XOR2.cc revision 10447:a465576671d4
1#include "model/std_cells/XOR2.h"
2
3#include <cmath>
4
5#include "model/PortInfo.h"
6#include "model/EventInfo.h"
7#include "model/TransitionInfo.h"
8#include "model/std_cells/StdCellLib.h"
9#include "model/std_cells/CellMacros.h"
10#include "model/timing_graph/ElectricalNet.h"
11#include "model/timing_graph/ElectricalDriver.h"
12#include "model/timing_graph/ElectricalLoad.h"
13#include "model/timing_graph/ElectricalDelay.h"
14
15namespace DSENT
16{
17    using std::ceil;
18    using std::max;
19
20    XOR2::XOR2(const String& instance_name_, const TechModel* tech_model_)
21        : StdCell(instance_name_, tech_model_)
22    {
23        initProperties();
24    }
25
26    XOR2::~XOR2()
27    {}
28
29    void XOR2::initProperties()
30    {
31        return;
32    }
33
34    void XOR2::constructModel()
35    {
36        // All constructModel should do is create Area/NDDPower/Energy Results as
37        // well as instantiate any sub-instances using only the hard parameters
38
39        createInputPort("A");
40        createInputPort("B");
41        createOutputPort("Y");
42
43        createLoad("A_Cap");
44        createLoad("B_Cap");
45        createDelay("A_to_Y_delay");
46        createDelay("B_to_Y_delay");
47        createDriver("Y_Ron", true);
48
49        ElectricalLoad* a_cap = getLoad("A_Cap");
50        ElectricalLoad* b_cap = getLoad("B_Cap");
51        ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
52        ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
53        ElectricalDriver* y_ron = getDriver("Y_Ron");
54
55        getNet("A")->addDownstreamNode(a_cap);
56        getNet("B")->addDownstreamNode(b_cap);
57        a_cap->addDownstreamNode(a_to_y_delay);
58        b_cap->addDownstreamNode(b_to_y_delay);
59        a_to_y_delay->addDownstreamNode(y_ron);
60        b_to_y_delay->addDownstreamNode(y_ron);
61        y_ron->addDownstreamNode(getNet("Y"));
62
63        // Create Area result
64        // Create NDD Power result
65        createElectricalAtomicResults();
66        // Create XOR2 Event Energy Result
67        createElectricalEventAtomicResult("XOR2");
68
69        getEventInfo("Idle")->setStaticTransitionInfos();
70
71        return;
72    }
73
74    void XOR2::updateModel()
75    {
76        // Get parameters
77        double drive_strength = getDrivingStrength();
78        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
79
80        // Standard cell cache string
81        String cell_name = "XOR2_X" + (String) drive_strength;
82
83        // Get timing parameters
84        getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
85        getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
86
87        getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
88        getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
89
90        getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
91
92        // Set the cell area
93        getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
94        getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
95
96        return;
97    }
98
99    void XOR2::evaluateModel()
100    {
101        return;
102    }
103
104    void XOR2::useModel()
105    {
106        // Get parameters
107        double drive_strength = getDrivingStrength();
108        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
109
110        // Standard cell cache string
111        String cell_name = "XOR2_X" + (String) drive_strength;
112
113        // Propagate the transition info and get the 0->1 transtion count
114        propagateTransitionInfo();
115        double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
116        double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
117        double A_num_trans_01 = getInputPort("A")->getTransitionInfo().getNumberTransitions01();
118        double B_num_trans_01 = getInputPort("B")->getTransitionInfo().getNumberTransitions01();
119        double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
120
121        // Calculate leakage
122        double leakage = 0;
123        leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B);
124        leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B;
125        leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B);
126        leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B;
127        getNddPowerResult("Leakage")->setValue(leakage);
128
129        // Get VDD
130        double vdd = getTechModel()->get("Vdd");
131
132        // Get capacitances
133        double a_b_cap = cache->get(cell_name + "->Cap->A_b");
134        double b_b_cap = cache->get(cell_name + "->Cap->B_b");
135        double y_cap = cache->get(cell_name + "->Cap->Y");
136        double y_load_cap = getNet("Y")->getTotalDownstreamCap();
137
138        // Calculate XOR Event energy
139        double xor2_event_result = 0.0;
140        xor2_event_result += a_b_cap * A_num_trans_01;
141        xor2_event_result += b_b_cap * B_num_trans_01;
142        xor2_event_result += (y_cap + y_load_cap) * Y_num_trans_01;
143        xor2_event_result *= vdd * vdd;
144        getEventResult("XOR2")->setValue(xor2_event_result);
145
146        return;
147    }
148
149    void XOR2::propagateTransitionInfo()
150    {
151        // Get input signal transition info
152        const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
153        const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
154
155        double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier());
156        const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
157        const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
158
159
160        double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
161        double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
162        double A_prob_10 = A_prob_01;
163        double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
164        double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
165        double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
166        double B_prob_10 = B_prob_01;
167        double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
168
169        // Set output transition info
170        double Y_prob_00 = A_prob_00 * B_prob_00 +
171                                A_prob_01 * B_prob_01 +
172                                A_prob_10 * B_prob_10 +
173                                A_prob_11 * B_prob_11;
174        double Y_prob_01 = A_prob_00 * B_prob_01 +
175                                A_prob_01 * B_prob_00 +
176                                A_prob_10 * B_prob_11 +
177                                A_prob_11 * B_prob_10;
178        double Y_prob_11 = A_prob_00 * B_prob_11 +
179                                A_prob_01 * B_prob_10 +
180                                A_prob_10 * B_prob_01 +
181                                A_prob_11 * B_prob_00;
182
183        // Check that probabilities add up to 1.0 with some finite tolerance
184        ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0),
185            "[Error] " + getInstanceName() +  "Output transition probabilities must add up to 1 (" +
186            (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
187
188        // Turn probability of transitions per cycle into number of transitions per time unit
189        TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
190        getOutputPort("Y")->setTransitionInfo(trans_Y);
191        return;
192    }
193
194    // Creates the standard cell, characterizes and abstracts away the details
195    void XOR2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
196    {
197        // Get parameters
198        double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
199        Map<double>* cache = cell_lib_->getStdCellCache();
200
201        // Standard cell cache string
202        String cell_name = "XOR2_X" + (String) drive_strength_;
203
204        Log::printLine("=== " + cell_name + " ===");
205
206        // Now actually build the full standard cell model
207        createInputPort("A");
208        createInputPort("B");
209        createOutputPort("Y");
210
211        createNet("A_b");
212        createNet("B_b");
213
214        // Adds macros
215        CellMacros::addInverter(this, "INV1", false, true, "A", "A_b");
216        CellMacros::addInverter(this, "INV2", false, true, "B", "B_b");
217        CellMacros::addTristate(this, "INVZ1", true, true, true, true, "B", "A", "A_b", "Y");
218        CellMacros::addTristate(this, "INVZ2", true, true, true, true, "B_b", "A_b", "A", "Y");
219
220        // I have no idea how to size each of the parts haha
221        CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.500);
222        CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.500);
223        CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 1.000);
224        CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 1.000);
225
226        // Cache area result
227        double area = 0.0;
228        area += gate_pitch * getTotalHeight() * 1;
229        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
230        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
231        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
232        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
233        cache->set(cell_name + "->ActiveArea", area);
234        Log::printLine(cell_name + "->ActiveArea=" + (String) area);
235
236        // --------------------------------------------------------------------
237        // Leakage Model Calculation
238        // --------------------------------------------------------------------
239        // Cache leakage power results (for every single signal combination)
240        double leakage_00 = 0;          //!A, !B
241        double leakage_01 = 0;          //!A, B
242        double leakage_10 = 0;          //A, !B
243        double leakage_11 = 0;          //A, B
244
245        //This is so painful...
246        leakage_00 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
247        leakage_00 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
248        leakage_00 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
249        leakage_00 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
250
251        leakage_01 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
252        leakage_01 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
253        leakage_01 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
254        leakage_01 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
255
256        leakage_10 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
257        leakage_10 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
258        leakage_10 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
259        leakage_10 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
260
261        leakage_11 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
262        leakage_11 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
263        leakage_11 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
264        leakage_11 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
265
266        cache->set(cell_name + "->Leakage->!A!B", leakage_00);
267        cache->set(cell_name + "->Leakage->!AB", leakage_01);
268        cache->set(cell_name + "->Leakage->A!B", leakage_10);
269        cache->set(cell_name + "->Leakage->AB", leakage_11);
270        Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00);
271        Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01);
272        Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10);
273        Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11);
274        // --------------------------------------------------------------------
275
276        // Cache event energy results
277        /*
278        double event_a_flip = 0.0;
279        event_a_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble();
280        event_a_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble();
281        event_a_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble();
282        cache->set(cell_name + "->Event_A_Flip", event_a_flip);
283        Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
284
285        double event_b_flip = 0.0;
286        event_b_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble();
287        event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
288        event_b_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble();
289        cache->set(cell_name + "->Event_B_Flip", event_b_flip);
290        Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
291
292        double event_y_flip = 0.0;
293        event_y_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble();
294        event_y_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble();
295        cache->set(cell_name + "->Event_Y_Flip", event_y_flip);
296        Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip);
297        */
298
299        // --------------------------------------------------------------------
300        // Get Node Capacitances
301        // --------------------------------------------------------------------
302        // Build abstracted timing model
303        double a_cap = getNet("A")->getTotalDownstreamCap();
304        double b_cap = getNet("B")->getTotalDownstreamCap();
305        double a_b_cap = getNet("A_b")->getTotalDownstreamCap();
306        double b_b_cap = getNet("B_b")->getTotalDownstreamCap();
307        double y_cap = getNet("Y")->getTotalDownstreamCap();
308
309        cache->set(cell_name + "->Cap->A", a_cap);
310        cache->set(cell_name + "->Cap->B", b_cap);
311        cache->set(cell_name + "->Cap->A_b", a_b_cap);
312        cache->set(cell_name + "->Cap->B_b", b_b_cap);
313        cache->set(cell_name + "->Cap->Y", y_cap);
314        Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
315        Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
316        Log::printLine(cell_name + "->Cap->A=" + (String) a_b_cap);
317        Log::printLine(cell_name + "->Cap->B=" + (String) b_b_cap);
318        Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap);
319        // --------------------------------------------------------------------
320
321        // --------------------------------------------------------------------
322        // Build Internal Delay Model
323        // --------------------------------------------------------------------
324        double y_ron = (getDriver("INVZ1_RonZN")->getOutputRes() + getDriver("INVZ2_RonZN")->getOutputRes()) / 2;
325
326        double a_to_y_delay = 0.0;
327        a_to_y_delay += getDriver("INV1_RonZN")->calculateDelay();
328        a_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay());
329
330        double b_to_y_delay = 0.0;
331        b_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay());
332
333        cache->set(cell_name + "->DriveRes->Y", y_ron);
334        cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
335        cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
336        Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
337        Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
338        Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
339        // --------------------------------------------------------------------
340
341        return;
342    }
343
344} // namespace DSENT
345
346