crossbar.cc revision 10152
1/***************************************************************************** 2 * McPAT/CACTI 3 * SOFTWARE LICENSE AGREEMENT 4 * Copyright 2012 Hewlett-Packard Development Company, L.P. 5 * All Rights Reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions are 9 * met: redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer; 11 * redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution; 14 * neither the name of the copyright holders nor the names of its 15 * contributors may be used to endorse or promote products derived from 16 * this software without specific prior written permission. 17 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.” 29 * 30 ***************************************************************************/ 31 32#include "crossbar.h" 33 34#define ASPECT_THRESHOLD .8 35#define ADJ 1 36 37Crossbar::Crossbar( 38 double n_inp_, 39 double n_out_, 40 double flit_size_, 41 TechnologyParameter::DeviceType *dt 42 ):n_inp(n_inp_), n_out(n_out_), flit_size(flit_size_), deviceType(dt) 43{ 44 min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio*g_tp.min_w_nmos_; 45 Vdd = dt->Vdd; 46 CB_ADJ = 1; 47} 48 49Crossbar::~Crossbar(){} 50 51double Crossbar::output_buffer() 52{ 53 54 //Wire winit(4, 4); 55 double l_eff = n_inp*flit_size*g_tp.wire_outside_mat.pitch; 56 Wire w1(g_ip->wt, l_eff); 57 //double s1 = w1.repeater_size *l_eff*ADJ/w1.repeater_spacing; 58 double s1 = w1.repeater_size * (l_eff <w1.repeater_spacing? l_eff *ADJ/w1.repeater_spacing : ADJ); 59 double pton_size = deviceType->n_to_p_eff_curr_drv_ratio; 60 // the model assumes input capacitance of the wire driver = input capacitance of nand + nor = input cap of the driver transistor 61 TriS1 = s1*(1 + pton_size)/(2 + pton_size + 1 + 2*pton_size); 62 TriS2 = s1; //driver transistor 63 64 if (TriS1 < 1) 65 TriS1 = 1; 66 67 double input_cap = gate_C(TriS1*(2*min_w_pmos + g_tp.min_w_nmos_), 0) + 68 gate_C(TriS1*(min_w_pmos + 2*g_tp.min_w_nmos_), 0); 69// input_cap += drain_C_(TriS1*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) + 70// drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)*2 + 71// gate_C(TriS2*g_tp.min_w_nmos_, 0)+ 72// drain_C_(TriS1*min_w_pmos, NCH, 1, 1, g_tp.cell_h_def)*2 + 73// drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) + 74// gate_C(TriS2*min_w_pmos, 0); 75 tri_int_cap = drain_C_(TriS1*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) + 76 drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)*2 + 77 gate_C(TriS2*g_tp.min_w_nmos_, 0)+ 78 drain_C_(TriS1*min_w_pmos, NCH, 1, 1, g_tp.cell_h_def)*2 + 79 drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) + 80 gate_C(TriS2*min_w_pmos, 0); 81 double output_cap = drain_C_(TriS2*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) + 82 drain_C_(TriS2*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def); 83 double ctr_cap = gate_C(TriS2 *(min_w_pmos + g_tp.min_w_nmos_), 0); 84 85 tri_inp_cap = input_cap; 86 tri_out_cap = output_cap; 87 tri_ctr_cap = ctr_cap; 88 return input_cap + output_cap + ctr_cap; 89} 90 91void Crossbar::compute_power() 92{ 93 94 Wire winit(4, 4); 95 double tri_cap = output_buffer(); 96 assert(tri_cap > 0); 97 //area of a tristate logic 98 double g_area = compute_gate_area(INV, 1, TriS2*g_tp.min_w_nmos_, TriS2*min_w_pmos, g_tp.cell_h_def); 99 g_area *= 2; // to model area of output transistors 100 g_area += compute_gate_area (NAND, 2, TriS1*2*g_tp.min_w_nmos_, TriS1*min_w_pmos, g_tp.cell_h_def); 101 g_area += compute_gate_area (NOR, 2, TriS1*g_tp.min_w_nmos_, TriS1*2*min_w_pmos, g_tp.cell_h_def); 102 double width /*per tristate*/ = g_area/(CB_ADJ * g_tp.cell_h_def); 103 // effective no. of tristate buffers that need to be laid side by side 104 int ntri = (int)ceil(g_tp.cell_h_def/(g_tp.wire_outside_mat.pitch)); 105 double wire_len = MAX(width*ntri*n_out, flit_size*g_tp.wire_outside_mat.pitch*n_out); 106 Wire w1(g_ip->wt, wire_len); 107 108 area.w = wire_len; 109 area.h = g_tp.wire_outside_mat.pitch*n_inp*flit_size * CB_ADJ; 110 Wire w2(g_ip->wt, area.h); 111 112 double aspect_ratio_cb = (area.h/area.w)*(n_out/n_inp); 113 if (aspect_ratio_cb > 1) aspect_ratio_cb = 1/aspect_ratio_cb; 114 115 if (aspect_ratio_cb < ASPECT_THRESHOLD) { 116 if (n_out > 2 && n_inp > 2) { 117 CB_ADJ+=0.2; 118 //cout << "CB ADJ " << CB_ADJ << endl; 119 if (CB_ADJ < 4) { 120 this->compute_power(); 121 } 122 } 123 } 124 125 126 127 power.readOp.dynamic = (w1.power.readOp.dynamic + w2.power.readOp.dynamic + (tri_inp_cap * n_out + tri_out_cap * n_inp + tri_ctr_cap + tri_int_cap) * Vdd*Vdd)*flit_size; 128 power.readOp.leakage = n_inp * n_out * flit_size * ( 129 cmos_Isub_leakage(g_tp.min_w_nmos_*TriS2*2, min_w_pmos*TriS2*2, 1, inv) *Vdd+ 130 cmos_Isub_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nand)*Vdd+ 131 cmos_Isub_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nor) *Vdd+ 132 w1.power.readOp.leakage + w2.power.readOp.leakage); 133 power.readOp.gate_leakage = n_inp * n_out * flit_size * ( 134 cmos_Ig_leakage(g_tp.min_w_nmos_*TriS2*2, min_w_pmos*TriS2*2, 1, inv) *Vdd+ 135 cmos_Ig_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nand)*Vdd+ 136 cmos_Ig_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nor) *Vdd+ 137 w1.power.readOp.gate_leakage + w2.power.readOp.gate_leakage); 138 139 // delay calculation 140 double l_eff = n_inp*flit_size*g_tp.wire_outside_mat.pitch; 141 Wire wdriver(g_ip->wt, l_eff); 142 double res = g_tp.wire_outside_mat.R_per_um * (area.w+area.h) + tr_R_on(g_tp.min_w_nmos_*wdriver.repeater_size, NCH, 1); 143 double cap = g_tp.wire_outside_mat.C_per_um * (area.w + area.h) + n_out*tri_inp_cap + n_inp*tri_out_cap; 144 delay = horowitz(w1.signal_rise_time(), res*cap, deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, RISE); 145 146 Wire wreset(); 147} 148 149void Crossbar::print_crossbar() 150{ 151 cout << "\nCrossbar Stats (" << n_inp << "x" << n_out << ")\n\n"; 152 cout << "Flit size : " << flit_size << " bits" << endl; 153 cout << "Width : " << area.w << " u" << endl; 154 cout << "Height : " << area.h << " u" << endl; 155 cout << "Dynamic Power : " << power.readOp.dynamic*1e9 * MIN(n_inp, n_out) << " (nJ)" << endl; 156 cout << "Leakage Power : " << power.readOp.leakage*1e3 << " (mW)" << endl; 157 cout << "Gate Leakage Power : " << power.readOp.gate_leakage*1e3 << " (mW)" << endl; 158 cout << "Crossbar Delay : " << delay*1e12 << " ps\n"; 159} 160 161 162