MUX2.cc revision 10447
1#include "model/std_cells/MUX2.h"
2
3#include <cmath>
4
5#include "model/PortInfo.h"
6#include "model/TransitionInfo.h"
7#include "model/EventInfo.h"
8#include "model/std_cells/StdCellLib.h"
9#include "model/std_cells/CellMacros.h"
10#include "model/timing_graph/ElectricalNet.h"
11#include "model/timing_graph/ElectricalDriver.h"
12#include "model/timing_graph/ElectricalLoad.h"
13#include "model/timing_graph/ElectricalDelay.h"
14
15namespace DSENT
16{
17    using std::ceil;
18    using std::max;
19
20    MUX2::MUX2(const String& instance_name_, const TechModel* tech_model_)
21        : StdCell(instance_name_, tech_model_)
22    {
23        initProperties();
24    }
25
26    MUX2::~MUX2()
27    {}
28
29    void MUX2::initProperties()
30    {
31        return;
32    }
33
34    void MUX2::constructModel()
35    {
36        // All constructModel should do is create Area/NDDPower/Energy Results as
37        // well as instantiate any sub-instances using only the hard parameters
38
39        createInputPort("A");
40        createInputPort("B");
41        createInputPort("S0");
42        createOutputPort("Y");
43
44        createLoad("A_Cap");
45        createLoad("B_Cap");
46        createLoad("S0_Cap");
47        createDelay("A_to_Y_delay");
48        createDelay("B_to_Y_delay");
49        createDelay("S0_to_Y_delay");
50        createDriver("Y_Ron", true);
51
52        ElectricalLoad* a_cap = getLoad("A_Cap");
53        ElectricalLoad* b_cap = getLoad("B_Cap");
54        ElectricalLoad* s0_cap = getLoad("S0_Cap");
55        ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
56        ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
57        ElectricalDelay* s0_to_y_delay = getDelay("S0_to_Y_delay");
58        ElectricalDriver* y_ron = getDriver("Y_Ron");
59
60        getNet("A")->addDownstreamNode(a_cap);
61        getNet("B")->addDownstreamNode(b_cap);
62        getNet("S0")->addDownstreamNode(s0_cap);
63        a_cap->addDownstreamNode(a_to_y_delay);
64        b_cap->addDownstreamNode(b_to_y_delay);
65        s0_cap->addDownstreamNode(s0_to_y_delay);
66        a_to_y_delay->addDownstreamNode(y_ron);
67        b_to_y_delay->addDownstreamNode(y_ron);
68        s0_to_y_delay->addDownstreamNode(y_ron);
69        y_ron->addDownstreamNode(getNet("Y"));
70
71        // Create Area result
72        createElectricalAtomicResults();
73        getEventInfo("Idle")->setStaticTransitionInfos();
74        // Create MUX2 Event Energy Result
75        createElectricalEventAtomicResult("MUX2");
76
77
78        return;
79    }
80
81    void MUX2::updateModel()
82    {
83        // Get parameters
84        double drive_strength = getDrivingStrength();
85        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
86
87        // Standard cell cache string
88        String cell_name = "MUX2_X" + (String) drive_strength;
89
90        // Get timing parameters
91        getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
92        getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
93        getLoad("S0_Cap")->setLoadCap(cache->get(cell_name + "->Cap->S0"));
94
95        getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
96        getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
97        getDelay("S0_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->S0_to_Y"));
98
99        getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
100
101        // Set the cell area
102        getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
103        getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
104
105        return;
106    }
107
108    void MUX2::evaluateModel()
109    {
110        return;
111    }
112
113    void MUX2::useModel()
114    {
115        // Get parameters
116        double drive_strength = getDrivingStrength();
117        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
118
119        // Standard cell cache string
120        String cell_name = "MUX2_X" + (String) drive_strength;
121
122        // Propagate the transition and get the 0->1 transition count
123        propagateTransitionInfo();
124        double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
125        double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
126        double P_S0 = getInputPort("S0")->getTransitionInfo().getProbability1();
127        double S0_num_trans_01 = getInputPort("S0")->getTransitionInfo().getNumberTransitions01();
128        double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
129
130        // Calculate leakage
131        double leakage = 0;
132        leakage += cache->get(cell_name + "->Leakage->!A!B!S0") * (1 - P_A) * (1 - P_B) * (1 - P_S0);
133        leakage += cache->get(cell_name + "->Leakage->!A!BS0") * (1 - P_A) * (1 - P_B) * P_S0;
134        leakage += cache->get(cell_name + "->Leakage->!AB!S0") * (1 - P_A) * P_B * (1 - P_S0);
135        leakage += cache->get(cell_name + "->Leakage->!ABS0") * (1 - P_A) * P_B * P_S0;
136        leakage += cache->get(cell_name + "->Leakage->A!B!S0") * P_A * (1 - P_B) * (1 - P_S0);
137        leakage += cache->get(cell_name + "->Leakage->A!BS0") * P_A * (1 - P_B) * P_S0;
138        leakage += cache->get(cell_name + "->Leakage->AB!S0") * P_A * P_B * (1 - P_S0);
139        leakage += cache->get(cell_name + "->Leakage->ABS0") * P_A * P_B * P_S0;
140        getNddPowerResult("Leakage")->setValue(leakage);
141
142        // Get VDD
143        double vdd = getTechModel()->get("Vdd");
144
145        // Get capacitances
146        double s0_b_cap = cache->get(cell_name + "->Cap->S0_b");
147        double y_bar_cap = cache->get(cell_name + "->Cap->Y_b");
148        double y_cap = cache->get(cell_name + "->Cap->Y");
149        double y_load_cap = getNet("Y")->getTotalDownstreamCap();
150        // Create mux2 event energy
151        double mux2_event_energy = 0.0;
152        mux2_event_energy += (s0_b_cap) * S0_num_trans_01;
153        mux2_event_energy += (y_bar_cap + y_cap + y_load_cap) * Y_num_trans_01;
154        mux2_event_energy *= vdd * vdd;
155        getEventResult("MUX2")->setValue(mux2_event_energy);
156
157        return;
158    }
159
160    void MUX2::propagateTransitionInfo()
161    {
162        // Get input signal transition info
163        const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
164        const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
165        const TransitionInfo& trans_S0 = getInputPort("S0")->getTransitionInfo();
166
167        // Scale all transition information to the highest freq multiplier
168        double max_freq_mult = max(max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()), trans_S0.getFrequencyMultiplier());
169        const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
170        const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
171        const TransitionInfo& scaled_trans_S0 = trans_S0.scaleFrequencyMultiplier(max_freq_mult);
172
173        // Compute the probability of each transition on a given cycle
174        double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
175        double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
176        double A_prob_10 = A_prob_01;
177        double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
178        double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
179        double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
180        double B_prob_10 = B_prob_01;
181        double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
182        double S0_prob_00 = scaled_trans_S0.getNumberTransitions00() / max_freq_mult;
183        double S0_prob_01 = scaled_trans_S0.getNumberTransitions01() / max_freq_mult;
184        double S0_prob_10 = S0_prob_01;
185        double S0_prob_11 = scaled_trans_S0.getNumberTransitions11() / max_freq_mult;
186
187        // Compute output probabilities
188        double Y_prob_00 = S0_prob_00 * A_prob_00 +
189                            S0_prob_01 * (A_prob_00 + A_prob_01) * (B_prob_00 + B_prob_10) +
190                            S0_prob_10 * (A_prob_00 + A_prob_10) * (B_prob_00 + B_prob_01) +
191                            S0_prob_11 * B_prob_00;
192        double Y_prob_01 = S0_prob_00 * A_prob_01 +
193                            S0_prob_01 * (A_prob_00 + A_prob_01) * (B_prob_01 + B_prob_11) +
194                            S0_prob_10 * (A_prob_01 + A_prob_11) * (B_prob_00 + B_prob_01) +
195                            S0_prob_11 * B_prob_01;
196        double Y_prob_11 = S0_prob_00 * A_prob_11 +
197                            S0_prob_01 * (A_prob_10 + A_prob_11) * (B_prob_01 + B_prob_11) +
198                            S0_prob_10 * (A_prob_01 + A_prob_11) * (B_prob_10 + B_prob_11) +
199                            S0_prob_11 * B_prob_11;
200
201        // Check that probabilities add up to 1.0 with some finite tolerance
202        ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0),
203            "[Error] " + getInstanceName() +  "Output transition probabilities must add up to 1 (" +
204            (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
205
206        // Turn probability of transitions per cycle into number of transitions per time unit
207        TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
208        getOutputPort("Y")->setTransitionInfo(trans_Y);
209
210        return;
211    }
212
213    // Creates the standard cell, characterizes and abstracts away the details
214    void MUX2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
215    {
216        // Get parameters
217        double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
218        Map<double>* cache = cell_lib_->getStdCellCache();
219
220        // Standard cell cache string
221        String cell_name = "MUX2_X" + (String) drive_strength_;
222
223        Log::printLine("=== " + cell_name + " ===");
224
225        // Now actually build the full standard cell model
226        createInputPort("A");
227        createInputPort("B");
228        createInputPort("S0");
229        createOutputPort("Y");
230
231        createNet("S0_b");
232        createNet("Y_b");
233
234        // Adds macros
235        CellMacros::addInverter(this, "INV1", false, true, "S0", "S0_b");
236        CellMacros::addInverter(this, "INV2", false, true, "Y_b", "Y");
237        CellMacros::addTristate(this, "INVZ1", true, true, true, true, "A", "S0_b", "S0", "Y_b");
238        CellMacros::addTristate(this, "INVZ2", true, true, true, true, "B", "S0", "S0_b", "Y_b");
239
240        // I have no idea how to size each of the parts haha
241        CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.250);
242        CellMacros::updateInverter(this, "INV2", drive_strength_ * 1.000);
243        CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.500);
244        CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.500);
245
246        // Cache area result
247        double area = 0.0;
248        area += gate_pitch * getTotalHeight() * 1;
249        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
250        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
251        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
252        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
253        cache->set(cell_name + "->ActiveArea", area);
254        Log::printLine(cell_name + "->ActiveArea=" + (String) area);
255
256        // --------------------------------------------------------------------
257        // Cache Leakage Power (for every single signal combination)
258        // --------------------------------------------------------------------
259        double leakage_000 = 0;          //!A, !B, !S0
260        double leakage_001 = 0;          //!A, !B, S0
261        double leakage_010 = 0;          //!A, B, !S0
262        double leakage_011 = 0;          //!A, B, S0
263        double leakage_100 = 0;          //A, !B, !S0
264        double leakage_101 = 0;          //A, !B, S0
265        double leakage_110 = 0;          //A, B, !S0
266        double leakage_111 = 0;          //A, B, S0
267
268        //This is so painful...
269        leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
270        leakage_000 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
271        leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
272        leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble();
273
274        leakage_001 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
275        leakage_001 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
276        leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble();
277        leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
278
279        leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
280        leakage_010 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
281        leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
282        leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
283
284        leakage_011 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
285        leakage_011 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
286        leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
287        leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
288
289        leakage_100 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
290        leakage_100 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
291        leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
292        leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
293
294        leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
295        leakage_101 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
296        leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
297        leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
298
299        leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
300        leakage_110 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
301        leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
302        leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble();
303
304        leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
305        leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
306        leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble();
307        leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
308
309        cache->set(cell_name + "->Leakage->!A!B!S0", leakage_000);
310        cache->set(cell_name + "->Leakage->!A!BS0", leakage_001);
311        cache->set(cell_name + "->Leakage->!AB!S0", leakage_010);
312        cache->set(cell_name + "->Leakage->!ABS0", leakage_011);
313        cache->set(cell_name + "->Leakage->A!B!S0", leakage_100);
314        cache->set(cell_name + "->Leakage->A!BS0", leakage_101);
315        cache->set(cell_name + "->Leakage->AB!S0", leakage_110);
316        cache->set(cell_name + "->Leakage->ABS0", leakage_111);
317        Log::printLine(cell_name + "->Leakage->!A!B!S0=" + (String) leakage_000);
318        Log::printLine(cell_name + "->Leakage->!A!BS0=" + (String) leakage_001);
319        Log::printLine(cell_name + "->Leakage->!AB!S0=" + (String) leakage_010);
320        Log::printLine(cell_name + "->Leakage->!ABS0=" + (String) leakage_011);
321        Log::printLine(cell_name + "->Leakage->A!B!S0=" + (String) leakage_100);
322        Log::printLine(cell_name + "->Leakage->A!BS0=" + (String) leakage_101);
323        Log::printLine(cell_name + "->Leakage->AB!S0=" + (String) leakage_110);
324        Log::printLine(cell_name + "->Leakage->ABS0=" + (String) leakage_111);
325
326        // Cache event energy results
327        /*
328        double event_a_flip = 0.0;
329        event_a_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
330        cache->set(cell_name + "->Event_A_Flip", event_a_flip);
331        Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
332
333        double event_b_flip = 0.0;
334        event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
335        cache->set(cell_name + "->Event_B_Flip", event_b_flip);
336        Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
337
338        double event_s0_flip = 0.0;
339        event_s0_flip += getGenProperties()->get("INV1_A_Flip").toDouble();
340        event_s0_flip += getGenProperties()->get("INV1_ZN_Flip").toDouble();
341        event_s0_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble();
342        event_s0_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble();
343        cache->set(cell_name + "->Event_S0_Flip", event_s0_flip);
344        Log::printLine(cell_name + "->Event_S0_Flip=" + (String) event_s0_flip);
345
346        double event_y_flip = 0.0;
347        event_y_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble();
348        event_y_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble();
349        event_y_flip += getGenProperties()->get("INV2_A_Flip").toDouble();
350        event_y_flip += getGenProperties()->get("INV2_ZN_Flip").toDouble();
351        cache->set(cell_name + "->Event_Y_Flip", event_y_flip);
352        Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip);
353
354        double a_cap = getLoad("INVZ1_CgA")->getLoadCap();
355        double b_cap = getLoad("INVZ2_CgA")->getLoadCap();
356        double s0_cap = getLoad("INV1_CgA")->getLoadCap() + getLoad("INVZ1_CgOEN")->getLoadCap() + getLoad("INVZ2_CgOE")->getLoadCap();
357        double y_ron = getDriver("INV2_RonZN")->getOutputRes();
358        */
359        // --------------------------------------------------------------------
360
361        // --------------------------------------------------------------------
362        // Get Node capacitances
363        // --------------------------------------------------------------------
364        double a_cap = getNet("A")->getTotalDownstreamCap();
365        double b_cap = getNet("B")->getTotalDownstreamCap();
366        double s0_cap = getNet("S0")->getTotalDownstreamCap();
367        double s0_b_cap = getNet("S0_b")->getTotalDownstreamCap();
368        double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
369        double y_cap = getNet("Y")->getTotalDownstreamCap();
370
371        cache->set(cell_name + "->Cap->A", a_cap);
372        cache->set(cell_name + "->Cap->B", b_cap);
373        cache->set(cell_name + "->Cap->S0", s0_cap);
374        cache->set(cell_name + "->Cap->S0_b", s0_b_cap);
375        cache->set(cell_name + "->Cap->Y_b", y_b_cap);
376        cache->set(cell_name + "->Cap->Y", y_cap);
377
378        Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
379        Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
380        Log::printLine(cell_name + "->Cap->S0=" + (String) s0_cap);
381        Log::printLine(cell_name + "->Cap->S0_b=" + (String) s0_b_cap);
382        Log::printLine(cell_name + "->Cap->Y_b=" + (String) y_b_cap);
383        Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap);
384        // --------------------------------------------------------------------
385
386        // --------------------------------------------------------------------
387        // Build Internal Delay Model
388        // --------------------------------------------------------------------
389        // Build abstracted timing model
390        double y_ron = getDriver("INV2_RonZN")->getOutputRes();
391
392        double a_to_y_delay = 0.0;
393        a_to_y_delay += getDriver("INVZ1_RonZN")->calculateDelay();
394        a_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
395
396        double b_to_y_delay = 0.0;
397        b_to_y_delay += getDriver("INVZ1_RonZN")->calculateDelay();
398        b_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
399
400        double s0_to_y_delay = 0.0;
401        s0_to_y_delay += getDriver("INV1_RonZN")->calculateDelay();
402        s0_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ1_RonZN")->calculateDelay());
403        s0_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
404
405        cache->set(cell_name + "->DriveRes->Y", y_ron);
406        cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
407        cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
408        cache->set(cell_name + "->Delay->S0_to_Y", s0_to_y_delay);
409
410        Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
411        Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
412        Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
413        Log::printLine(cell_name + "->Delay->S0_to_Y=" + (String) s0_to_y_delay);
414        // --------------------------------------------------------------------
415
416        return;
417    }
418
419} // namespace DSENT
420
421