MUX2.cc revision 10448
1/* Copyright (c) 2012 Massachusetts Institute of Technology 2 * 3 * Permission is hereby granted, free of charge, to any person obtaining a copy 4 * of this software and associated documentation files (the "Software"), to deal 5 * in the Software without restriction, including without limitation the rights 6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 7 * copies of the Software, and to permit persons to whom the Software is 8 * furnished to do so, subject to the following conditions: 9 * 10 * The above copyright notice and this permission notice shall be included in 11 * all copies or substantial portions of the Software. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 19 * THE SOFTWARE. 20 */ 21 22#include "model/std_cells/MUX2.h" 23 24#include <cmath> 25 26#include "model/PortInfo.h" 27#include "model/TransitionInfo.h" 28#include "model/EventInfo.h" 29#include "model/std_cells/StdCellLib.h" 30#include "model/std_cells/CellMacros.h" 31#include "model/timing_graph/ElectricalNet.h" 32#include "model/timing_graph/ElectricalDriver.h" 33#include "model/timing_graph/ElectricalLoad.h" 34#include "model/timing_graph/ElectricalDelay.h" 35 36namespace DSENT 37{ 38 using std::ceil; 39 using std::max; 40 41 MUX2::MUX2(const String& instance_name_, const TechModel* tech_model_) 42 : StdCell(instance_name_, tech_model_) 43 { 44 initProperties(); 45 } 46 47 MUX2::~MUX2() 48 {} 49 50 void MUX2::initProperties() 51 { 52 return; 53 } 54 55 void MUX2::constructModel() 56 { 57 // All constructModel should do is create Area/NDDPower/Energy Results as 58 // well as instantiate any sub-instances using only the hard parameters 59 60 createInputPort("A"); 61 createInputPort("B"); 62 createInputPort("S0"); 63 createOutputPort("Y"); 64 65 createLoad("A_Cap"); 66 createLoad("B_Cap"); 67 createLoad("S0_Cap"); 68 createDelay("A_to_Y_delay"); 69 createDelay("B_to_Y_delay"); 70 createDelay("S0_to_Y_delay"); 71 createDriver("Y_Ron", true); 72 73 ElectricalLoad* a_cap = getLoad("A_Cap"); 74 ElectricalLoad* b_cap = getLoad("B_Cap"); 75 ElectricalLoad* s0_cap = getLoad("S0_Cap"); 76 ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay"); 77 ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay"); 78 ElectricalDelay* s0_to_y_delay = getDelay("S0_to_Y_delay"); 79 ElectricalDriver* y_ron = getDriver("Y_Ron"); 80 81 getNet("A")->addDownstreamNode(a_cap); 82 getNet("B")->addDownstreamNode(b_cap); 83 getNet("S0")->addDownstreamNode(s0_cap); 84 a_cap->addDownstreamNode(a_to_y_delay); 85 b_cap->addDownstreamNode(b_to_y_delay); 86 s0_cap->addDownstreamNode(s0_to_y_delay); 87 a_to_y_delay->addDownstreamNode(y_ron); 88 b_to_y_delay->addDownstreamNode(y_ron); 89 s0_to_y_delay->addDownstreamNode(y_ron); 90 y_ron->addDownstreamNode(getNet("Y")); 91 92 // Create Area result 93 createElectricalAtomicResults(); 94 getEventInfo("Idle")->setStaticTransitionInfos(); 95 // Create MUX2 Event Energy Result 96 createElectricalEventAtomicResult("MUX2"); 97 98 99 return; 100 } 101 102 void MUX2::updateModel() 103 { 104 // Get parameters 105 double drive_strength = getDrivingStrength(); 106 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); 107 108 // Standard cell cache string 109 String cell_name = "MUX2_X" + (String) drive_strength; 110 111 // Get timing parameters 112 getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A")); 113 getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B")); 114 getLoad("S0_Cap")->setLoadCap(cache->get(cell_name + "->Cap->S0")); 115 116 getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y")); 117 getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y")); 118 getDelay("S0_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->S0_to_Y")); 119 120 getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y")); 121 122 // Set the cell area 123 getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea")); 124 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea")); 125 126 return; 127 } 128 129 void MUX2::evaluateModel() 130 { 131 return; 132 } 133 134 void MUX2::useModel() 135 { 136 // Get parameters 137 double drive_strength = getDrivingStrength(); 138 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); 139 140 // Standard cell cache string 141 String cell_name = "MUX2_X" + (String) drive_strength; 142 143 // Propagate the transition and get the 0->1 transition count 144 propagateTransitionInfo(); 145 double P_A = getInputPort("A")->getTransitionInfo().getProbability1(); 146 double P_B = getInputPort("B")->getTransitionInfo().getProbability1(); 147 double P_S0 = getInputPort("S0")->getTransitionInfo().getProbability1(); 148 double S0_num_trans_01 = getInputPort("S0")->getTransitionInfo().getNumberTransitions01(); 149 double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01(); 150 151 // Calculate leakage 152 double leakage = 0; 153 leakage += cache->get(cell_name + "->Leakage->!A!B!S0") * (1 - P_A) * (1 - P_B) * (1 - P_S0); 154 leakage += cache->get(cell_name + "->Leakage->!A!BS0") * (1 - P_A) * (1 - P_B) * P_S0; 155 leakage += cache->get(cell_name + "->Leakage->!AB!S0") * (1 - P_A) * P_B * (1 - P_S0); 156 leakage += cache->get(cell_name + "->Leakage->!ABS0") * (1 - P_A) * P_B * P_S0; 157 leakage += cache->get(cell_name + "->Leakage->A!B!S0") * P_A * (1 - P_B) * (1 - P_S0); 158 leakage += cache->get(cell_name + "->Leakage->A!BS0") * P_A * (1 - P_B) * P_S0; 159 leakage += cache->get(cell_name + "->Leakage->AB!S0") * P_A * P_B * (1 - P_S0); 160 leakage += cache->get(cell_name + "->Leakage->ABS0") * P_A * P_B * P_S0; 161 getNddPowerResult("Leakage")->setValue(leakage); 162 163 // Get VDD 164 double vdd = getTechModel()->get("Vdd"); 165 166 // Get capacitances 167 double s0_b_cap = cache->get(cell_name + "->Cap->S0_b"); 168 double y_bar_cap = cache->get(cell_name + "->Cap->Y_b"); 169 double y_cap = cache->get(cell_name + "->Cap->Y"); 170 double y_load_cap = getNet("Y")->getTotalDownstreamCap(); 171 // Create mux2 event energy 172 double mux2_event_energy = 0.0; 173 mux2_event_energy += (s0_b_cap) * S0_num_trans_01; 174 mux2_event_energy += (y_bar_cap + y_cap + y_load_cap) * Y_num_trans_01; 175 mux2_event_energy *= vdd * vdd; 176 getEventResult("MUX2")->setValue(mux2_event_energy); 177 178 return; 179 } 180 181 void MUX2::propagateTransitionInfo() 182 { 183 // Get input signal transition info 184 const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo(); 185 const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo(); 186 const TransitionInfo& trans_S0 = getInputPort("S0")->getTransitionInfo(); 187 188 // Scale all transition information to the highest freq multiplier 189 double max_freq_mult = max(max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()), trans_S0.getFrequencyMultiplier()); 190 const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult); 191 const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult); 192 const TransitionInfo& scaled_trans_S0 = trans_S0.scaleFrequencyMultiplier(max_freq_mult); 193 194 // Compute the probability of each transition on a given cycle 195 double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult; 196 double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult; 197 double A_prob_10 = A_prob_01; 198 double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult; 199 double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult; 200 double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult; 201 double B_prob_10 = B_prob_01; 202 double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult; 203 double S0_prob_00 = scaled_trans_S0.getNumberTransitions00() / max_freq_mult; 204 double S0_prob_01 = scaled_trans_S0.getNumberTransitions01() / max_freq_mult; 205 double S0_prob_10 = S0_prob_01; 206 double S0_prob_11 = scaled_trans_S0.getNumberTransitions11() / max_freq_mult; 207 208 // Compute output probabilities 209 double Y_prob_00 = S0_prob_00 * A_prob_00 + 210 S0_prob_01 * (A_prob_00 + A_prob_01) * (B_prob_00 + B_prob_10) + 211 S0_prob_10 * (A_prob_00 + A_prob_10) * (B_prob_00 + B_prob_01) + 212 S0_prob_11 * B_prob_00; 213 double Y_prob_01 = S0_prob_00 * A_prob_01 + 214 S0_prob_01 * (A_prob_00 + A_prob_01) * (B_prob_01 + B_prob_11) + 215 S0_prob_10 * (A_prob_01 + A_prob_11) * (B_prob_00 + B_prob_01) + 216 S0_prob_11 * B_prob_01; 217 double Y_prob_11 = S0_prob_00 * A_prob_11 + 218 S0_prob_01 * (A_prob_10 + A_prob_11) * (B_prob_01 + B_prob_11) + 219 S0_prob_10 * (A_prob_01 + A_prob_11) * (B_prob_10 + B_prob_11) + 220 S0_prob_11 * B_prob_11; 221 222 // Check that probabilities add up to 1.0 with some finite tolerance 223 ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0), 224 "[Error] " + getInstanceName() + "Output transition probabilities must add up to 1 (" + 225 (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!"); 226 227 // Turn probability of transitions per cycle into number of transitions per time unit 228 TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult); 229 getOutputPort("Y")->setTransitionInfo(trans_Y); 230 231 return; 232 } 233 234 // Creates the standard cell, characterizes and abstracts away the details 235 void MUX2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) 236 { 237 // Get parameters 238 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); 239 Map<double>* cache = cell_lib_->getStdCellCache(); 240 241 // Standard cell cache string 242 String cell_name = "MUX2_X" + (String) drive_strength_; 243 244 Log::printLine("=== " + cell_name + " ==="); 245 246 // Now actually build the full standard cell model 247 createInputPort("A"); 248 createInputPort("B"); 249 createInputPort("S0"); 250 createOutputPort("Y"); 251 252 createNet("S0_b"); 253 createNet("Y_b"); 254 255 // Adds macros 256 CellMacros::addInverter(this, "INV1", false, true, "S0", "S0_b"); 257 CellMacros::addInverter(this, "INV2", false, true, "Y_b", "Y"); 258 CellMacros::addTristate(this, "INVZ1", true, true, true, true, "A", "S0_b", "S0", "Y_b"); 259 CellMacros::addTristate(this, "INVZ2", true, true, true, true, "B", "S0", "S0_b", "Y_b"); 260 261 // I have no idea how to size each of the parts haha 262 CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.250); 263 CellMacros::updateInverter(this, "INV2", drive_strength_ * 1.000); 264 CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.500); 265 CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.500); 266 267 // Cache area result 268 double area = 0.0; 269 area += gate_pitch * getTotalHeight() * 1; 270 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble(); 271 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble(); 272 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble(); 273 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble(); 274 cache->set(cell_name + "->ActiveArea", area); 275 Log::printLine(cell_name + "->ActiveArea=" + (String) area); 276 277 // -------------------------------------------------------------------- 278 // Cache Leakage Power (for every single signal combination) 279 // -------------------------------------------------------------------- 280 double leakage_000 = 0; //!A, !B, !S0 281 double leakage_001 = 0; //!A, !B, S0 282 double leakage_010 = 0; //!A, B, !S0 283 double leakage_011 = 0; //!A, B, S0 284 double leakage_100 = 0; //A, !B, !S0 285 double leakage_101 = 0; //A, !B, S0 286 double leakage_110 = 0; //A, B, !S0 287 double leakage_111 = 0; //A, B, S0 288 289 //This is so painful... 290 leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); 291 leakage_000 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); 292 leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); 293 leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble(); 294 295 leakage_001 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); 296 leakage_001 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); 297 leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble(); 298 leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); 299 300 leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); 301 leakage_010 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); 302 leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); 303 leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble(); 304 305 leakage_011 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); 306 leakage_011 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); 307 leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble(); 308 leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); 309 310 leakage_100 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); 311 leakage_100 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); 312 leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); 313 leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble(); 314 315 leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); 316 leakage_101 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); 317 leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble(); 318 leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); 319 320 leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); 321 leakage_110 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); 322 leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); 323 leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble(); 324 325 leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); 326 leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); 327 leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble(); 328 leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); 329 330 cache->set(cell_name + "->Leakage->!A!B!S0", leakage_000); 331 cache->set(cell_name + "->Leakage->!A!BS0", leakage_001); 332 cache->set(cell_name + "->Leakage->!AB!S0", leakage_010); 333 cache->set(cell_name + "->Leakage->!ABS0", leakage_011); 334 cache->set(cell_name + "->Leakage->A!B!S0", leakage_100); 335 cache->set(cell_name + "->Leakage->A!BS0", leakage_101); 336 cache->set(cell_name + "->Leakage->AB!S0", leakage_110); 337 cache->set(cell_name + "->Leakage->ABS0", leakage_111); 338 Log::printLine(cell_name + "->Leakage->!A!B!S0=" + (String) leakage_000); 339 Log::printLine(cell_name + "->Leakage->!A!BS0=" + (String) leakage_001); 340 Log::printLine(cell_name + "->Leakage->!AB!S0=" + (String) leakage_010); 341 Log::printLine(cell_name + "->Leakage->!ABS0=" + (String) leakage_011); 342 Log::printLine(cell_name + "->Leakage->A!B!S0=" + (String) leakage_100); 343 Log::printLine(cell_name + "->Leakage->A!BS0=" + (String) leakage_101); 344 Log::printLine(cell_name + "->Leakage->AB!S0=" + (String) leakage_110); 345 Log::printLine(cell_name + "->Leakage->ABS0=" + (String) leakage_111); 346 347 // Cache event energy results 348 /* 349 double event_a_flip = 0.0; 350 event_a_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble(); 351 cache->set(cell_name + "->Event_A_Flip", event_a_flip); 352 Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip); 353 354 double event_b_flip = 0.0; 355 event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble(); 356 cache->set(cell_name + "->Event_B_Flip", event_b_flip); 357 Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip); 358 359 double event_s0_flip = 0.0; 360 event_s0_flip += getGenProperties()->get("INV1_A_Flip").toDouble(); 361 event_s0_flip += getGenProperties()->get("INV1_ZN_Flip").toDouble(); 362 event_s0_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble(); 363 event_s0_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble(); 364 cache->set(cell_name + "->Event_S0_Flip", event_s0_flip); 365 Log::printLine(cell_name + "->Event_S0_Flip=" + (String) event_s0_flip); 366 367 double event_y_flip = 0.0; 368 event_y_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble(); 369 event_y_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble(); 370 event_y_flip += getGenProperties()->get("INV2_A_Flip").toDouble(); 371 event_y_flip += getGenProperties()->get("INV2_ZN_Flip").toDouble(); 372 cache->set(cell_name + "->Event_Y_Flip", event_y_flip); 373 Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip); 374 375 double a_cap = getLoad("INVZ1_CgA")->getLoadCap(); 376 double b_cap = getLoad("INVZ2_CgA")->getLoadCap(); 377 double s0_cap = getLoad("INV1_CgA")->getLoadCap() + getLoad("INVZ1_CgOEN")->getLoadCap() + getLoad("INVZ2_CgOE")->getLoadCap(); 378 double y_ron = getDriver("INV2_RonZN")->getOutputRes(); 379 */ 380 // -------------------------------------------------------------------- 381 382 // -------------------------------------------------------------------- 383 // Get Node capacitances 384 // -------------------------------------------------------------------- 385 double a_cap = getNet("A")->getTotalDownstreamCap(); 386 double b_cap = getNet("B")->getTotalDownstreamCap(); 387 double s0_cap = getNet("S0")->getTotalDownstreamCap(); 388 double s0_b_cap = getNet("S0_b")->getTotalDownstreamCap(); 389 double y_b_cap = getNet("Y_b")->getTotalDownstreamCap(); 390 double y_cap = getNet("Y")->getTotalDownstreamCap(); 391 392 cache->set(cell_name + "->Cap->A", a_cap); 393 cache->set(cell_name + "->Cap->B", b_cap); 394 cache->set(cell_name + "->Cap->S0", s0_cap); 395 cache->set(cell_name + "->Cap->S0_b", s0_b_cap); 396 cache->set(cell_name + "->Cap->Y_b", y_b_cap); 397 cache->set(cell_name + "->Cap->Y", y_cap); 398 399 Log::printLine(cell_name + "->Cap->A=" + (String) a_cap); 400 Log::printLine(cell_name + "->Cap->B=" + (String) b_cap); 401 Log::printLine(cell_name + "->Cap->S0=" + (String) s0_cap); 402 Log::printLine(cell_name + "->Cap->S0_b=" + (String) s0_b_cap); 403 Log::printLine(cell_name + "->Cap->Y_b=" + (String) y_b_cap); 404 Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap); 405 // -------------------------------------------------------------------- 406 407 // -------------------------------------------------------------------- 408 // Build Internal Delay Model 409 // -------------------------------------------------------------------- 410 // Build abstracted timing model 411 double y_ron = getDriver("INV2_RonZN")->getOutputRes(); 412 413 double a_to_y_delay = 0.0; 414 a_to_y_delay += getDriver("INVZ1_RonZN")->calculateDelay(); 415 a_to_y_delay += getDriver("INV2_RonZN")->calculateDelay(); 416 417 double b_to_y_delay = 0.0; 418 b_to_y_delay += getDriver("INVZ1_RonZN")->calculateDelay(); 419 b_to_y_delay += getDriver("INV2_RonZN")->calculateDelay(); 420 421 double s0_to_y_delay = 0.0; 422 s0_to_y_delay += getDriver("INV1_RonZN")->calculateDelay(); 423 s0_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ1_RonZN")->calculateDelay()); 424 s0_to_y_delay += getDriver("INV2_RonZN")->calculateDelay(); 425 426 cache->set(cell_name + "->DriveRes->Y", y_ron); 427 cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay); 428 cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay); 429 cache->set(cell_name + "->Delay->S0_to_Y", s0_to_y_delay); 430 431 Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron); 432 Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay); 433 Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay); 434 Log::printLine(cell_name + "->Delay->S0_to_Y=" + (String) s0_to_y_delay); 435 // -------------------------------------------------------------------- 436 437 return; 438 } 439 440} // namespace DSENT 441 442