
24574479Sbinkertn@umich.eduextra tracking requires extra processing and can significantly slow down parsing.  Therefore, it must be enabled by passing the 
24584479Sbinkertn@umich.edu<tt>tracking=True</tt> option to <tt>yacc.parse()</tt>.  For example:
24594479Sbinkertn@umich.edu
24604479Sbinkertn@umich.edu<blockquote>
24614479Sbinkertn@umich.edu<pre>
24624479Sbinkertn@umich.eduyacc.parse(data,tracking=True)
24634479Sbinkertn@umich.edu</pre>
24644479Sbinkertn@umich.edu</blockquote>
24654479Sbinkertn@umich.edu
24664479Sbinkertn@umich.eduOnce enabled, the <tt>lineno()</tt> and <tt>lexpos()</tt> methods work for all grammar symbols.  In addition, two
24674479Sbinkertn@umich.eduadditional methods can be used:
24684479Sbinkertn@umich.edu
24694479Sbinkertn@umich.edu<ul>
24704479Sbinkertn@umich.edu<li><tt>p.linespan(num)</tt>. Return a tuple (startline,endline) with the starting and ending line number for symbol <em>num</em>.
24714479Sbinkertn@umich.edu<li><tt>p.lexspan(num)</tt>. Return a tuple (start,end) with the starting and ending positions for symbol <em>num</em>.
24724479Sbinkertn@umich.edu</ul>
24734479Sbinkertn@umich.edu
24744479Sbinkertn@umich.eduFor example:
24754479Sbinkertn@umich.edu
24764479Sbinkertn@umich.edu<blockquote>
24774479Sbinkertn@umich.edu<pre>
24784479Sbinkertn@umich.edudef p_expression(p):
24794479Sbinkertn@umich.edu    'expression : expression PLUS expression'
24804479Sbinkertn@umich.edu    p.lineno(1)        # Line number of the left expression
24814479Sbinkertn@umich.edu    p.lineno(2)        # line number of the PLUS operator
24824479Sbinkertn@umich.edu    p.lineno(3)        # line number of the right expression
24834479Sbinkertn@umich.edu    ...
24844479Sbinkertn@umich.edu    start,end = p.linespan(3)    # Start,end lines of the right expression
24854479Sbinkertn@umich.edu    starti,endi = p.lexspan(3)   # Start,end positions of right expression
24864479Sbinkertn@umich.edu
24874479Sbinkertn@umich.edu</pre>
24884479Sbinkertn@umich.edu</blockquote>
24894479Sbinkertn@umich.edu
24904479Sbinkertn@umich.eduNote: The <tt>lexspan()</tt> function only returns the range of values up to the start of the last grammar symbol.  
24914479Sbinkertn@umich.edu
24924479Sbinkertn@umich.edu<p>
24934479Sbinkertn@umich.eduAlthough it may be convenient for PLY to track position information on
24944479Sbinkertn@umich.eduall grammar symbols, this is often unnecessary.  For example, if you
24954479Sbinkertn@umich.eduare merely using line number information in an error message, you can
24964479Sbinkertn@umich.eduoften just key off of a specific token in the grammar rule.  For
24974479Sbinkertn@umich.eduexample:
24984479Sbinkertn@umich.edu
24994479Sbinkertn@umich.edu<blockquote>
25004479Sbinkertn@umich.edu<pre>
25014479Sbinkertn@umich.edudef p_bad_func(p):
25024479Sbinkertn@umich.edu    'funccall : fname LPAREN error RPAREN'
25034479Sbinkertn@umich.edu    # Line number reported from LPAREN token
25044479Sbinkertn@umich.edu    print "Bad function call at line", p.lineno(2)
25054479Sbinkertn@umich.edu</pre>
25064479Sbinkertn@umich.edu</blockquote>
25074479Sbinkertn@umich.edu
25084479Sbinkertn@umich.edu<p>
25094479Sbinkertn@umich.eduSimilarly, you may get better parsing performance if you only propagate line number
25104479Sbinkertn@umich.eduinformation where it's needed.   For example:
25114479Sbinkertn@umich.edu
25124479Sbinkertn@umich.edu<blockquote>
25134479Sbinkertn@umich.edu<pre>
25144479Sbinkertn@umich.edudef p_fname(p):
25154479Sbinkertn@umich.edu    'fname : ID'
25164479Sbinkertn@umich.edu    p[0] = (p[1],p.lineno(1))
25174479Sbinkertn@umich.edu</pre>
25184479Sbinkertn@umich.edu</blockquote>
25194479Sbinkertn@umich.edu
25204479Sbinkertn@umich.eduFinally, it should be noted that PLY does not store position information after a rule has been
25214479Sbinkertn@umich.eduprocessed.  If it is important for you to retain this information in an abstract syntax tree, you
25224479Sbinkertn@umich.edumust make your own copy.
25234479Sbinkertn@umich.edu
25244479Sbinkertn@umich.edu<H3><a name="ply_nn34"></a>5.10 AST Construction</H3>
25254479Sbinkertn@umich.edu
25262632Sstever@eecs.umich.edu
25272632Sstever@eecs.umich.edu<tt>yacc.py</tt> provides no special functions for constructing an abstract syntax tree.  However, such
25282632Sstever@eecs.umich.educonstruction is easy enough to do on your own.  Simply create a data structure for abstract syntax tree nodes
25294479Sbinkertn@umich.eduand assign nodes to <tt>p[0]</tt> in each rule.
25302632Sstever@eecs.umich.edu
25312632Sstever@eecs.umich.eduFor example:
25322632Sstever@eecs.umich.edu
25332632Sstever@eecs.umich.edu<blockquote>
25342632Sstever@eecs.umich.edu<pre>
25352632Sstever@eecs.umich.educlass Expr: pass
25362632Sstever@eecs.umich.edu
25372632Sstever@eecs.umich.educlass BinOp(Expr):
25382632Sstever@eecs.umich.edu    def __init__(self,left,op,right):
25392632Sstever@eecs.umich.edu        self.type = "binop"
25402632Sstever@eecs.umich.edu        self.left = left
25412632Sstever@eecs.umich.edu        self.right = right
25422632Sstever@eecs.umich.edu        self.op = op
25432632Sstever@eecs.umich.edu
25442632Sstever@eecs.umich.educlass Number(Expr):
25452632Sstever@eecs.umich.edu    def __init__(self,value):
25462632Sstever@eecs.umich.edu        self.type = "number"
25472632Sstever@eecs.umich.edu        self.value = value
25482632Sstever@eecs.umich.edu
25494479Sbinkertn@umich.edudef p_expression_binop(p):
25502632Sstever@eecs.umich.edu    '''expression : expression PLUS expression
25512632Sstever@eecs.umich.edu                  | expression MINUS expression
25522632Sstever@eecs.umich.edu                  | expression TIMES expression
25532632Sstever@eecs.umich.edu                  | expression DIVIDE expression'''
25542632Sstever@eecs.umich.edu
25554479Sbinkertn@umich.edu    p[0] = BinOp(p[1],p[2],p[3])
25564479Sbinkertn@umich.edu
25574479Sbinkertn@umich.edudef p_expression_group(p):
25582632Sstever@eecs.umich.edu    'expression : LPAREN expression RPAREN'
25594479Sbinkertn@umich.edu    p[0] = p[2]
25604479Sbinkertn@umich.edu
25614479Sbinkertn@umich.edudef p_expression_number(p):
25622632Sstever@eecs.umich.edu    'expression : NUMBER'
25634479Sbinkertn@umich.edu    p[0] = Number(p[1])
25642632Sstever@eecs.umich.edu</pre>
25652632Sstever@eecs.umich.edu</blockquote>
25662632Sstever@eecs.umich.edu
25672632Sstever@eecs.umich.eduTo simplify tree traversal, it may make sense to pick a very generic tree structure for your parse tree nodes.
25682632Sstever@eecs.umich.eduFor example:
25692632Sstever@eecs.umich.edu
25702632Sstever@eecs.umich.edu<blockquote>
25712632Sstever@eecs.umich.edu<pre>
25722632Sstever@eecs.umich.educlass Node:
25732632Sstever@eecs.umich.edu    def __init__(self,type,children=None,leaf=None):
25742632Sstever@eecs.umich.edu         self.type = type
25752632Sstever@eecs.umich.edu         if children:
25762632Sstever@eecs.umich.edu              self.children = children
25772632Sstever@eecs.umich.edu         else:
25782632Sstever@eecs.umich.edu              self.children = [ ]
25792632Sstever@eecs.umich.edu         self.leaf = leaf
25802632Sstever@eecs.umich.edu	 
25814479Sbinkertn@umich.edudef p_expression_binop(p):
25822632Sstever@eecs.umich.edu    '''expression : expression PLUS expression
25832632Sstever@eecs.umich.edu                  | expression MINUS expression
25842632Sstever@eecs.umich.edu                  | expression TIMES expression
25852632Sstever@eecs.umich.edu                  | expression DIVIDE expression'''
25862632Sstever@eecs.umich.edu
25874479Sbinkertn@umich.edu    p[0] = Node("binop", [p[1],p[3]], p[2])
25882632Sstever@eecs.umich.edu</pre>
25892632Sstever@eecs.umich.edu</blockquote>
25902632Sstever@eecs.umich.edu
25914479Sbinkertn@umich.edu<H3><a name="ply_nn35"></a>5.11 Embedded Actions</H3>
25924479Sbinkertn@umich.edu
25934479Sbinkertn@umich.edu
25944479Sbinkertn@umich.eduThe parsing technique used by yacc only allows actions to be executed at the end of a rule.  For example,
25954479Sbinkertn@umich.edusuppose you have a rule like this:
25964479Sbinkertn@umich.edu
25974479Sbinkertn@umich.edu<blockquote>
25984479Sbinkertn@umich.edu<pre>
25994479Sbinkertn@umich.edudef p_foo(p):
26004479Sbinkertn@umich.edu    "foo : A B C D"
26014479Sbinkertn@umich.edu    print "Parsed a foo", p[1],p[2],p[3],p[4]
26024479Sbinkertn@umich.edu</pre>
26034479Sbinkertn@umich.edu</blockquote>
26044479Sbinkertn@umich.edu
26054479Sbinkertn@umich.edu<p>
26064479Sbinkertn@umich.eduIn this case, the supplied action code only executes after all of the
26074479Sbinkertn@umich.edusymbols <tt>A</tt>, <tt>B</tt>, <tt>C</tt>, and <tt>D</tt> have been
26084479Sbinkertn@umich.eduparsed. Sometimes, however, it is useful to execute small code
26094479Sbinkertn@umich.edufragments during intermediate stages of parsing.  For example, suppose
26104479Sbinkertn@umich.eduyou wanted to perform some action immediately after <tt>A</tt> has
26114479Sbinkertn@umich.edubeen parsed. To do this, you can write a empty rule like this:
26124479Sbinkertn@umich.edu
26134479Sbinkertn@umich.edu<blockquote>
26144479Sbinkertn@umich.edu<pre>
26154479Sbinkertn@umich.edudef p_foo(p):
26164479Sbinkertn@umich.edu    "foo : A seen_A B C D"
26174479Sbinkertn@umich.edu    print "Parsed a foo", p[1],p[3],p[4],p[5]
26184479Sbinkertn@umich.edu    print "seen_A returned", p[2]
26194479Sbinkertn@umich.edu
26204479Sbinkertn@umich.edudef p_seen_A(p):
26214479Sbinkertn@umich.edu    "seen_A :"
26224479Sbinkertn@umich.edu    print "Saw an A = ", p[-1]   # Access grammar symbol to left
26234479Sbinkertn@umich.edu    p[0] = some_value            # Assign value to seen_A
26244479Sbinkertn@umich.edu
26254479Sbinkertn@umich.edu</pre>
26264479Sbinkertn@umich.edu</blockquote>
26274479Sbinkertn@umich.edu
26284479Sbinkertn@umich.edu<p>
26294479Sbinkertn@umich.eduIn this example, the empty <tt>seen_A</tt> rule executes immediately
26304479Sbinkertn@umich.eduafter <tt>A</tt> is shifted onto the parsing stack.  Within this
26314479Sbinkertn@umich.edurule, <tt>p[-1]</tt> refers to the symbol on the stack that appears
26324479Sbinkertn@umich.eduimmediately to the left of the <tt>seen_A</tt> symbol.  In this case,
26334479Sbinkertn@umich.eduit would be the value of <tt>A</tt> in the <tt>foo</tt> rule
26344479Sbinkertn@umich.eduimmediately above.  Like other rules, a value can be returned from an
26354479Sbinkertn@umich.eduembedded action by simply assigning it to <tt>p[0]</tt>
26364479Sbinkertn@umich.edu
26374479Sbinkertn@umich.edu<p>
26384479Sbinkertn@umich.eduThe use of embedded actions can sometimes introduce extra shift/reduce conflicts.  For example,
26394479Sbinkertn@umich.eduthis grammar has no conflicts:
26404479Sbinkertn@umich.edu
26414479Sbinkertn@umich.edu<blockquote>
26424479Sbinkertn@umich.edu<pre>
26434479Sbinkertn@umich.edudef p_foo(p):
26444479Sbinkertn@umich.edu    """foo : abcd
26454479Sbinkertn@umich.edu           | abcx"""
26464479Sbinkertn@umich.edu
26474479Sbinkertn@umich.edudef p_abcd(p):
26484479Sbinkertn@umich.edu    "abcd : A B C D"
26494479Sbinkertn@umich.edu
26504479Sbinkertn@umich.edudef p_abcx(p):
26514479Sbinkertn@umich.edu    "abcx : A B C X"
26524479Sbinkertn@umich.edu</pre>
26534479Sbinkertn@umich.edu</blockquote>
26544479Sbinkertn@umich.edu
26554479Sbinkertn@umich.eduHowever, if you insert an embedded action into one of the rules like this,
26564479Sbinkertn@umich.edu
26574479Sbinkertn@umich.edu<blockquote>
26584479Sbinkertn@umich.edu<pre>
26594479Sbinkertn@umich.edudef p_foo(p):
26604479Sbinkertn@umich.edu    """foo : abcd
26614479Sbinkertn@umich.edu           | abcx"""
26624479Sbinkertn@umich.edu
26634479Sbinkertn@umich.edudef p_abcd(p):
26644479Sbinkertn@umich.edu    "abcd : A B C D"
26654479Sbinkertn@umich.edu
26664479Sbinkertn@umich.edudef p_abcx(p):
26674479Sbinkertn@umich.edu    "abcx : A B seen_AB C X"
26684479Sbinkertn@umich.edu
26694479Sbinkertn@umich.edudef p_seen_AB(p):
26704479Sbinkertn@umich.edu    "seen_AB :"
26714479Sbinkertn@umich.edu</pre>
26724479Sbinkertn@umich.edu</blockquote>
26734479Sbinkertn@umich.edu
26744479Sbinkertn@umich.eduan extra shift-reduce conflict will be introduced.  This conflict is caused by the fact that the same symbol <tt>C</tt> appears next in 
26754479Sbinkertn@umich.eduboth the <tt>abcd</tt> and <tt>abcx</tt> rules.   The parser can either shift the symbol (<tt>abcd</tt> rule) or reduce the empty rule <tt>seen_AB</tt> (<tt>abcx</tt> rule).
26764479Sbinkertn@umich.edu
26774479Sbinkertn@umich.edu<p>
26784479Sbinkertn@umich.eduA common use of embedded rules is to control other aspects of parsing
26794479Sbinkertn@umich.edusuch as scoping of local variables.  For example, if you were parsing C code, you might
26804479Sbinkertn@umich.eduwrite code like this:
26814479Sbinkertn@umich.edu
26824479Sbinkertn@umich.edu<blockquote>
26834479Sbinkertn@umich.edu<pre>
26844479Sbinkertn@umich.edudef p_statements_block(p):
26854479Sbinkertn@umich.edu    "statements: LBRACE new_scope statements RBRACE"""
26864479Sbinkertn@umich.edu    # Action code
26874479Sbinkertn@umich.edu    ...
26884479Sbinkertn@umich.edu    pop_scope()        # Return to previous scope
26894479Sbinkertn@umich.edu
26904479Sbinkertn@umich.edudef p_new_scope(p):
26914479Sbinkertn@umich.edu    "new_scope :"
26924479Sbinkertn@umich.edu    # Create a new scope for local variables
26934479Sbinkertn@umich.edu    s = new_scope()
26944479Sbinkertn@umich.edu    push_scope(s)
26954479Sbinkertn@umich.edu    ...
26964479Sbinkertn@umich.edu</pre>
26974479Sbinkertn@umich.edu</blockquote>
26984479Sbinkertn@umich.edu
26994479Sbinkertn@umich.eduIn this case, the embedded action <tt>new_scope</tt> executes immediately after a <tt>LBRACE</tt> (<tt>{</tt>) symbol is parsed.   This might 
27004479Sbinkertn@umich.eduadjust internal symbol tables and other aspects of the parser.  Upon completion of the rule <tt>statements_block</tt>, code might undo the operations performed in the embedded action (e.g., <tt>pop_scope()</tt>).
27014479Sbinkertn@umich.edu
27024479Sbinkertn@umich.edu<H3><a name="ply_nn36"></a>5.12 Yacc implementation notes</H3>
27034479Sbinkertn@umich.edu
27042632Sstever@eecs.umich.edu
27052632Sstever@eecs.umich.edu<ul>
27064479Sbinkertn@umich.edu<li>The default parsing method is LALR. To use SLR instead, run yacc() as follows:
27074479Sbinkertn@umich.edu
27084479Sbinkertn@umich.edu<blockquote>
27094479Sbinkertn@umich.edu<pre>
27104479Sbinkertn@umich.eduyacc.yacc(method="SLR")
27114479Sbinkertn@umich.edu</pre>
27124479Sbinkertn@umich.edu</blockquote>
27134479Sbinkertn@umich.eduNote: LALR table generation takes approximately twice as long as SLR table generation.   There is no
27144479Sbinkertn@umich.edudifference in actual parsing performance---the same code is used in both cases.   LALR is preferred when working
27154479Sbinkertn@umich.eduwith more complicated grammars since it is more powerful.
27164479Sbinkertn@umich.edu
27174479Sbinkertn@umich.edu<p>
27184479Sbinkertn@umich.edu
27192632Sstever@eecs.umich.edu<li>By default, <tt>yacc.py</tt> relies on <tt>lex.py</tt> for tokenizing.  However, an alternative tokenizer
27202632Sstever@eecs.umich.educan be supplied as follows:
27212632Sstever@eecs.umich.edu
27222632Sstever@eecs.umich.edu<blockquote>
27232632Sstever@eecs.umich.edu<pre>
27242632Sstever@eecs.umich.eduyacc.parse(lexer=x)
27252632Sstever@eecs.umich.edu</pre>
27262632Sstever@eecs.umich.edu</blockquote>
27272632Sstever@eecs.umich.eduin this case, <tt>x</tt> must be a Lexer object that minimally has a <tt>x.token()</tt> method for retrieving the next
27282632Sstever@eecs.umich.edutoken.   If an input string is given to <tt>yacc.parse()</tt>, the lexer must also have an <tt>x.input()</tt> method.
27292632Sstever@eecs.umich.edu
27302632Sstever@eecs.umich.edu<p>
27312632Sstever@eecs.umich.edu<li>By default, the yacc generates tables in debugging mode (which produces the parser.out file and other output).
27322632Sstever@eecs.umich.eduTo disable this, use
27332632Sstever@eecs.umich.edu
27342632Sstever@eecs.umich.edu<blockquote>
27352632Sstever@eecs.umich.edu<pre>
27362632Sstever@eecs.umich.eduyacc.yacc(debug=0)
27372632Sstever@eecs.umich.edu</pre>
27382632Sstever@eecs.umich.edu</blockquote>
27392632Sstever@eecs.umich.edu
27402632Sstever@eecs.umich.edu<p>
27412632Sstever@eecs.umich.edu<li>To change the name of the <tt>parsetab.py</tt> file,  use:
27422632Sstever@eecs.umich.edu
27432632Sstever@eecs.umich.edu<blockquote>
27442632Sstever@eecs.umich.edu<pre>
27452632Sstever@eecs.umich.eduyacc.yacc(tabmodule="foo")
27462632Sstever@eecs.umich.edu</pre>
27472632Sstever@eecs.umich.edu</blockquote>
27482632Sstever@eecs.umich.edu
27494479Sbinkertn@umich.edu<p>
27504479Sbinkertn@umich.edu<li>To change the directory in which the <tt>parsetab.py</tt> file (and other output files) are written, use:
27514479Sbinkertn@umich.edu<blockquote>
27524479Sbinkertn@umich.edu<pre>
27534479Sbinkertn@umich.eduyacc.yacc(tabmodule="foo",outputdir="somedirectory")
27544479Sbinkertn@umich.edu</pre>
27554479Sbinkertn@umich.edu</blockquote>
27564479Sbinkertn@umich.edu
27574479Sbinkertn@umich.edu<p>
27584479Sbinkertn@umich.edu<li>To prevent yacc from generating any kind of parser table file, use:
27594479Sbinkertn@umich.edu<blockquote>
27604479Sbinkertn@umich.edu<pre>
27614479Sbinkertn@umich.eduyacc.yacc(write_tables=0)
27624479Sbinkertn@umich.edu</pre>
27634479Sbinkertn@umich.edu</blockquote>
27644479Sbinkertn@umich.edu
27654479Sbinkertn@umich.eduNote: If you disable table generation, yacc() will regenerate the parsing tables
27664479Sbinkertn@umich.edueach time it runs (which may take awhile depending on how large your grammar is).
27674479Sbinkertn@umich.edu
27682632Sstever@eecs.umich.edu<P>
27692632Sstever@eecs.umich.edu<li>To print copious amounts of debugging during parsing, use:
27702632Sstever@eecs.umich.edu
27712632Sstever@eecs.umich.edu<blockquote>
27722632Sstever@eecs.umich.edu<pre>
27732632Sstever@eecs.umich.eduyacc.parse(debug=1)
27742632Sstever@eecs.umich.edu</pre>
27752632Sstever@eecs.umich.edu</blockquote>
27762632Sstever@eecs.umich.edu
27772632Sstever@eecs.umich.edu<p>
27784479Sbinkertn@umich.edu<li>To redirect the debugging output to a filename of your choosing, use:
27794479Sbinkertn@umich.edu
27804479Sbinkertn@umich.edu<blockquote>
27814479Sbinkertn@umich.edu<pre>
27824479Sbinkertn@umich.eduyacc.parse(debug=1, debugfile="debugging.out")
27834479Sbinkertn@umich.edu</pre>
27844479Sbinkertn@umich.edu</blockquote>
27854479Sbinkertn@umich.edu
27864479Sbinkertn@umich.edu<p>
27872632Sstever@eecs.umich.edu<li>The <tt>yacc.yacc()</tt> function really returns a parser object.  If you want to support multiple
27882632Sstever@eecs.umich.eduparsers in the same application, do this:
27892632Sstever@eecs.umich.edu
27902632Sstever@eecs.umich.edu<blockquote>
27912632Sstever@eecs.umich.edu<pre>
27922632Sstever@eecs.umich.edup = yacc.yacc()
27932632Sstever@eecs.umich.edu...
27942632Sstever@eecs.umich.edup.parse()
27952632Sstever@eecs.umich.edu</pre>
27962632Sstever@eecs.umich.edu</blockquote>
27972632Sstever@eecs.umich.edu
27982632Sstever@eecs.umich.eduNote: The function <tt>yacc.parse()</tt> is bound to the last parser that was generated.
27992632Sstever@eecs.umich.edu
28002632Sstever@eecs.umich.edu<p>
28014479Sbinkertn@umich.edu<li>Since the generation of the LALR tables is relatively expensive, previously generated tables are
28022632Sstever@eecs.umich.educached and reused if possible.  The decision to regenerate the tables is determined by taking an MD5
28032632Sstever@eecs.umich.educhecksum of all grammar rules and precedence rules.  Only in the event of a mismatch are the tables regenerated.
28042632Sstever@eecs.umich.edu
28052632Sstever@eecs.umich.edu<p>
28062632Sstever@eecs.umich.eduIt should be noted that table generation is reasonably efficient, even for grammars that involve around a 100 rules
28072632Sstever@eecs.umich.eduand several hundred states.  For more complex languages such as C, table generation may take 30-60 seconds on a slow
28082632Sstever@eecs.umich.edumachine.  Please be patient.
28092632Sstever@eecs.umich.edu
28102632Sstever@eecs.umich.edu<p>
28114479Sbinkertn@umich.edu<li>Since LR parsing is driven by tables, the performance of the parser is largely independent of the
28124479Sbinkertn@umich.edusize of the grammar.   The biggest bottlenecks will be the lexer and the complexity of the code in your grammar rules.
28132632Sstever@eecs.umich.edu</ul>
28142632Sstever@eecs.umich.edu
28154479Sbinkertn@umich.edu<H2><a name="ply_nn37"></a>6. Parser and Lexer State Management</H2>
28164479Sbinkertn@umich.edu
28172632Sstever@eecs.umich.edu
28182632Sstever@eecs.umich.eduIn advanced parsing applications, you may want to have multiple
28192632Sstever@eecs.umich.eduparsers and lexers.  Furthermore, the parser may want to control the
28202632Sstever@eecs.umich.edubehavior of the lexer in some way.
28212632Sstever@eecs.umich.edu
28222632Sstever@eecs.umich.edu<p>
28232632Sstever@eecs.umich.eduTo do this, it is important to note that both the lexer and parser are
28242632Sstever@eecs.umich.eduactually implemented as objects.   These objects are returned by the
28252632Sstever@eecs.umich.edu<tt>lex()</tt> and <tt>yacc()</tt> functions respectively.  For example:
28262632Sstever@eecs.umich.edu
28272632Sstever@eecs.umich.edu<blockquote>
28282632Sstever@eecs.umich.edu<pre>
28292632Sstever@eecs.umich.edulexer  = lex.lex()       # Return lexer object
28302632Sstever@eecs.umich.eduparser = yacc.yacc()     # Return parser object
28312632Sstever@eecs.umich.edu</pre>
28322632Sstever@eecs.umich.edu</blockquote>
28332632Sstever@eecs.umich.edu
28344479Sbinkertn@umich.eduTo attach the lexer and parser together, make sure you use the <tt>lexer</tt> argumemnt to parse.  For example:
28354479Sbinkertn@umich.edu
28364479Sbinkertn@umich.edu<blockquote>
28374479Sbinkertn@umich.edu<pre>
28384479Sbinkertn@umich.eduparser.parse(text,lexer=lexer)
28394479Sbinkertn@umich.edu</pre>
28404479Sbinkertn@umich.edu</blockquote>
28414479Sbinkertn@umich.edu
28422632Sstever@eecs.umich.eduWithin lexer and parser rules, these objects are also available.  In the lexer,
28432632Sstever@eecs.umich.eduthe "lexer" attribute of a token refers to the lexer object in use.  For example:
28442632Sstever@eecs.umich.edu
28452632Sstever@eecs.umich.edu<blockquote>
28462632Sstever@eecs.umich.edu<pre>
28472632Sstever@eecs.umich.edudef t_NUMBER(t):
28482632Sstever@eecs.umich.edu   r'\d+'
28492632Sstever@eecs.umich.edu   ...
28502632Sstever@eecs.umich.edu   print t.lexer           # Show lexer object
28512632Sstever@eecs.umich.edu</pre>
28522632Sstever@eecs.umich.edu</blockquote>
28532632Sstever@eecs.umich.edu
28542632Sstever@eecs.umich.eduIn the parser, the "lexer" and "parser" attributes refer to the lexer
28552632Sstever@eecs.umich.eduand parser objects respectively.
28562632Sstever@eecs.umich.edu
28572632Sstever@eecs.umich.edu<blockquote>
28582632Sstever@eecs.umich.edu<pre>
28594479Sbinkertn@umich.edudef p_expr_plus(p):
28602632Sstever@eecs.umich.edu   'expr : expr PLUS expr'
28612632Sstever@eecs.umich.edu   ...
28624479Sbinkertn@umich.edu   print p.parser          # Show parser object
28634479Sbinkertn@umich.edu   print p.lexer           # Show lexer object
28642632Sstever@eecs.umich.edu</pre>
28652632Sstever@eecs.umich.edu</blockquote>
28662632Sstever@eecs.umich.edu
28672632Sstever@eecs.umich.eduIf necessary, arbitrary attributes can be attached to the lexer or parser object.
28682632Sstever@eecs.umich.eduFor example, if you wanted to have different parsing modes, you could attach a mode
28692632Sstever@eecs.umich.eduattribute to the parser object and look at it later.
28702632Sstever@eecs.umich.edu
28714479Sbinkertn@umich.edu<H2><a name="ply_nn38"></a>7. Using Python's Optimized Mode</H2>
28724479Sbinkertn@umich.edu
28732632Sstever@eecs.umich.edu
28742632Sstever@eecs.umich.eduBecause PLY uses information from doc-strings, parsing and lexing
28752632Sstever@eecs.umich.eduinformation must be gathered while running the Python interpreter in
28762632Sstever@eecs.umich.edunormal mode (i.e., not with the -O or -OO options).  However, if you
28772632Sstever@eecs.umich.eduspecify optimized mode like this:
28782632Sstever@eecs.umich.edu
28792632Sstever@eecs.umich.edu<blockquote>
28802632Sstever@eecs.umich.edu<pre>
28812632Sstever@eecs.umich.edulex.lex(optimize=1)
28822632Sstever@eecs.umich.eduyacc.yacc(optimize=1)
28832632Sstever@eecs.umich.edu</pre>
28842632Sstever@eecs.umich.edu</blockquote>
28852632Sstever@eecs.umich.edu
28862632Sstever@eecs.umich.eduthen PLY can later be used when Python runs in optimized mode. To make this work,
28872632Sstever@eecs.umich.edumake sure you first run Python in normal mode.  Once the lexing and parsing tables
28882632Sstever@eecs.umich.eduhave been generated the first time, run Python in optimized mode. PLY will use
28892632Sstever@eecs.umich.eduthe tables without the need for doc strings.
28902632Sstever@eecs.umich.edu
28912632Sstever@eecs.umich.edu<p>
28922632Sstever@eecs.umich.eduBeware: running PLY in optimized mode disables a lot of error
28932632Sstever@eecs.umich.educhecking.  You should only do this when your project has stabilized
28942632Sstever@eecs.umich.eduand you don't need to do any debugging.
28952632Sstever@eecs.umich.edu  
28964479Sbinkertn@umich.edu<H2><a name="ply_nn39"></a>8. Where to go from here?</H2>
28974479Sbinkertn@umich.edu
28982632Sstever@eecs.umich.edu
28992632Sstever@eecs.umich.eduThe <tt>examples</tt> directory of the PLY distribution contains several simple examples.   Please consult a
29002632Sstever@eecs.umich.educompilers textbook for the theory and underlying implementation details or LR parsing.
29012632Sstever@eecs.umich.edu
29022632Sstever@eecs.umich.edu</body>
29032632Sstever@eecs.umich.edu</html>
29042632Sstever@eecs.umich.edu
29052632Sstever@eecs.umich.edu
29062632Sstever@eecs.umich.edu
29072632Sstever@eecs.umich.edu
29082632Sstever@eecs.umich.edu
29092632Sstever@eecs.umich.edu
29102632Sstever@eecs.umich.edu
2911