component.cc revision 10152:52c552138ba1
1/*****************************************************************************
2 *                                McPAT/CACTI
3 *                      SOFTWARE LICENSE AGREEMENT
4 *            Copyright 2012 Hewlett-Packard Development Company, L.P.
5 *                          All Rights Reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met: redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer;
11 * redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution;
14 * neither the name of the copyright holders nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
17
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
29 *
30 ***************************************************************************/
31
32
33
34
35#include <cassert>
36#include <cmath>
37#include <iostream>
38
39#include "bank.h"
40#include "component.h"
41#include "decoder.h"
42
43using namespace std;
44
45
46
47Component::Component()
48  :area(), power(), rt_power(),delay(0)
49{
50}
51
52
53
54Component::~Component()
55{
56}
57
58
59
60double Component::compute_diffusion_width(int num_stacked_in, int num_folded_tr)
61{
62  double w_poly = g_ip->F_sz_um;
63  double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact;
64  double total_diff_w = 2 * spacing_poly_to_poly +  // for both source and drain
65                        num_stacked_in * w_poly +
66                        (num_stacked_in - 1) * g_tp.spacing_poly_to_poly;
67
68  if (num_folded_tr > 1)
69  {
70    total_diff_w += (num_folded_tr - 2) * 2 * spacing_poly_to_poly +
71                    (num_folded_tr - 1) * num_stacked_in * w_poly +
72                    (num_folded_tr - 1) * (num_stacked_in - 1) * g_tp.spacing_poly_to_poly;
73  }
74
75  return total_diff_w;
76}
77
78
79
80double Component::compute_gate_area(
81    int gate_type,
82    int num_inputs,
83    double w_pmos,
84    double w_nmos,
85    double h_gate)
86{
87  if (w_pmos <= 0.0 || w_nmos <= 0.0)
88  {
89    return 0.0;
90  }
91
92  double w_folded_pmos, w_folded_nmos;
93  int    num_folded_pmos, num_folded_nmos;
94  double total_ndiff_w, total_pdiff_w;
95  Area gate;
96
97  double h_tr_region  = h_gate - 2 * g_tp.HPOWERRAIL;
98  double ratio_p_to_n = w_pmos / (w_pmos + w_nmos);
99
100  if (ratio_p_to_n >= 1 || ratio_p_to_n <= 0)
101  {
102    return 0.0;
103  }
104
105  w_folded_pmos  = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * ratio_p_to_n;
106  w_folded_nmos  = (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS) * (1 - ratio_p_to_n);
107  assert(w_folded_pmos > 0);
108
109  num_folded_pmos = (int) (ceil(w_pmos / w_folded_pmos));
110  num_folded_nmos = (int) (ceil(w_nmos / w_folded_nmos));
111
112  switch (gate_type)
113  {
114    case INV:
115      total_ndiff_w = compute_diffusion_width(1, num_folded_nmos);
116      total_pdiff_w = compute_diffusion_width(1, num_folded_pmos);
117      break;
118
119    case NOR:
120      total_ndiff_w = compute_diffusion_width(1, num_inputs * num_folded_nmos);
121      total_pdiff_w = compute_diffusion_width(num_inputs, num_folded_pmos);
122      break;
123
124    case NAND:
125      total_ndiff_w = compute_diffusion_width(num_inputs, num_folded_nmos);
126      total_pdiff_w = compute_diffusion_width(1, num_inputs * num_folded_pmos);
127      break;
128    default:
129      cout << "Unknown gate type: " << gate_type << endl;
130      exit(1);
131  }
132
133  gate.w = MAX(total_ndiff_w, total_pdiff_w);
134
135  if (w_folded_nmos > w_nmos)
136  {
137    //means that the height of the gate can
138    //be made smaller than the input height specified, so calculate the height of the gate.
139    gate.h = w_nmos + w_pmos + g_tp.MIN_GAP_BET_P_AND_N_DIFFS + 2 * g_tp.HPOWERRAIL;
140  }
141  else
142  {
143    gate.h = h_gate;
144  }
145  return gate.get_area();
146}
147
148
149
150double Component::compute_tr_width_after_folding(
151    double input_width,
152    double threshold_folding_width)
153{//This is actually the width of the cell not the width of a device.
154//The width of a cell and the width of a device is orthogonal.
155  if (input_width <= 0)
156  {
157    return 0;
158  }
159
160  int    num_folded_tr        = (int) (ceil(input_width / threshold_folding_width));
161  double spacing_poly_to_poly = g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact;
162  double width_poly           = g_ip->F_sz_um;
163  double total_diff_width     = num_folded_tr * width_poly + (num_folded_tr + 1) * spacing_poly_to_poly;
164
165  return total_diff_width;
166}
167
168
169
170double Component::height_sense_amplifier(double pitch_sense_amp)
171{
172  // compute the height occupied by all PMOS transistors
173  double h_pmos_tr = compute_tr_width_after_folding(g_tp.w_sense_p, pitch_sense_amp) * 2 +
174                     compute_tr_width_after_folding(g_tp.w_iso, pitch_sense_amp) +
175                     2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS;
176
177  // compute the height occupied by all NMOS transistors
178  double h_nmos_tr = compute_tr_width_after_folding(g_tp.w_sense_n, pitch_sense_amp) * 2 +
179                     compute_tr_width_after_folding(g_tp.w_sense_en, pitch_sense_amp) +
180                     2 * g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS;
181
182  // compute total height by considering gap between the p and n diffusion areas
183  return h_pmos_tr + h_nmos_tr + g_tp.MIN_GAP_BET_P_AND_N_DIFFS;
184}
185
186
187
188int Component::logical_effort(
189    int num_gates_min,
190    double g,
191    double F,
192    double * w_n,
193    double * w_p,
194    double C_load,
195    double p_to_n_sz_ratio,
196    bool   is_dram_,
197    bool   is_wl_tr_,
198    double max_w_nmos)
199{
200  int num_gates = (int) (log(F) / log(fopt));
201
202  // check if num_gates is odd. if so, add 1 to make it even
203  num_gates+= (num_gates % 2) ? 1 : 0;
204  num_gates = MAX(num_gates, num_gates_min);
205
206  // recalculate the effective fanout of each stage
207  double f = pow(F, 1.0 / num_gates);
208  int    i = num_gates - 1;
209  double C_in = C_load / f;
210  w_n[i]  = (1.0 / (1.0 + p_to_n_sz_ratio)) * C_in / gate_C(1, 0, is_dram_, false, is_wl_tr_);
211  w_n[i]  = MAX(w_n[i], g_tp.min_w_nmos_);
212  w_p[i]  = p_to_n_sz_ratio * w_n[i];
213
214  if (w_n[i] > max_w_nmos)
215  {
216    double C_ld = gate_C((1 + p_to_n_sz_ratio) * max_w_nmos, 0, is_dram_, false, is_wl_tr_);
217    F = g * C_ld / gate_C(w_n[0] + w_p[0], 0, is_dram_, false, is_wl_tr_);
218    num_gates = (int) (log(F) / log(fopt)) + 1;
219    num_gates+= (num_gates % 2) ? 1 : 0;
220    num_gates = MAX(num_gates, num_gates_min);
221    f = pow(F, 1.0 / (num_gates - 1));
222    i = num_gates - 1;
223    w_n[i]  = max_w_nmos;
224    w_p[i]  = p_to_n_sz_ratio * w_n[i];
225  }
226
227  for (i = num_gates - 2; i >= 1; i--)
228  {
229    w_n[i] = MAX(w_n[i+1] / f, g_tp.min_w_nmos_);
230    w_p[i] = p_to_n_sz_ratio * w_n[i];
231  }
232
233  assert(num_gates <= MAX_NUMBER_GATES_STAGE);
234  return num_gates;
235}
236
237