Bulk22LVT.model revision 10447
12207SN/A# WARNING: Most commercial fabs will not be happy if you release their exact
22207SN/A# process information! If you derive these numbers through SPICE models,
32207SN/A# the process design kit, or any other confidential material, please round-off
42207SN/A# the values and leave the process name unidentifiable by fab (i.e. call it
52207SN/A# Bulk90LVT instead of TSMC90LVT) if you release parameters publicly. This
62207SN/A# rule may not apply for open processes, but you may want to check.
72207SN/A
82207SN/A# All units are in SI, (volts, meters, kelvin, farads, ohms, amps, etc.)
92207SN/A
102207SN/A# This file contains the model for a bulk 22nm LVT process
112207SN/AName = Bulk22LVT
122207SN/A
132207SN/A# Supply voltage used in the circuit and for characterizations (V)
142207SN/AVdd = 0.8
152207SN/A# Temperature (K)
162207SN/ATemperature = 340
172207SN/A
182207SN/A# =============================================================================
192207SN/A# Parameters for transistors
202207SN/A# =============================================================================
212207SN/A
222207SN/A# Contacted gate pitch (m)
232207SN/AGate->PitchContacted = 0.120e-6
242207SN/A
252207SN/A# Min gate width (m)
262207SN/AGate->MinWidth = 0.100e-6
272665Ssaidi@eecs.umich.edu
282665Ssaidi@eecs.umich.edu# Gate cap per unit width (F/m)
292665Ssaidi@eecs.umich.eduGate->CapPerWidth = 0.900e-9
302207SN/A# Source/Drain cap per unit width (F/m)
312207SN/ADrain->CapPerWidth = 0.620e-9
322972Sgblack@eecs.umich.edu
332207SN/A# Parameters characterization temperature (K)
342454SN/ANmos->CharacterizedTemperature = 300.0
352454SN/APmos->CharacterizedTemperature = 300.0
362680Sktlim@umich.edu
372474SN/A#------------------------------------------------------------------------------
382207SN/A# I_Eff definition in Na, IEDM 2002
392207SN/A#       I_EFF = (I(VG = 0.5, VD = 1.0) + I(VG = 1.0, VD = 0.5))/2
402474SN/A#       R_EFF = VDD / I_EFF * 1 / (2 ln(2))
412474SN/A# This is generally accurate for when input and output transition times
422474SN/A# are similar, which is a reasonable case after timing optimization
432474SN/A#------------------------------------------------------------------------------
442474SN/A# Effective resistance (Ohm-m)
453114Sgblack@eecs.umich.eduNmos->EffResWidth = 0.700e-3
463669Sbinkertn@umich.eduPmos->EffResWidth = 0.930e-3
473114Sgblack@eecs.umich.edu
483114Sgblack@eecs.umich.edu#------------------------------------------------------------------------------
492474SN/A# The ratio of extra effective resistance with each additional stacked
503669Sbinkertn@umich.edu# transistor
512474SN/A#       EffResStackRatio = (R_EFF_NAND2 - R_EFF_INV) / R_EFF_INV)
522474SN/A# For example, inverter has an normalized effective drive resistance of 1.0.
532474SN/A# A NAND2 (2-stack) will have an effective drive of 1.0 + 0.7, a NAND3 (3-stack)
542474SN/A# will have an effective drive of 1.0 + 2 * 0.7. Use NORs for Pmos. This fit
552474SN/A# works relatively well up to 4 stacks. This value will change depending on the
562474SN/A# VDD used. 
572474SN/A#------------------------------------------------------------------------------
582474SN/A# Effective resistance stack ratio
592474SN/ANmos->EffResStackRatio = 0.800
602474SN/APmos->EffResStackRatio = 0.680
612474SN/A
622474SN/A#------------------------------------------------------------------------------
632474SN/A# I_OFF defined as |I_DS| for |V_DS| = V_DD and |V_GS| = 0.0
642474SN/A#       Minimum off current is used in technologies where I_OFF stops scaling
652474SN/A#       with transistor width below some threshold
662474SN/A#------------------------------------------------------------------------------
672474SN/A# Off current per width (A/m)
682474SN/ANmos->OffCurrent = 100.0e-3
692474SN/APmos->OffCurrent = 100.0e-3
702474SN/A# Minimum off current (A)
712474SN/ANmos->MinOffCurrent = 60e-9
722474SN/APmos->MinOffCurrent = 60e-9
732680Sktlim@umich.edu
742474SN/A# Subthreshold swing (V/dec)        
752474SN/ANmos->SubthresholdSwing = 0.100
762474SN/APmos->SubthresholdSwing = 0.100
77# DIBL factor (V/V)
78Nmos->DIBL = 0.150
79Pmos->DIBL = 0.150
80# Subthreshold temperature swing (K/dec)
81Nmos->SubthresholdTempSwing = 100.0
82Pmos->SubthresholdTempSwing = 100.0
83#------------------------------------------------------------------------------
84
85# =============================================================================
86# Parameters for interconnect
87# =============================================================================
88
89Wire->AvailableLayers = [Metal1,Local,Intermediate,Semiglobal,Global]
90
91# Metal 1 Wire (used for std cell routing only)
92# Min width (m)
93Wire->Metal1->MinWidth = 32e-9
94# Min spacing (m)
95Wire->Metal1->MinSpacing = 32e-9
96# Resistivity (Ohm-m)
97Wire->Metal1->Resistivity = 5.00e-8
98# Metal thickness (m)
99Wire->Metal1->MetalThickness = 60.0e-9
100# Dielectric thickness (m)
101Wire->Metal1->DielectricThickness = 60.0e-9
102# Dielectric constant
103Wire->Metal1->DielectricConstant = 3.00
104
105# Local wire, 1.0X of the M1 pitch
106# Min width (m)
107Wire->Local->MinWidth = 32e-9
108# Min spacing (m)
109Wire->Local->MinSpacing = 32e-9
110# Resistivity (Ohm-m)
111Wire->Local->Resistivity = 5.00e-8
112# Metal thickness (m)
113Wire->Local->MetalThickness = 60.0e-9
114# Dielectric thickness (m)
115Wire->Local->DielectricThickness = 60.0e-9
116# Dielectric constant
117Wire->Local->DielectricConstant = 3.00
118
119# Intermediate wire, 2.0X the M1 pitch
120# Min width (m)
121Wire->Intermediate->MinWidth = 55e-9
122# Min spacing (m)
123Wire->Intermediate->MinSpacing = 55e-9
124# Resistivity (Ohm-m)
125Wire->Intermediate->Resistivity = 4.00e-8
126# Metal thickness (m)
127Wire->Intermediate->MetalThickness = 100.0e-9
128# Dielectric thickness (m)
129Wire->Intermediate->DielectricThickness = 100.0e-9
130# Dielectric constant
131Wire->Intermediate->DielectricConstant = 2.8
132
133# Semiglobal wire, 4.0X the M1 pitch
134# Min width (m)
135Wire->Semiglobal->MinWidth = 110e-9
136# Min spacing (m)
137Wire->Semiglobal->MinSpacing = 110e-9
138# Resistivity (Ohm-m)
139Wire->Semiglobal->Resistivity = 2.60e-8
140# Metal thickness (m)
141Wire->Semiglobal->MetalThickness = 200e-9
142# Dielectric thickness (m)
143Wire->Semiglobal->DielectricThickness = 170e-9
144# Dielectric constant
145Wire->Semiglobal->DielectricConstant = 2.80        
146
147# Global wire, 6.0X the M1 pitch
148# Min width (m)
149Wire->Global->MinWidth = 160e-9
150# Min spacing (m)
151Wire->Global->MinSpacing = 160e-9
152# Resistivity (Ohm-m)
153Wire->Global->Resistivity = 2.30e-8
154# Metal thickness (m)
155Wire->Global->MetalThickness = 280e-9
156# Dielectric thickness (m)
157Wire->Global->DielectricThickness = 250e-9
158# Dielectric constant
159Wire->Global->DielectricConstant = 2.60
160
161# =============================================================================
162# Parameters for Standard Cells
163# =============================================================================
164
165# The height of the standard cell is usually a multiple of the vertical
166# M1 pitch (tracks). By definition, an X1 size cell has transistors
167# that fit exactly in the given cell height without folding, or leaving
168# any wasted vertical area
169
170# Reasonable values for the number of M1 tracks that we have seen are 8-14
171StdCell->Tracks = 11
172# Height overhead due to supply rails, well spacing, etc. Note that this will grow
173# if the height of the standard cell decreases!
174StdCell->HeightOverheadFactor = 1.400
175
176# Sets the available sizes of each standard cell. Keep in mind that
177# 1.0 is the biggest cell without any transistor folding
178StdCell->AvailableSizes = [1.0, 1.4, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0, 16.0]
179
180