TG11LVT.model revision 10447
1# WARNING: Most commercial fabs will not be happy if you release their exact 2# process information! If you derive these numbers through SPICE models, 3# the process design kit, or any other confidential material, please round-off 4# the values and leave the process name unidentifiable by fab (i.e. call it 5# Bulk90LVT instead of TSMC90LVT) if you release parameters publicly. This 6# rule may not apply for open processes, but you may want to check. 7 8# All units are in SI, (volts, meters, kelvin, farads, ohms, amps, etc.) 9 10# This file contains the model for a Tri-Gate (Multi-Gate) 11nm LVT process 11Name = TG11LVT 12 13# Supply voltage used in the circuit and for characterizations (V) 14Vdd = 0.6 15# Temperature (K) 16Temperature = 340 17 18# ============================================================================= 19# Parameters for transistors 20# ============================================================================= 21 22# Contacted gate pitch (m) 23Gate->PitchContacted = 0.080e-6 24 25# Min gate width (m) 26Gate->MinWidth = 0.080e-6 27 28# Gate cap per unit width (F/m) 29Gate->CapPerWidth = 0.61e-9 30# Source/Drain cap per unit width (F/m) 31Drain->CapPerWidth = 0.56e-9 32 33# Parameters characterization temperature (K) 34Nmos->CharacterizedTemperature = 300.0 35Pmos->CharacterizedTemperature = 300.0 36 37#------------------------------------------------------------------------------ 38# I_Eff definition in Na, IEDM 2002 39# I_EFF = (I(VG = 0.5, VD = 1.0) + I(VG = 1.0, VD = 0.5))/2 40# R_EFF = VDD / I_EFF * 1 / (2 ln(2)) 41# This is generally more accurate for when the delay is input transition time 42# limited 43#------------------------------------------------------------------------------ 44# Effective resistance (Ohm-m) 45Nmos->EffResWidth = 1.16e-3 46Pmos->EffResWidth = 1.28e-3 47 48#------------------------------------------------------------------------------ 49# The ratio of extra effective resistance with each additional stacked 50# transistor 51# EffResStackRatio = (R_EFF_NAND2 - R_EFF_INV) / R_EFF_INV) 52# For example, inverter has an normalized effective drive resistance of 1.0. 53# A NAND2 (2-stack) will have an effective drive of 1.0 + 0.7, a NAND3 (3-stack) 54# will have an effective drive of 1.0 + 2 * 0.7. Use NORs for Pmos. This fit 55# works relatively well up to 4 stacks. This value will change depending on the 56# VDD used. 57#------------------------------------------------------------------------------ 58# Effective resistance stack ratio 59Nmos->EffResStackRatio = 0.89 60Pmos->EffResStackRatio = 0.86 61 62#------------------------------------------------------------------------------ 63# I_OFF defined as |I_DS| for |V_DS| = V_DD and |V_GS| = 0.0 64# Minimum off current is used in technologies where I_OFF stops scaling 65# with transistor width below some threshold 66#------------------------------------------------------------------------------ 67# Off current per width (A/m) 68Nmos->OffCurrent = 100.0e-3 69Pmos->OffCurrent = 100.0e-3 70# Minimum off current (A) 71Nmos->MinOffCurrent = 40e-9 72Pmos->MinOffCurrent = 4e-9 73 74# Subthreshold swing (V/dec) 75Nmos->SubthresholdSwing = 0.080 76Pmos->SubthresholdSwing = 0.080 77# DIBL factor (V/V) 78Nmos->DIBL = 0.125 79Pmos->DIBL = 0.125 80# Subthreshold temperature swing (K/dec) 81Nmos->SubthresholdTempSwing = 100.0 82Pmos->SubthresholdTempSwing = 100.0 83#------------------------------------------------------------------------------ 84 85# ============================================================================= 86# Parameters for interconnect 87# ============================================================================= 88 89Wire->AvailableLayers = [Metal1,Local,Intermediate,Semiglobal,Global] 90 91# Metal 1 Wire (used for std cell routing only) 92# Min width (m) 93Wire->Metal1->MinWidth = 20e-9 94# Min spacing (m) 95Wire->Metal1->MinSpacing = 20e-9 96# Resistivity (Ohm-m) 97Wire->Metal1->Resistivity = 6.8e-8 98# Metal thickness (m) 99Wire->Metal1->MetalThickness = 35.0e-9 100# Dielectric thickness (m) 101Wire->Metal1->DielectricThickness = 35.0e-9 102# Dielectric constant 103Wire->Metal1->DielectricConstant = 3.00 104 105# Local wire, 1.0X of the M1 pitch 106# Min width (m) 107Wire->Local->MinWidth = 20e-9 108# Min spacing (m) 109Wire->Local->MinSpacing = 20e-9 110# Resistivity (Ohm-m) 111Wire->Local->Resistivity = 6.8e-8 112# Metal thickness (m) 113Wire->Local->MetalThickness = 35.0e-9 114# Dielectric thickness (m) 115Wire->Local->DielectricThickness = 35.0e-9 116# Dielectric constant 117Wire->Local->DielectricConstant = 3.00 118 119# Intermediate wire, 2.0X the M1 pitch 120# Min width (m) 121Wire->Intermediate->MinWidth = 40e-9 122# Min spacing (m) 123Wire->Intermediate->MinSpacing = 40e-9 124# Resistivity (Ohm-m) 125Wire->Intermediate->Resistivity = 4.50e-8 126# Metal thickness (m) 127Wire->Intermediate->MetalThickness = 70.0e-9 128# Dielectric thickness (m) 129Wire->Intermediate->DielectricThickness = 70.0e-9 130# Dielectric constant 131Wire->Intermediate->DielectricConstant = 2.80 132 133# Semiglobal wire, 4.0X the M1 pitch 134# Min width (m) 135Wire->Semiglobal->MinWidth = 80e-9 136# Min spacing (m) 137Wire->Semiglobal->MinSpacing = 80e-9 138# Resistivity (Ohm-m) 139Wire->Semiglobal->Resistivity = 2.80e-8 140# Metal thickness (m) 141Wire->Semiglobal->MetalThickness = 150.0e-9 142# Dielectric thickness (m) 143Wire->Semiglobal->DielectricThickness = 150.0e-9 144# Dielectric constant 145Wire->Semiglobal->DielectricConstant = 2.60 146 147# Global wire, 8.0X the M1 pitch 148# Min width (m) 149Wire->Global->MinWidth = 160e-9 150# Min spacing (m) 151Wire->Global->MinSpacing = 160e-9 152# Resistivity (Ohm-m) 153Wire->Global->Resistivity = 2.30e-8 154# Metal thickness (m) 155Wire->Global->MetalThickness = 280e-9 156# Dielectric thickness (m) 157Wire->Global->DielectricThickness = 250e-9 158# Dielectric constant 159Wire->Global->DielectricConstant = 2.60 160 161# ============================================================================= 162# Parameters for Standard Cells 163# ============================================================================= 164 165# The height of the standard cell is usually a multiple of the vertical 166# M1 pitch (tracks). By definition, an X1 size cell has transistors 167# that fit exactly in the given cell height without folding, or leaving 168# any wasted vertical area 169 170# Reasonable values for the number of M1 tracks that we have seen are 8-14 171StdCell->Tracks = 11 172# Height overhead due to supply rails, well spacing, etc. Note that this will grow 173# if the height of the standard cell decreases! 174StdCell->HeightOverheadFactor = 1.400 175 176# Sets the available sizes of each standard cell. Keep in mind that 177# 1.0 is the biggest cell without any transistor folding 178StdCell->AvailableSizes = [1.0, 1.4, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0, 16.0] 179 180 181 182